CN115612992A - 一种超亲油-疏水防护复合涂层及其制备方法 - Google Patents
一种超亲油-疏水防护复合涂层及其制备方法 Download PDFInfo
- Publication number
- CN115612992A CN115612992A CN202211618687.6A CN202211618687A CN115612992A CN 115612992 A CN115612992 A CN 115612992A CN 202211618687 A CN202211618687 A CN 202211618687A CN 115612992 A CN115612992 A CN 115612992A
- Authority
- CN
- China
- Prior art keywords
- composite coating
- layer
- super
- hydrophobic protective
- protective composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0676—Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3435—Applying energy to the substrate during sputtering
- C23C14/345—Applying energy to the substrate during sputtering using substrate bias
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
- Y02A20/204—Keeping clear the surface of open water from oil spills
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种超亲油‑疏水防护复合涂层,包括由上到下依次设置的TiAlYON层、TiN层和Ti层,所述TiAlYON层中,各元素的原子百分比含量如下:N:21‑31%,O:17‑25%,Al:32‑40%,Ti:12‑17%,Y:0.6‑1.2%,本发明还提供了超亲油‑疏水防护复合涂层的制备方法,与现有技术相比,本发明涂层沉积过程绿色环保,工艺过程可控性强,容易实现大面积均匀沉积,与有机涂层相比,具有更强的表面机械耐磨特性,可以实现苛刻工况下的功能防护作用。
Description
技术领域
本发明属于表面处理技术领域,具体涉及一种超亲油-疏水防护复合涂层及其制备方法。
背景技术
固体表面润湿性是材料表面化学的一个重要研究领域,超亲油-疏水表面具有自清洁、防污、减阻、抗结冰结霜等功能,在日常生活、医疗、海洋、汽车工业生产等方面有着广泛的应用。
固体表面自由能(或称表面张力),即γSV,直接影响到液滴对其的润湿性及接触角;γSV值越大,越易被液体润湿;γSV值越小,越难以被液体润湿。在室温下,水的表面张力大约是0.072N/m,而油的表面张力大约在0.020N/m 到0.035N/m 之间,由此可得,要获得同时具备超亲油-疏水性表面的关键技术为选择合适的低表面能物质对材料表面进行修饰,使其表面能介于二者之间。
玻璃、金属及其氧化物等高表面能的表面容易被水润湿,聚四氟乙烯等高聚物属低表面能表面很难被水润湿,因此一些有机物常被选为化学修饰的低表面物质。一般而言,材料中含亲水性基团-OH、-NH2、-COOH 等越多,材料亲水性越强,反之,含疏水性基团 CF3、-CH3、-C6H5等越多,材料疏水性越强。因此,通过调节材料表面的化学组成,可以达到控制表面润湿性的目的。目前传统亲油材料以有机合成材料为主,对环境和人类健康都有一定的危害,并且具有成本高、制备过程复杂、残留样品难降解等缺点,因此发展绿色环保型疏水超亲油-疏水材料具有重要意义。
发明内容
本发明的目的在于提供一种超亲油-疏水防护复合涂层,能够使基体表面具有超亲油-疏水性能,以及良好的机械性能。
为达到上述目的,本发明采用的技术方案是:一种超亲油-疏水防护复合涂层,包括由上到下依次设置的TiAlYON层、TiN层和Ti层,所述TiAlYON层中,各元素的原子百分比含量如下:N:21-31%,O:17-25%,Al:32-40%,Ti:12-17%,Y:0.6-1.2%。
