CN1156108C - Method based on known time delay for estimating wave reaching direction - Google Patents

Method based on known time delay for estimating wave reaching direction Download PDF

Info

Publication number
CN1156108C
CN1156108C CNB00128133XA CN00128133A CN1156108C CN 1156108 C CN1156108 C CN 1156108C CN B00128133X A CNB00128133X A CN B00128133XA CN 00128133 A CN00128133 A CN 00128133A CN 1156108 C CN1156108 C CN 1156108C
Authority
CN
China
Prior art keywords
mrow
msup
vector
msubsup
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB00128133XA
Other languages
Chinese (zh)
Other versions
CN1355628A (en
Inventor
雷 周
周雷
范涛
曲秉玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CNB00128133XA priority Critical patent/CN1156108C/en
Publication of CN1355628A publication Critical patent/CN1355628A/en
Application granted granted Critical
Publication of CN1156108C publication Critical patent/CN1156108C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The present invention discloses a method for estimating wave reaching directions based on known time delay. In the method, received pilot signals are utilized to estimate wave reaching directions of signals on the basis of time delay estimation so that estimation in the number of signals is considerably simplified. Meanwhile, the method of conjugate gradient or singular value decomposition is adopted to obtain vectors for calculating the wave reaching directions of signals in the present invention so that noise has little influence on estimation in wave reaching directions of signals obtained by the method of the present invention, and estimation values also have little fluctuation.