影响固体表面润湿性的2个关键因素: 一是表面微观结构;二是表面自由能,而表面微观结构和表面自由能又与成分密切相关,固液接触角随着固体表面能的减小而增大。在本发明的上述配比中,每种元素的组成和配比都有其必要性,N、Al元素作为应用最广泛的亲油组成,能通过对材料表面能作用从而影响材料表面润湿性,在此基础上,本发明还进行了Y、O、Ti元素的复合应用,通过上述三种元素的作用,能在涂层中生成YTi2O6结构相,该结构相颗粒清晰,无明显团聚现象,呈不太规则的类球状,因此YTi2O6结构相能首先在涂层表面构造微观粗糙结构,使涂层表面出现凹凸不平的微纳米结构,其次是用低表面能物质对粗糙表面修饰,本发明采用N元素和Al元素,能有效降低涂层表面自由能,使涂层具有超疏水超亲油特性。因此本发明采用上述组成和结构,能够具备良好的超亲油-疏水性能,通过不同原子百分比的配置,达到超亲油-疏水的目的。
作为优选,所述TiAlYON层具有面心立方体fcc结构,为(Ti,Al)(O,N)化合物,且具有(111)择优取向,织构系数TC为1.15-1.56,在 (Ti,Al)(O,N)化合物内形成有Y固溶。fcc,即面心立方晶格(Face Center Cubic/Face-Centered Cubic),是晶体结构的一种,面心立方晶格的晶胞是一个立方体,立方体的八个顶角和六个面的中心各有一个原子。在一般多晶体中,每个晶粒有不同于邻晶的结晶学取向,从整体看,所有晶粒的取向是任意分布的;某些情况下,晶体的晶粒在不同程度上围绕某些特殊的取向排列,就称为择优取向或简称织构,织构直接影响材料的物理和力学性能具有(111)型板织构的涂层,其具有优良的机械性能。
作为优选,所述超亲油-疏水防护复合涂层的表面为褶皱花纹形貌。褶皱花纹形貌的超亲油-疏水防护复合涂层表面对材料的润湿性具有重要影响,本发明制得的复合涂层具有褶皱花纹形貌,能提高复合涂层的润湿性,在实际应用中具有重要意义。
作为优选,所述超亲油-疏水防护复合涂层的厚度为1000-2500nm。本发明采用上述厚度的超亲油-疏水防护复合涂层,在上述厚度的选择范围内,不仅能保证得到的复合涂层具有基本的超亲油-疏水性能,且经济效益最大,有利于工业生产和应用。
本发明制得的超亲油-疏水防护复合涂层与油的接触角为2-4°,与水的接触角为120-125°,具备良好的超亲油-疏水性能。
本发明的另一个目的在于提供一种超亲油-疏水防护复合涂层的制备方法,所述制备方法具体包括如下步骤:
S1:将基体放置于真空腔体中,抽真空至本底真空度<3.0×10-5 Torr,再将真空腔体升温至300-450℃;
S2:使用离子束对基体进行刻蚀;
S3:使用阴极电弧沉积方法,在步骤S2得到的经刻蚀的基体表面沉积Ti层;
S4:使用阴极电弧沉积方法,在步骤S3得到的Ti层表面沉积TiN层;
S5:使用直流磁控溅射方法,在步骤S4得到的TiN层表面沉积TiAlYON层得到超亲油-疏水防护复合涂层。
作为优选,所述步骤S2中,刻蚀的条件如下:氩气流量为35-40sccm,离子束电流为0.1-0.3A,离子束功率为200-400W,刻蚀时间为20min。本发明在沉积Ti层之前对基体进行刻蚀处理,可有效去除基体表面的疏松层和氧化皮,相当于原子级别的微喷丸,活化基体表面,提高膜基结合强度,也为后续镀膜起到了高效预离化作用。
作为优选,所述步骤S3中,沉积Ti层的条件如下:以高纯Ti为靶材,在真空腔体里通入Ar,控制气压为45mTorr,沉积时间为6-8min。本发明采用阴极电弧沉积方法制备Ti层,由于其离化率高,在基体偏压的作用下,高密度离子束流加速向基体表面迁移并沉积,故膜层结构比较致密,且与基体的结合良好,该过渡层沉积时间较短,涂层较薄,在获得结构致密的膜层时不会造成过大的残余应力,在上述沉积条件下,能获得符合本发明要求的Ti层。
作为优选,所述步骤S4中,沉积TiN层的条件如下:以高纯Ti为靶材,在真空腔体里通入Ar和N2,气压为45mTorr,沉积时间为6-8min。本发明在氩气和氮气气氛下以及合适的沉积气压条件下,采用阴极电弧沉积方法制备得到TiN层,通过将气压控制在45mTorr,是制备出TiN层的关键因素,过低的沉积气压(小于45mTorr)会导致等离子浓度不足,沉积气压过高则会导致TiN层动能过低。
作为优选,所述步骤S5中,沉积TiAlYON层的条件如下:以高纯TiAlY为靶材,在真空腔体里通入流量比为2:1:1的Ar、N2和O2,沉积时间为30-120min,直流磁控溅射靶电流为2-5A,基体直流脉冲偏压为-300至-700V,腔体内气体压力为2-4mTorr。在上述参数范围内,本发明可通过调控步骤S5中的工艺参数,如溅射电流、基体脉冲偏压、腔体气压,能够改变涂层微结构,从而调控涂层的润湿性。
与现有技术相比,本发明具有如下优点:
其一、本发明设计涂层成分包括Ti、Al、Y、O、N,改变了涂层的成分可形成致密柱状晶结构,具有面心立方体fcc结构 (Ti,Al)(O, N)化合物,其中具有(111)择优取向,织构系数TC为1.15~1.56,在 (Ti,Al)(O, N)化合物内通过微量掺杂形成一定比例的Y 固溶,组分结构协同作用使涂层具有褶皱花纹形貌获得超亲油-疏水表面。
其二、本发明涂层沉积过程绿色环保,工艺过程可控性强,容易实现大面积均匀沉积,与有机涂层相比,具有更强的表面机械耐磨特性,可以实现苛刻工况下的功能防护作用。
附图说明
图1是本发明实施例1制得的超亲油-疏水防护复合涂层的截面形貌;
图2是本发明实施例1制得的超亲油-疏水防护复合涂层的表面形貌;
图3是本发明实施例1制得的超亲油-疏水防护复合涂层的XRD结构图;
图4是本发明实施例1制得的超亲油-疏水防护复合涂层与油的接触角;
图5是本发明实施例1制得的超亲油-疏水防护复合涂层与水的接触角;
图6是本发明对比例1制得的复合涂层的表面形貌;
图7是本发明对比例1制得的复合涂层与油的接触角;
图8是本发明对比例1制得的复合涂层与水的接触角。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本申请说明书和实施例仅是示例性的。
本发明实施例提供一种超亲油-疏水防护复合涂层,包括由上到下依次设置的TiAlYON层、TiN层和Ti层,TiAlYON层中,各元素的原子百分比含量如下:N:21-31%,O:17-25%,Al:32-40%,Ti:12-17%,Y:0.6-1.2%。
本发明复合涂层的TiAlYON层具有面心立方体fcc结构,为(Ti,Al)(O,N)化合物,其中具有(111)择优取向,织构系数TC为1.15-1.56,在 (Ti,Al)(O,N)化合物内通过微量掺杂形成一定比例的Y固溶,组分结构协同作用使涂层具有褶皱花纹形貌获得超亲油-疏水表面。fcc,即面心立方晶格(Face Center Cubic/Face-Centered Cubic),是晶体结构的一种,面心立方晶格的晶胞是一个立方体,立方体的八个顶角和六个面的中心各有一个原子。在一般多晶体中,每个晶粒有不同于邻晶的结晶学取向,从整体看,所有晶粒的取向是任意分布的;某些情况下,晶体的晶粒在不同程度上围绕某些特殊的取向排列,就称为择优取向或简称织构,织构直接影响材料的物理和力学性能具有(111)型板织构的涂层,其具有优良的机械性能。
且本发明复合涂层的厚度为1000-2500nm。
本发明实施例还提供一种超亲油-疏水防护复合涂层的制备方法,具体包括如下步骤:
S1:将基体放置于真空腔体中,抽真空至本底真空度<3.0×10-5 Torr,再将真空腔体升温至300-450℃;
S2:使用离子束对基体进行刻蚀,刻蚀的条件如下:氩气流量为35-40sccm,离子束电流为0.1-0.3A,离子束功率为200-400W,刻蚀时间为20min;
S3:使用阴极电弧沉积方法,在步骤S2得到的经刻蚀的基体表面沉积Ti层,沉积Ti层的条件如下:以高纯Ti为靶材,在真空腔体里通入Ar,控制气压为45mTorr,沉积时间为6-8min;
S4:使用阴极电弧沉积方法,在步骤S3得到的Ti层表面沉积TiN层,沉积TiN层的条件如下:以高纯Ti为靶材,在真空腔体里通入Ar和N2,气压为45mTorr,沉积时间为6-8min;
S5:使用直流磁控溅射方法,在步骤S4得到的TiN层表面沉积TiAlYON层得到超亲油-疏水防护复合涂层,沉积TiAlYON层的条件如下:以高纯TiAlY为靶材,在真空腔体里通入流量比为2:1:1的Ar、N2和O2,沉积时间为30-120min,直流磁控溅射靶电流为2-5A,基体直流脉冲偏压为-300至-700V,腔体内气体压力为2-4mTorr。
以下结合具体实施例对本发明的技术效果进行说明。
实施例1
本发明实施例提供一种超亲油-疏水防护复合涂层,包括由上到下依次设置的TiAlYON层、TiN层和Ti层,TiAlYON层中,各元素的原子百分比含量如下:N:22.93%,O:24.38%,Al:36.25%,Ti:15.61%,Y:0.83%,本实施例超亲油-疏水防护复合涂层通过如下制备方法制得:
S1、取不锈钢基体,经丙酮及乙醇分别超声清洗15min,烘干后置于真空腔体内,预抽真空到3.0×10-5Torr;在真空腔体里通入氩气,使气压维持在 2.0mTorr,在基体上施加-100V的直流脉冲偏压,设置离子束电流为0.1A,离子束功率为200W,对基体表面刻蚀20分钟;
S2、使用阴极电弧沉积方法,以高纯Ti为靶材,在真空腔体里通入Ar气,气压为45mTorr,在步骤S1得到的经过刻蚀的基体表面沉积8min得到Ti层;
S3、使用阴极电弧沉积方法,以高纯Ti为靶材,在真空腔体里通入Ar和N2,气压为45mTorr,在步骤S2得到的Ti层表面沉积8min得TiN层;