Description

Direction-of-arrival estimation method based on known time delay
Technical Field
The present invention relates to reception techniques in a receiver of a wireless communication system, and more particularly, to a direction of arrival (DOA) estimation technique of a received signal of a wireless communication system.
Background
Currently, the commonly used DOA estimation method is the Fast Fourier Transform (FFT) method. This method has advantages of simple implementation, but has problems that the number of signals cannot be determined and the variance of estimation errors is large, and since the FFT method is not a statistical method, its performance is greatly affected by noise, and thus the fluctuation of the estimated value is large. In a wireless communication system, estimating the direction of arrival of a signal by the above method does not make good use of the received signal over a period of time to reduce the error in the estimation result.
Disclosure of Invention
In view of the above problems in the prior art, an object of the present invention is to provide a method for estimating a direction of arrival based on a known delay, which greatly simplifies the estimation of the number of signals, and the obtained estimation of the direction of arrival of the signals is less affected by noise and the fluctuation of the estimated value is also less.
In order to achieve the purpose, the invention adopts the technical scheme that: a method for estimating a direction of arrival based on known time delays, the method comprising the steps of:
(1) judging whether the array elements of the antenna are linearly placed at equal intervals or placed on the circular ring at equal intervals, if so, continuing to operate in the step (3), and otherwise, continuing to operate;
(2) for antennas with each array element placed equidistantly on the circumference, the baseband signal received by each array element is expressed by the following formula y (n) Ty0(n) transforming to obtain an equivalent signal column vector y (n);
wherein: y is0(n) is a column vector of the baseband signal received by the antenna,
<math> <mrow> <mi>T</mi> <mo>=</mo> <mi>diag</mi> <mo>{</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mi>M</mi> </mrow> </msup> <msubsup> <mi>J</mi> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>J</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>J</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>J</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mi>M</mi> </mrow> </msup> <msubsup> <mi>J</mi> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>}</mo> <msup> <mi>V</mi> <mi>H</mi> </msup> <mo>;</mo> </mrow> </math>
(3) despreading a received signal vector of a linear antenna or a transformed equivalent signal column vector y (n) of a loop antenna by using known time delay information to obtain a despread signal column vector x (n);
(4) construction of a reduced-dimension signal vector z using a despread signal column vector x (n)i(n),i=1,…,P-1 according to
The following formula: <math> <mrow> <msub> <mi>R</mi> <mi>ss</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> </math> and r (n) ═ λfR(n-1)+Rss(n) calculating to obtain instantaneous correlation matrix Rss(n) and estimation of a correlation matrix r (n);
(5) the instantaneous correlation matrix R obtained according to the step (4)ss(n) and the correlation matrix r (n) to obtain a desired vector w (n) ═ w1 w2]T(ii) an estimate of (d);
(6) utilizing two weighted weights w contained in the vector obtained in the step (5)1And w2And obtaining the estimation of the direction of arrival of the required signal.
According to the instantaneous correlation matrix Rss(n) and the correlation matrix r (n) to obtain a desired vector w (n) ═ w1 w2]TThe estimate of (c) can be obtained as follows:
setting the initial conditions as follows: w (0) ═ 10]TThe residual vector g (0) [ -10 ]]TThe gradient vector p (1) is g (0), n is 1, and the update step is calculated sequentially:
<math> <mrow> <mi>&alpha;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&eta;</mi> <mfrac> <mrow> <mi>p</mi> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>p</mi> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>R</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math> wherein: (lambdaf-0.5)≤η≤λfThe required vector update is calculated as:
w(n)=w(n-1)+α(n)p(n)
the residual vector update formula is:
g(n)=λfg(n-1)-α(n)R(n)p(n)-Rss(n)w(n-1)
the gradient adjustment step size is calculated as follows:
<math> <mrow> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
gradient vector update calculation:
p(n)=g(n)+β(n)p(n)
through each iterative calculation, the required vector w (n) ═ w can be obtained1 w2]T
According to the instantaneous correlation matrix Rss(n) and the correlation matrix r (n) to obtain a desired vector w (n) ═ w1 w2]TThe estimate of (c) can also be obtained as follows:
the correlation matrix r (n) is subjected to a singular value decomposition as follows:
R(n)=U(n)∑(n)U(n)H=[u(n)w(n)]diag{λ1,λ2}[u(n)w(n)]H λ1>λ2not less than 0, the required vector w (n) ═ w can be obtained1 w2]T
The above uses two weighted weights w1And w2The estimation of the direction of arrival of the desired signal can be obtained as follows: for antennas with each array element placed equidistantly on the circumference, the signal direction angle phi is equal to angle (w)2)-angle(w1) (ii) a For the antennas with linearly and equidistantly arranged array elements, the arrival direction angle of the signals is as follows: <math> <mrow> <mi>&theta;</mi> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mi>&lambda;&phi;</mi> <mrow> <mn>2</mn> <mi>&pi;d</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
according to the technical scheme adopted by the invention, the problem of signal number estimation is simplified by utilizing the known time delay information, so that the method is easy to realize in practice; the invention can use a plurality of baseband signals received by continuous antennas to carry out statistical signal processing, thereby avoiding the defect that the common FFT method is easily affected by noise, greatly reducing the fluctuation of the estimated result and improving the accuracy, thereby improving the performance of wireless communication receiving.
Drawings
The present invention will be described in further detail with reference to the accompanying drawings and examples.
FIG. 1 is a schematic flow diagram of the process of the present invention.
Detailed description of the invention
Generally, in an actual wireless communication system, the change of the direction of arrival of a signal is relatively slow, and the conventional FFT method does not improve the estimation result using the slowly changing information, and therefore, there is inevitably room for improvement in the performance of the signal processing method.
The method of the invention is aimed at processing the baseband signals received by each antenna element and obtained after demodulation. Let the symbol y (n) denote the resulting baseband signal column vector, the number of vector elements is P, i.e. the number of actual antenna elements, and the column vector denotes that n in the symbol corresponds to a sampling time, i.e. the vector is a vector of baseband signal samples obtained at the nth sampling time on each array element.
The method of the present invention also uses different treatments for different antenna shapes. For antennas with linearly equidistant placement of the elements, the method of the invention can be applied directly. For the antenna with each array element placed equidistantly on the ring, the following processing needs to be performed on the signal in advance:
assuming that the actual number of antenna elements is N, the radius of a circular ring is r, the carrier wavelength is lambda, the arrival signal pitch angle theta is epsilon [0, pi/2 ], and let M be 2 pi r/lambda and zeta be Msin theta
<math> <mrow> <mi>T</mi> <mo>=</mo> <mi>diag</mi> <mo>{</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mi>M</mi> </mrow> </msup> <msubsup> <mi>J</mi> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>J</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>J</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>J</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mi>M</mi> </mrow> </msup> <msubsup> <mi>J</mi> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>}</mo> <msup> <mi>V</mi> <mi>H</mi> </msup> <mo>;</mo> </mrow> </math>
Figure C0012813300082
Wherein, j = - 1 , Jm(ζ) is a first type of Bessel function with order m, and diag { a, b } represents a diagonal matrix with major diagonal elements a, b, respectively. Column vector y of baseband signal received by antenna0(N) (the vector dimension is Nx 1) is transformed as follows
y(n)=Ty0And (n) the number of elements of the equivalent signal column vector y (n) after conversion is 2M + 1. The above-mentioned transformations are transformations of the signals received on the different elements. And directly despreading a received signal vector of a linear antenna or a transformed equivalent signal column vector y (n) of a loop antenna by using known time delay information. The despread signal column vector is denoted x (n).
Let x (n) be [ < x >1(n)x2(n)…xp(n)]TFrom which new reduced-dimension signal vectors are constructed, such that
z1(n)=[x1(n),x2(n)]T
z2(n)=[x2(n),x3(n)]T
*
zP-1(n)=[xP-1(n),xP(n)]T
The calculation was performed according to the following two equations:
<math> <mrow> <msub> <mi>R</mi> <mi>ss</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> </math>
R(n)=λfR(n-1)+Rss(n)
wherein the forgetting factor lambdafSatisfies 0 < lambdafLess than or equal to 1. After obtaining the correlation matrix R (n) and the instantaneous correlation matrix RssAfter the result of the calculation formula (n), the required vector w (n) can be calculated by two methods:
the first method is a conjugate gradient-based method, and specifically comprises the following steps:
setting the initial conditions as follows: w (0) ═ 10]TThe residual vector g (0) [ -10 ]]TThe gradient vector p (1) is g (0), n is 1, and the update step is calculated sequentially:
<math> <mrow> <mi>&alpha;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&eta;</mi> <mfrac> <mrow> <msup> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>p</mi> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>R</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo></mo> </mrow> </mfrac> <mo>,</mo> </mrow> </math> wherein: (lambdaf-0.5)≤η≤λf
The required vector update is calculated as:
w(n)=w(n-1)+α(n)p(n)
the residual vector update formula is:
g(n)=λfg(n-1)-α(n)R(n)p(n)-Rss(n)w(n-1)
the gradient adjustment step size is calculated as follows:
<math> <mrow> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
gradient vector update calculation:
p(n)=g(n)+β(n)p(n)
through each iterative calculation, the required vector w (n) ═ w can be obtained1 w2]T
The second method is a method based on singular value decomposition. The decomposition computation is not very computationally intensive due to the small dimension of the matrix. In view of the signal characteristics here, it can be assumed that the singular value decomposition of the correlation matrix r (n) is as follows:
R(n)=U(n)∑(n)U(n)H=[u(n) w(n)]diag{λ1,λ2}[u(n)w(n)]Hλ1>λ2not less than 0, then w (n) ═ w1 w2]TIs the vector we need.