S4、使用直流磁控溅射方法,以高纯TiAlY为靶材,在真空腔体里通入流量比为2:1:1的Ar、N2及O2,调整靶材电流强度为5A,在基体表面沉积涂层120min,基体负偏压-300V,在步骤S3得到的TiN层表面溅射TiAlYON层,得到超亲油-疏水防护复合涂层。
对本实施例制得的超亲油-疏水防护复合涂层进行性能检测,测试过程及结果如下:
1、采用SEM (S4800,日本)对制得的超亲油-疏水防护复合涂层进行截面形貌分析,测试具体参数如下:电压为10kV、放大倍数为2万,测试结果如图1所示,从图1可以明显看到Ti层(近基体)、TiN层(Ti层之上)、TiAlYON层,且层与层之间结合紧密,这表明在基体与溅射源平行布置溅射中,溅射粒子沿法向方向沉积到基体表面,因此呈现典型柱状纳米晶结构生长,复合涂层中没有裂纹、缝隙等缺陷,结构致密;
2、采用SEM (S4800,日本)对制得的超亲油-疏水防护复合涂层进行表面形貌分析,测试具体参数如下:电压为10kV、放大倍数为3万,测试结果如图2所示,从图2可以看出复合涂层表面没有大颗粒及缺陷生成,结构致密,同时形貌呈现褶皱花纹形貌,最小褶皱10nm,多个褶皱组成的花纹最大为400nm×300nm;
3、采用德国Bruker公司生产的D8 Discover型高功率转靶多晶X射线衍射仪对复合涂层物相进行分析,测试具体参数如下:采用Cu靶Kα辐射、波长为1.5406 Å,管电压为42kV、管电流为100 mA,扫描范围为20~80,测试结果如图3所示,从图3可以看出复合涂层均呈现出面心立方TiN结构(PDF#065-5774),从XRD图谱中可发现复合涂层中立方相主要为(111)、(200)、(220)、(311)和(222)峰,呈多晶结构,复合涂层的柱状晶粒表现出明显的(111)取向,因为应变能在此复合涂层中占主导地位;
4、采用Data physics公司OCA20型接触角测量仪测量复合涂层的润湿性能,测量结果如图4所示,从图4可以看出复合涂层与油的接触角为3度,表现为油平铺在涂层表面;
5、采用 Data physics 公司OCA20型接触角测量仪测量复合涂层的润湿性能,测量结果如图5所示,从图5可以看出复合涂层与水的接触角为120度,表现为水滴可在复合涂层表面滚动。
实施例2
本发明实施例提供一种超亲油-疏水防护复合涂层,包括由上到下依次设置的TiAlYON层、TiN层和Ti层,TiAlYON层中,各元素的原子百分比含量如下:N:31.00%,O:19.70%,Al:35.42%,Ti:12.73%,Y:1.15%,本实施例超亲油-疏水防护复合涂层通过如下制备方法制得:
S1、取TC4基体,经丙酮及乙醇分别超声清洗15min,烘干后置于真空腔体内,预抽真空到3.0×10-5Torr;在真空腔体里通入氩气,使气压维持在2.0mTorr,在基体上施加-200V的直流脉冲偏压,设置离子束电流为0.2A,离子束功率为400W,对基体表面刻蚀20分钟;
S2、使用阴极电弧沉积方法,以高纯Ti为靶材,在真空腔体里通入Ar,气压为45mTorr,在步骤S1得到的经过刻蚀的基体表面沉积6min得到Ti层;
S3、使用阴极电弧沉积方法,以高纯Ti为靶材,在真空腔体里通入Ar和N2,气压为45mTorr,在步骤S2得到的Ti层表面沉积6min得TiN层;
S4、使用直流磁控溅射方法,以高纯TiAlY为靶材,在真空腔体里通入流量比为2:1:1的Ar、N2及O2,调整靶材电流强度为2A,在基体表面沉积涂层30min,基体负偏压-700V,在步骤S3得到的TiN层表面溅射TiAlYON层,得到超亲油-疏水防护复合涂层。
经检测,本实施例制得的超亲油-疏水防护复合涂层与油的接触角为4度,与水的接触角为122度。
实施例3
本发明实施例提供一种超亲油-疏水防护复合涂层,包括由上到下依次设置的TiAlYON层、TiN层和Ti层,TiAlYON层中,各元素的原子百分比含量如下:N:26.07%,O:22.77%,Al:37.47%,Ti:12.68%,Y:1.02%,本实施例超亲油-疏水防护复合涂层通过如下制备方法制得:
S1、取高速钢基体,经丙酮及乙醇分别超声清洗15min,烘干后置于真空腔体内,预抽真空到3.0×10-5Torr;在真空腔体里通入氩气,使气压维持在 2.0mTorr,在基体上施加-200V的直流脉冲偏压,设置离子束电流为0.2A,离子束功率为400W,对基体表面刻蚀20分钟;
S2、使用阴极电弧沉积方法,以高纯Ti为靶材,在真空腔体里通入Ar,气压为45mTorr,在步骤S1得到的经过刻蚀的基体表面沉积7min得到Ti层;