And finally, obtaining the estimation of the signal direction of arrival through the obtained vector. The data required in this case are two weighted weights w contained in a vector w (n)1And w2. Calculating the difference between the phase angles of two weighted weights of two elements of vector w (n), and making phi equal to angle (w)2)-angle(w1) For antennas with array elements equidistantly placed on the circumference, the angle (in radians) is the azimuth angle of the signal arrival direction to be estimated; for the antennas with linearly and equidistantly arranged array elements, the estimation of the direction angle of arrival of the signal to be estimated can be calculated by the following formula:
<math> <mrow> <mi>&theta;</mi> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mi>&lambda;&phi;</mi> <mrow> <mn>2</mn> <mi>&pi;d</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
λ is also the carrier wavelength, d is the distance between adjacent array elements, sin-1(. cndot.) represents an arcsine function.
The invention is further described below in terms of its application to a TD-SCDMA (time division synchronous code division multiple access) system.
In the TD-SCDMA system, the signal used for estimating the direction of arrival is a despread intermediate pilot (midamble) code signal, or a channel estimation signal obtained through joint detection. The system antenna is assumed to be an antenna with each array element equidistantly arranged on the circumference, and the signal obtained by the antenna is hk,l (j)(n), where J1, …, J represents different array elements, K1, …, K represents different users, L1, …, LkRepresenting signals of different paths. The specific implementation of the present invention is described with reference to fig. 1. In step 1, judging whether the array elements of the antenna are linearly placed at equal intervals or are placed on the circular ring at equal intervals, and continuing the following operations because the array elements of the antenna are not linearly placed at equal intervals; in step 2, the baseband signal received by each array element is expressed by the following formula y (n) ═ Ty0(n) transforming to obtain an equivalent signal column vector y (n);
wherein: y is0(n) is a column vector of the baseband signal received by the antenna,
<math> <mrow> <mi>T</mi> <mo>=</mo> <mi>diag</mi> <mo>{</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mi>M</mi> </mrow> </msup> <msubsup> <mi>J</mi> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>J</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>J</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>J</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mi>M</mi> </mrow> </msup> <msubsup> <mi>J</mi> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>}</mo> <msup> <mi>V</mi> <mi>H</mi> </msup> <mo>;</mo> </mrow> </math>
in step 3, the converted equivalent signal column vector y (n) is despread by using the known time delay information, and a despread signal column vector x (n) is obtained; in step 4, a reduced-dimension signal vector z is constructed by using the despread signal column vector x (n)i(n), i ═ 1, …, P-1, according to the following formula: <math> <mrow> <msub> <mi>R</mi> <mi>ss</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> </math> and r (n) ═ λfR(n-1)+Rss(n) calculating to obtain instantaneous correlation matrix Rss(n) and estimation of a correlation matrix r (n); in step 5, the instantaneous correlation matrix R obtained in step 4 is usedss(n) and the correlation matrix r (n) to obtain a desired vector w (n) ═ w1 w2]T(ii) an estimate of (d); in step 6, the vector obtained in step 5 is usedTwo weighting values w1And w2And obtaining the estimation of the direction of arrival of the required signal.
According to the instantaneous correlation matrix Rss(n) and the correlation matrix r (n) to obtain a desired vector w (n) ═ w1 w2]TThe estimate of (d) is obtained as follows:
setting the initial conditions as follows: w (0) ═ 10]TThe residual vector g (0) [ -10 ]]TThe gradient vector p (1) is g (0), n is 1, and the update step is calculated sequentially:
<math> <mrow> <mi>&alpha;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&eta;</mi> <mfrac> <mrow> <msup> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>p</mi> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>R</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>&lambda;</mi> <mi>f</mi> </msub> <mo>-</mo> <mrow> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>&le;</mo> <mi>&eta;</mi> <mo>&le;</mo> <msub> <mi>&lambda;</mi> <mi>f</mi> </msub> </mrow> </math> what is needed is
The required vector update is calculated as:
w(n)=w(n-1)+α(n)p(n)
the residual vector update formula is:
g(n)=λfg(n-1)-α(n)R(n)p(n)-Rss(n)w(n-1)
the gradient adjustment step size is calculated as follows:
<math> <mrow> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
gradient vector update calculation:
p(n)=g(n)+β(n)p(n)
through each iterative calculation, the required vector w (n) ═ w can be obtained1 w2]T
Obtaining the desired vector w (n) ═ w1 w2]TThe estimate of (c) can also be obtained as follows: the correlation matrix r (n) is subjected to a singular value decomposition as follows:
R(n)=U(n)∑(n)U(n)H=[u(n) w(n)]diag{λ1,λ2}[u(n)w(n)]H λ1>λ2not less than 0, the required vector w (n) ═ w can be obtained1 w2]T
Using two weighted weights w1And w2In the process of obtaining the desired estimation of the direction of arrival of the signal, the signal direction angle phi is equal to angle (w) for the antennas having the array elements disposed at equal distances on the circumference2)-angle(w1) (ii) a For the antennas with linearly and equidistantly arranged array elements, the arrival direction angle of the signals is as follows: <math> <mrow> <mi>&theta;</mi> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mi>&lambda;&phi;</mi> <mrow> <mn>2</mn> <mi>&pi;d</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
it can be seen from the above detailed implementation process of the present invention that the present invention is applicable to a mobile communication system requiring DOA estimation, and can provide DOA estimation with small variance.