S3、使用阴极电弧沉积方法,以高纯Ti为靶材,在真空腔体里通入Ar和N2,气压为45mTorr,在步骤S2得到的Ti层表面沉积7min得TiN层;
S4、使用直流磁控溅射方法,以高纯TiAlY为靶材,在真空腔体里通入流量比为2:1:1的Ar、N2及O2,调整靶材电流强度为4A,在基体表面沉积涂层60min,基体负偏压-400V,在步骤S3得到的TiN层表面溅射TiAlYON层,得到超亲油-疏水防护复合涂层。
经检测,本实施例制得的超亲油-疏水防护复合涂层与油的接触角为2度,与水的接触角为125度。
对比例1
本发明对比例提供一种复合涂层,通过如下制备方法制得:
S1、取不锈钢基体,经丙酮及乙醇分别超声清洗15min,烘干后置于真空腔体内,预抽真空到3.0×10-5Torr;在真空腔体里通入氩气,使气压维持在2.0mTorr,在基体上施加-100V的直流脉冲偏压,设置离子束电流为0.1A,离子束功率为200W,对基体表面刻蚀20分钟;
S2、使用阴极电弧沉积方法,以高纯Ti为靶材,在真空腔体里通入Ar,气压为45mTorr,在步骤S1得到的经过刻蚀的基体表面沉积8min得到Ti层;
S3、使用阴极电弧沉积方法,以高纯Ti为靶材,在真空腔体里通入Ar和N2,气压为45mTorr,在步骤S2得到的Ti层表面沉积8min得TiN层;
S4、使用直流磁控溅射方法,以高纯TiAlY为靶材,在真空腔体里通入流量比为2:1的Ar及N2,调整靶材电流强度为5A,在基体表面沉积涂层120min,基体负偏压-300V,在步骤S3得到的TiN层表面溅射TiAlYN层,得到复合涂层。
对本对比例制得的复合涂层进行性能检测,测试过程及结果如下:
1、采用SEM (S4800,日本)进行表面形貌,具体测试参数如下:电压为10kV、放大倍数为3万,测试结果如图6所示,从图6可以看出复合涂层表面有大颗粒生成,同时形貌呈现花菜形貌;
2、采用Data physics公司OCA20型接触角测量仪测量复合涂层的润湿性能,测量结果如图7所示,从图7可以看出复合涂层与油的接触角为61.6度;
3、采用 Data physics 公司OCA20型接触角测量仪测量复合涂层的润湿性能,测量结果如图8所示,从图8可以看出复合涂层与水的接触角为128度。
对比例2
本发明对比例提供一种复合涂层,通过如下制备方法制得:
S1、取不锈钢基体,经丙酮及乙醇分别超声清洗15min,烘干后置于真空腔体内,预抽真空到3.0×10-5Torr;在真空腔体里通入氩气,使气压维持在 2.0mTorr,在基体上施加-100V的直流脉冲偏压,设置离子束电流为0.1A,离子束功率为200W,对基体表面刻蚀20分钟;
S2、使用阴极电弧沉积方法,以高纯Ti为靶材,在真空腔体里通入Ar,气压为45mTorr,在步骤S1得到的经过刻蚀的基体表面沉积8min得到Ti层;
S3、使用阴极电弧沉积方法,以高纯Ti为靶材,在真空腔体里通入Ar和N2,气压为45mTorr,在步骤S2得到的Ti层表面沉积8min得TiN层;
S4、使用直流磁控溅射方法,以高纯TiAl为靶材,在真空腔体里通入流量比为2:1:1的Ar、N2及O2,调整靶材电流强度为5A,在基体表面沉积涂层120min,基体负偏压-300V,在步骤S3得到的TiN层表面溅射TiAlON层,得到复合涂层。
经检测,本对比例制得的复合涂层与油的接触角为81度,与水的接触角为125度。
从上述结果可以看出,本发明设计涂层成分包括Ti、Al、Y、O、N,改变了涂层的成分可形成致密柱状晶结构,组分结构协同作用使涂层具有褶皱花纹形貌获得超亲油-疏水表面,本发明涂层沉积过程绿色环保,工艺过程可控性强,容易实现大面积均匀沉积,与有机涂层相比,具有更强的超亲油性能。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员,在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。
Claims (10)
1.一种超亲油-疏水防护复合涂层,其特征在于,包括由上到下依次设置的TiAlYON层、TiN层和Ti层,所述TiAlYON层中,各元素的原子百分比含量如下:N:21-31%,O:17-25%,Al:32-40%,Ti:12-17%,Y:0.6-1.2%。
2.如权利要求1所述的超亲油-疏水防护复合涂层,其特征在于,所述TiAlYON层具有面心立方体fcc结构,为(Ti,Al)(O,N)化合物,且具有(111)择优取向,织构系数TC为1.15-1.56,在 (Ti,Al)(O,N)化合物内形成有Y固溶。
3.如权利要求1所述的超亲油-疏水防护复合涂层,其特征在于,所述超亲油-疏水防护复合涂层的表面为褶皱花纹形貌。