Claims (4)

1. A method for estimating a direction of arrival based on a known time delay is characterized by comprising the following steps:
(1) judging whether the array elements of the antenna are linearly placed at equal intervals or placed on the circular ring at equal intervals, if so, continuing to operate in the step (3), and otherwise, continuing to operate;
(2) for the antennas with the array elements equidistantly arranged on the circumference, the baseband signals received by the array elements are according to the following formula y (n) Ty0(n) transforming to obtain an equivalent signal column vector y (n);
wherein: y is0(n) is a column vector of the baseband signal received by the antenna,
<math> <mrow> <mi>T</mi> <mo>=</mo> <mi>diag</mi> <mo>{</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mi>M</mi> </mrow> </msup> <msubsup> <mi>J</mi> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>J</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>J</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mi>J</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mi>j</mi> <mrow> <mo>-</mo> <mi>M</mi> </mrow> </msup> <msubsup> <mi>J</mi> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>}</mo> <msup> <mi>V</mi> <mi>H</mi> </msup> <mo>;</mo> </mrow> </math>
wherein, j = - 1 , Jm(ζ) is a first type of bessel function having an order m, m being an integer greater than or equal to 0, diag { a, b } representing a diagonal matrix with major diagonal elements a, b, respectively;
Figure C0012813300023
wherein, N is the number of the actual array elements of the antenna, M is 2 pi r/λ, ζ is Msin θ, r is the radius of the circular ring, λ is the carrier wavelength, and θ is the arrival signal pitch angle [0, pi/2 ].
(3) Despreading a received signal vector of a linear antenna or a transformed equivalent signal column vector y (n) of a loop antenna by using known time delay information to obtain a despread signal column vector x (n);
(4) construction of a reduced-dimension signal vector z using a despread signal column vector x (n)i(n), i-1, …, P-1, according to
The following formula: <math> <mrow> <msub> <mi>R</mi> <mi>ss</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> </math> and r (n) ═ λfR(n-1)+Rss(n) calculating to obtain instantaneous correlation matrix Rss(n) and estimation of a correlation matrix r (n); where P ═ 2M +1 is the number of elements in the transformed equivalent signal column vector y (n), and the forgetting factor λfSatisfies 0 < lambdaf≤1。
(5) The instantaneous correlation matrix R obtained according to the step (4)ss(n) and the correlation matrix r (n) to obtain a desired vector w (n) ═ w1 w2]T(ii) an estimate of (d);
(6) utilizing two weighted weights w contained in the vector obtained in the step (5)1And w2And obtaining the estimation of the direction of arrival of the required signal.
2. The method of claim 1, wherein the direction of arrival estimation is based on an instantaneous correlation matrix Rss(n) and the correlation matrix r (n) to obtain a desired vector w (n) ═ w1 w2]TIs estimatedThe meter is obtained according to the following method:
setting the initial conditions as follows: w (0) ═ 10]TThe residual vector g (0) [ -10 ]]TThe gradient vector p (1) is g (0), n is 1, and the update step is calculated sequentially:
<math> <mrow> <mi>&alpha;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&eta;</mi> <mfrac> <mrow> <mi>p</mi> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>p</mi> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>R</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math> wherein: (lambdaf-0.5)≤η≤λf
The required vector update is calculated as:
w(n)=w(n-1)+α(n)p(n)
the residual vector update formula is:
g(n)=λfg(n-1)-α(n)R(n)p(n)-Rss(n)w(n-1)
the gradient adjustment step size is calculated as follows:
<math> <mrow> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
gradient vector update calculation:
p(n)=g(n)+β(n)p(n)
through each iterative calculation, the required vector w (n) ═ w can be obtained1 w2]T
3. The method according to claim 1, wherein the estimation is based on the instantaneous correlation matrix Rss(n) and the correlation matrix r (n) to obtain a desired vector w (n) ═ w1 w2]TThe estimation of (a) is obtained according to the following method: the correlation matrix r (n) is subjected to a singular value decomposition as follows:
R(n)=U(n)∑(n)U(n)H=[u(n) w(n)]diag{λ1,λ2}[u(n)w(n)]H λ1>λ2not less than 0, the required vector w (n) ═ w can be obtained1 w2]T
4. The method according to claim 1, wherein the two weighted weights w are used to estimate the direction of arrival1And w2The estimation of the direction of arrival of the desired signal is obtained as follows: for antennas with each array element equidistantly placed on the circumference, the signal direction angle phi is equal to angle (w)2)-angle(w1) (ii) a For the antennas with linearly and equidistantly arranged array elements, the arrival direction angle of the signals is as follows: <math> <mrow> <mi>&theta;</mi> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mi>&lambda;&phi;</mi> <mrow> <mn>2</mn> <mi>&pi;d</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
CNB00128133XA 2000-11-27 2000-11-27 Method based on known time delay for estimating wave reaching direction Expired - Fee Related CN1156108C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB00128133XA CN1156108C (en) 2000-11-27 2000-11-27 Method based on known time delay for estimating wave reaching direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB00128133XA CN1156108C (en) 2000-11-27 2000-11-27 Method based on known time delay for estimating wave reaching direction

Publications (2)

Publication Number Publication Date
CN1355628A CN1355628A (en) 2002-06-26
CN1156108C true CN1156108C (en) 2004-06-30

Family

ID=4592987

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00128133XA Expired - Fee Related CN1156108C (en) 2000-11-27 2000-11-27 Method based on known time delay for estimating wave reaching direction

Country Status (1)

Country Link
CN (1) CN1156108C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362830B2 (en) * 2002-12-31 2008-04-22 Lg Electronics Inc. Smart antenna system and method
CN106591991A (en) * 2016-12-15 2017-04-26 山东银鹰化纤有限公司 Production method of bamboo joint type hollow bamboo viscose fibers

Also Published As

Publication number Publication date
CN1355628A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
CN1262130C (en) Method of estimating space reaching direction of fixed wave beam
CN105891771B (en) It is a kind of improve estimated accuracy based on continuously distributed angle estimating method and equipment
CN112051540B (en) Quick high-precision direction finding method
CN1129237C (en) Digital wave beam forming method and module in radio communication system and its array receiver
CN111665468A (en) Estimation method of direction of arrival of co-prime array based on single-bit quantized signal virtual domain statistic reconstruction
CN1688143A (en) Method for channel estimation in multi-antenna system
CN113671439B (en) Unmanned aerial vehicle cluster direction finding system and method based on non-uniform intelligent super-surface array
CN108306667A (en) Mixing angle-of- arrival estimation based on linear search in extensive MIMO
CN110824414A (en) Device and method for estimating angle of arrival
CN1863377A (en) Method for estimating arrival direction of common frequency multi-cell terminal
CN109613504A (en) A kind of quick angle estimation method of sparse linear array
CN110266616A (en) A kind of channel estimation methods based on difference beam angle-measuring method
CN1574683A (en) Method and device for searching distributed signal sources of base station
CN1886956A (en) Method and device of multiple antenna receiver
CN1156108C (en) Method based on known time delay for estimating wave reaching direction
CN101344582A (en) Gravel-blind minimum variance distortionless response beam forming method
CN1197403C (en) Method for obtaining transmission gain function
CN1199052C (en) Method of raising accuracy estimation of received signal wave arrival direction
CN1154258C (en) Wave arrival direction estimating method based on route selection
CN1622490A (en) Method and apparatus for implementing omnidirectional coverage of array antennas
CN116405348A (en) Communication perception integrated system array antenna and 5G new air interface angle estimation method
CN115037352B (en) Noise reduction method for satellite beam alignment enhancement
CN111610487B (en) Uniform linear array virtual synthesis short-time large-aperture high-precision direction finding method
CN1855759A (en) Array antenna signal processing method
CN113917388A (en) DOA estimation and positioning method using hybrid ADC

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Applicant after: Huawei Technologies Co., Ltd.

Applicant before: Huawei Technology Co., Ltd., Shenzhen City

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: SHENZHEN HUAWEI TECHNOLOGY CO., LTD TO: HUAWEI TECHNOLOGY CO., LTD.

C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
DD01 Delivery of document by public notice

Addressee: Intellectual property division, HUAWEI Technology Co., Ltd.

Document name: Notification to Pay the Fees

DD01 Delivery of document by public notice
DD01 Delivery of document by public notice

Addressee: Huawei Technologies Co., Ltd.

Document name: Notification of Termination of Patent Right

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040630

Termination date: 20161127

CF01 Termination of patent right due to non-payment of annual fee