4.如权利要求1所述的超亲油-疏水防护复合涂层,其特征在于,所述超亲油-疏水防护复合涂层的厚度为1000-2500nm。
5.如权利要求1所述的超亲油-疏水防护复合涂层,其特征在于,所述超亲油-疏水防护复合涂层与油的接触角为2-4°,与水的接触角为120-125°。
6.一种如权利要求1-5任一所述的超亲油-疏水防护复合涂层的制备方法,其特征在于,所述制备方法具体包括如下步骤:
S1:将基体放置于真空腔体中,抽真空至本底真空度<3.0×10-5 Torr,再将真空腔体升温至300-450℃;
S2:使用离子束对基体进行刻蚀;
S3:使用阴极电弧沉积方法,在步骤S2得到的经刻蚀的基体表面沉积Ti层;
S4:使用阴极电弧沉积方法,在步骤S3得到的Ti层表面沉积TiN层;
S5:使用直流磁控溅射方法,在步骤S4得到的TiN层表面沉积TiAlYON层得到超亲油-疏水防护复合涂层。
7.如权利要求6所述的超亲油-疏水防护复合涂层的制备方法,其特征在于,所述步骤S2中,刻蚀的条件如下:氩气流量为35-40sccm,离子束电流为0.1-0.3A,离子束功率为200-400W,刻蚀时间为20min。
8.如权利要求6所述的超亲油-疏水防护复合涂层的制备方法,其特征在于,所述步骤S3中,沉积Ti层的条件如下:以高纯Ti为靶材,在真空腔体里通入Ar,控制气压为45mTorr,沉积时间为6-8min。
9.如权利要求6所述的超亲油-疏水防护复合涂层的制备方法,其特征在于,所述步骤S4中,沉积TiN层的条件如下:以高纯Ti为靶材,在真空腔体里通入Ar和N2,气压为45mTorr,沉积时间为6-8min。
10.如权利要求6所述的超亲油-疏水防护复合涂层的制备方法,其特征在于,所述步骤S5中,沉积TiAlYON层的条件如下:以高纯TiAlY为靶材,在真空腔体里通入流量比为2:1:1的Ar、N2和O2,沉积时间为30-120min,直流磁控溅射靶电流为2-5A,基体直流脉冲偏压为-300至-700V,腔体内气体压力为2-4mTorr。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211618687.6A CN115612992B (zh) | 2022-12-16 | 2022-12-16 | 一种超亲油-疏水防护复合涂层及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211618687.6A CN115612992B (zh) | 2022-12-16 | 2022-12-16 | 一种超亲油-疏水防护复合涂层及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115612992A true CN115612992A (zh) | 2023-01-17 |
CN115612992B CN115612992B (zh) | 2023-05-23 |
Family
ID=84879752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211618687.6A Active CN115612992B (zh) | 2022-12-16 | 2022-12-16 | 一种超亲油-疏水防护复合涂层及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115612992B (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101517125A (zh) * | 2006-09-20 | 2009-08-26 | 英国贝尔法斯特女王大学 | 用具有特制润湿性的表面涂覆金属制品的方法 |
US20140065368A1 (en) * | 2012-08-28 | 2014-03-06 | Ut-Battelle, Llc | Superhydrophobic films and methods for making superhydrophobic films |
KR20180007551A (ko) * | 2016-07-13 | 2018-01-23 | 인천대학교 산학협력단 | 코어쉘 구조의 소수성 세라믹 파우더를 이용한 표면 개질방법 |
CN109881143A (zh) * | 2019-03-08 | 2019-06-14 | 北京师范大学 | 一种疏水亲油材料的制备方法 |
CN111534793A (zh) * | 2020-06-11 | 2020-08-14 | 新疆一和生物有限责任公司 | 一种具有抗菌性能的超疏水金属/陶瓷复合涂层及其制备方法 |
CN113549863A (zh) * | 2020-04-26 | 2021-10-26 | 中国兵器工业第五九研究所 | 耐磨超疏水基体防护涂层及其制备方法 |
TW202206632A (zh) * | 2020-08-03 | 2022-02-16 | 大陸商江蘇菲沃泰納米科技股份有限公司 | 疏水疏油塗層及其製備方法和產品 |
CN115369367A (zh) * | 2022-07-08 | 2022-11-22 | 中国科学院宁波材料技术与工程研究所 | 医用刀具表面的导电亲水max相涂层及其制法与应用 |
-
2022
- 2022-12-16 CN CN202211618687.6A patent/CN115612992B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101517125A (zh) * | 2006-09-20 | 2009-08-26 | 英国贝尔法斯特女王大学 | 用具有特制润湿性的表面涂覆金属制品的方法 |
US20140065368A1 (en) * | 2012-08-28 | 2014-03-06 | Ut-Battelle, Llc | Superhydrophobic films and methods for making superhydrophobic films |
KR20180007551A (ko) * | 2016-07-13 | 2018-01-23 | 인천대학교 산학협력단 | 코어쉘 구조의 소수성 세라믹 파우더를 이용한 표면 개질방법 |
CN109881143A (zh) * | 2019-03-08 | 2019-06-14 | 北京师范大学 | 一种疏水亲油材料的制备方法 |
CN113549863A (zh) * | 2020-04-26 | 2021-10-26 | 中国兵器工业第五九研究所 | 耐磨超疏水基体防护涂层及其制备方法 |
CN111534793A (zh) * | 2020-06-11 | 2020-08-14 | 新疆一和生物有限责任公司 | 一种具有抗菌性能的超疏水金属/陶瓷复合涂层及其制备方法 |
TW202206632A (zh) * | 2020-08-03 | 2022-02-16 | 大陸商江蘇菲沃泰納米科技股份有限公司 | 疏水疏油塗層及其製備方法和產品 |
CN115369367A (zh) * | 2022-07-08 | 2022-11-22 | 中国科学院宁波材料技术与工程研究所 | 医用刀具表面的导电亲水max相涂层及其制法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN115612992B (zh) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alfonso et al. | Thin film growth through sputtering technique and its applications | |
Dang et al. | Deposition and characterization of sputtered ZnO films | |
Wang et al. | Effect of deposition parameters on properties of TiO2 films deposited by reactive magnetron sputtering | |
CN106567049B (zh) | 一种max相陶瓷涂层及其制备方法和制备装置 | |
Komarov et al. | Formation and characterization of nanostructured composite coatings based on the TiN phase | |
Rizzo et al. | The influence of the momentum transfer on the structural and optical properties of ZnSe thin films prepared by rf magnetron sputtering | |
Lu et al. | The energy gap of rf-sputtered BaTiO3 thin films with different grain size | |
Sharma et al. | Development and characterization of confocal sputtered piezoelectric zinc oxide thin film | |
Quan et al. | Effect of Zr doping on structural and ferroelectric properties of lead-free Bi 0.5 (Na 0.80 K 0.20) 0.5 TiO 3 films | |
Subramanian et al. | Effect of substrate temperature on the structural properties of magnetron sputtered titanium nitride thin films with brush plated nickel interlayer on mild steel | |
Kiahosseini et al. | Adhesion, microstrain, and corrosion behavior of ZrN-coated AZ91 alloy as a function of temperature | |
Yan et al. | Effect of thermal activation energy on the structure and conductivity corrosion resistance of Cr doped TiN films on metal bipolar plate | |
Ma et al. | Characteristics of DLC containing Ti and Zr films deposited by reactive magnetron sputtering | |
CN115612992B (zh) | 一种超亲油-疏水防护复合涂层及其制备方法 | |
Iljinas et al. | Thin ferromagnetic films deposition by facing target sputtering method | |
Zolanvari et al. | Microstructure and Residual Stress Measurement of Ag/Glass Thin Films Using In-Situ High-Temperature X-ray Diffraction | |
Abinaya et al. | Reactive DC magnetron sputtered ZnO thin films for piezoelectric application | |
Fujita et al. | Control of crystal structure and ferroelectric properties of Pb (ZrXTi1-X) O3 films formed by pulsed laser deposition | |
CN103895283A (zh) | 一种纳米多层结构的VC/Ni增韧涂层及其制备方法 | |
Jedy et al. | Characterization of Nb2O5-Ni coating prepared by DC sputtering | |
Ramírez et al. | Influence of argon pressure on the structural properties of polycrystalline sputtered Fe0. 89Ga0. 11 thin films | |
Li et al. | Improved corrosion resistance of surface mechanical attrition treated tantalum | |
Zhao et al. | The growth behavior and stress evolution of sputtering-deposited LaNiO3 thin films | |
Bagmut | Growth of Needle-Shaped Crystals in Amorphous Films of Cr2O3 and V2O3 Under Electron-Beam Irradiation | |
Li et al. | Effect of deposition temperature on the structure and mechanical properties of Ti-6Al-4V film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |