CN115601244A - 图像处理方法、装置和电子设备 - Google Patents

图像处理方法、装置和电子设备 Download PDF

Info

Publication number
CN115601244A
CN115601244A CN202110771030.2A CN202110771030A CN115601244A CN 115601244 A CN115601244 A CN 115601244A CN 202110771030 A CN202110771030 A CN 202110771030A CN 115601244 A CN115601244 A CN 115601244A
Authority
CN
China
Prior art keywords
image
images
frame
variance
enhanced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110771030.2A
Other languages
English (en)
Other versions
CN115601244B (zh
Inventor
肖斌
周茂森
王宇
朱聪超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honor Device Co Ltd
Original Assignee
Honor Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honor Device Co Ltd filed Critical Honor Device Co Ltd
Priority to CN202110771030.2A priority Critical patent/CN115601244B/zh
Priority to PCT/CN2022/093917 priority patent/WO2023279863A1/zh
Publication of CN115601244A publication Critical patent/CN115601244A/zh
Application granted granted Critical
Publication of CN115601244B publication Critical patent/CN115601244B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4015Image demosaicing, e.g. colour filter arrays [CFA] or Bayer patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4046Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/60Image enhancement or restoration using machine learning, e.g. neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Color Television Image Signal Generators (AREA)
  • Image Processing (AREA)

Abstract

本申请提供了一种图像处理方法、装置和电子设备,涉及图像处理领域,该图像处理方法包括:获取原始图像;对原始图像增设方差图层,得到图层集;利用深度学习网络模型对图层集进行处理,得到第一增强图像;对第一增强图像进行增强处理,得到第二增强图像。在该方法中,由于增设的方差图层所包括的像素对应的方差值由原始图像对应的感光度确定,所以,通过增设方差图层,可以增加先验信息,使得后续可以根据不同噪声水平来进行不同强度的降噪,从而保留更多细节,实现提高图像的清晰度的目的。

Description

图像处理方法、装置和电子设备
技术领域
本申请涉及图像处理领域,尤其涉及一种图像处理方法、装置和电子设备。
背景技术
随着电子设备的广泛使用,使用电子设备进行拍照已经成为人们生活中的一种日常行为方式。相关技术中,进行拍照时,通常会在图像传感器(image sensor)生成的原始(RAW)图像之后,对原始图像进行一系列的处理,由此来得到满足视觉需求的图像,这些处理例如包括,降噪(denoising)、去马赛克(demosaicing,DM)等。
为了提高获取的图像的清晰度,谷歌提出一种基于多帧配准方式的去马赛克方法,该方法先选取第1帧原始图像作为参考图像,将其他帧图像与参考图像进行配准(registration);然后,利用配准后的图像和第1帧原始图像上的位置偏移,来填补缺失的通道信号。
但是,由于原始图像之间的位移方向具有不确定性,而且,配准不能精确到像素级别,所以,在实际实现过程中,该方法还是不够准确,不能满足对获取的图像的清晰度要求。此外,去马赛克、降噪等也是相互独立、串行进行,容易导致误差累计,进一步影响图像的清晰度,因此,亟待一种新的图像处理方法,来有效提高获取的图像的清晰度。
发明内容
本申请提供一种图像处理方法、装置和电子设备,通过为原始图像增设方差图层,增加先验信息,然后输入深度学习网络模型中处理,获取对应的增强图像,以实现提高图像的清晰度的目的。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种图像处理方法,该方法包括:
获取原始图像;对原始图像增设方差图层,得到图层集,图层集包括原始图像和方差图层,方差图层包括多个像素,每个像素对应的方差值由原始图像对应的感光度确定;用深度学习网络模型对图层集进行处理,得到第一增强图像,第一增强图像位于RGB颜色空间;对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
本申请实施例提供了一种图像处理方法,通过获取原始图像,对原始图像增设方差图层,形成图层集,再利用深度学习网络模型对图层集进行处理,得到第一增强图像,然后,再对第一增强图像进行颜色增强处理和/或亮度增强处理,得到第二增强图像。由于增设的方差图层所包括的像素对应的方差值由原始图像对应的感光度确定,所以,通过增设方差图层,可以增加先验信息,使得后续可以根据不同噪声水平来进行不同强度的降噪,从而保留更多细节,实现提高图像的清晰度的目的。
又因为深度学习网络模型可以对图层集同时进行多种处理,例如,进行降噪、去马赛克、彩色融合和多曝光融合等,避免了串行处理所造成的错误累积,由此,也可以提高图像的清晰度。
此外,通过对第一增强图像进行颜色增强和/或亮度增强,可以增强图像的视觉效果,从而使得增强后的图像内容和图像色彩都更能满足用户的视觉需求。
在第一方面一种可能的实现方式中,原始图像包括:多帧第一图像、多帧第二图像、至少1帧第三图像中的至少一项;其中,第一图像、第二图像和第三图像为对相同的待拍摄场景拍摄的图像;多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像,多帧第二图像均为正常曝光的拜耳格式图像,至少1帧第三图像为灰阶图像。
在第一方面一种可能的实现方式中,至少1帧长曝光图像均为拜耳格式图像或均为灰阶图像,至少1帧短曝光图像均为拜耳格式图像或均为灰阶图像。
在第一方面一种可能的实现方式中,在对原始图像增设方差图层之前,该方法还包括:对原始图像进行第一处理;第一处理包括:黑电平校正。
在第一方面一种可能的实现方式中,当原始图像包括的至少1帧第三图像为多帧第三图像时,第一处理还包括:配准。在该实现方式中,通过进行配准,可以提高后续图像处理过程中的准确性。
在第一方面一种可能的实现方式中,当原始图像包括的多帧第一图像均为拜耳格式图像时,和/或,当原始图像包括多帧第二图像时,第一处理还包括:自动白平衡。
在第一方面一种可能的实现方式中,当原始图像包括的多帧第一图像均为拜耳格式图像时,和/或,当原始图像包括多帧第二图像时,第一处理还包括:通道拆分;其中,通道拆分用于将拜耳格式图像拆分成多个单通道的待增强子图层,每个单通道的待增强子图层只包含一种颜色通道信号。在该实现方式中,通过进行通道拆分,可以保留原始图像中更多的细节。
在第一方面一种可能的实现方式中,对每帧原始图像增设1帧方差图层。
在第一方面一种可能的实现方式中,当多帧原始图像对应的感光度均相同时,对多帧原始图像增设1帧方差图层。在该实现方式中,由于多帧原始图像对应的感光度均相同,所以,根据每帧原始图像确定出的方差图层一样,因此,可以仅设置1帧方差图层,就可增加先验信息。
在第一方面一种可能的实现方式中,方差图层包括第一方差图层、第二方差图层和第三方差图层;当多帧第一图像对应的感光度均相同时,对多帧第一图像增设1帧第一方差图层,第一方差图层中每个像素对应的方差值由任意1帧第一图像对应的感光度确定;当多帧第二图像对应的感光度均相同时,对多帧第二图像增设1帧第二方差图层,第二方差图层中每个像素对应的方差值由任意1帧第二图像对应的感光度确定;当多帧第三图像对应的感光度均相同时,对多帧第三图像增设1帧第三方差图层,第三方差图层中每个像素对应的方差值由任意1帧第三图像对应的感光度确定。在该实现方式中,由于多帧第一图像图像对应的感光度相同,多帧第二图像对应的感光度相同,多帧第三图像对应的感光度相同,但第一图像、第二图像和第三图像对应的感光度不同,所以,针对第一图像、第二图像和第三图像可以增设不同的方差图层,以增加不同的先验信息。
在第一方面一种可能的实现方式中,方差图层中每个像素对应的方差值为:与方差图层对应的原始图像的感光度,或者;每个像素对应的方差值为:与方差图层对应的原始图像的感光度和预设基准值的比值,或者;方差图层包括多个子区域,每个子区域包括多个像素,位于不同子区域中的像素对应的方差值不同,位于不同子区域的像素对应的系数不同,第一子区域中的像素对应的方差值为:与方差图层对应的原始图像的感光度和第一系数的乘积。
在第一方面一种可能的实现方式中,深度学习网络模型包括:第一深度学习网络模型、第二深度学习网络模型和第三深度学习网络模型;则利用深度学习网络模型对图层集进行处理,得到第一增强图像,包括:当图层集由多帧第二图像得到时,利用第一深度学习网络模型对图层集进行降噪和去马赛克,得到第一增强图像;当图层集由多帧第二图像和至少1帧第三图像得到时,利用第二深度学习网络模型对图层集进行降噪、去马赛克和彩色融合,得到第一增强图像;当图层集由多帧第二图像和多帧第一图像得到时,或者;当图层集由多帧第二图像、多帧第一图像和至少1帧第三图像得到时,利用第三深度学习网络模型对图层集进行降噪、去马赛克、彩色融合和多曝光融合,得到第一增强图像。在该实现方式中,针对不同的原始图像,利用不同的深度学习网络模型进行不同的处理,以提升图像细节恢复的效果。此外,由于深度学习网络模型均可以同时进行多个处理,避免了串行处理所造成的错误累积,由此,也可以提高图像的清晰度。
在第一方面一种可能的实现方式中,对第一增强图像进行增强处理,得到第二增强图像,包括:利用分割模型对第一增强图像进行分割,得到掩膜图;根据第一增强图像和所述掩膜图,利用色调映射模型进行处理,得到增益系数图;增益系数图包括多个像素,每个像素对应一个增益值;将第一增强图像与增益系数图相乘,得到第二增强图像。在该实现方式中,可对第一增强图像进行非线性的增强,由此,针对第一增强图像可以处理的更加细腻。
在第一方面一种可能的实现方式中,增益系数图包括3帧颜色增益系数图和/或1帧亮度增益系数图,每帧颜色增益系数图针对第一增强图像的单一颜色进行增强,亮度增益系数图用于对第一增强图像的亮度进行增强。
在第一方面一种可能的实现方式中,当原始图像包括多帧第一图像,并且,还包括多帧第二图像和至少1帧第三图像中的至少一项时,在利用分割模型,获取第一增强图像对应的掩膜图之前,该方法还包括:利用多帧第一图像的长曝光图像和短曝光图像,对第一增强图像进行长短曝光融合处理,得到中间增强图像;将中间增强图像作为第一增强图像。在该实现方式中,对第一增强图像进行长短曝光融合处理,可以提升第一增强图像中暗区和过曝区域的细节,得到清晰度更高的中间增强图像。
在第一方面一种可能的实现方式中,利用长曝光图像和短曝光图像,对第一增强图像进行长短曝光融合处理,得到中间增强图像,包括:将第一增强图像与第一待融合图像进行融合,得到中间融合图像;将中间融合图像与第二待融合图像进行融合,得到中间增强图像;其中,第一待融合图像、第二待融合图像分别为长曝光图像和短曝光图像。
在第一方面一种可能的实现方式中,在得到第二增强图像之后,该方法还包括:对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。在该实现方式中,进行色彩空间转换可以减少后续计算量,节省存储空间。
在第一方面一种可能的实现方式中,当多帧原始图像包括至少1帧第三图像时,该方法还包括:对至少1帧第三图像进行色彩空间转换,得到位于YUV颜色空间的第二目标图像;将第一目标图像和第二目标图像进行彩色融合,生成第三目标图像。
在第一方面一种可能的实现方式中,第一深度学习网络模型、分割模型分别为Unet模型、Resnet模型和PSPnet模型中的任意一种。
在第一方面一种可能的实现方式中,第二深度学习网络模型、第三深度学习网络模型和所述色调映射模型分别为Unet模型、Resnet模型和Hdrnet模型中的任意一种。
第二方面,提供了一种图像处理装置,该装置包括用于执行以上第一方面或第一方面的任意可能的实现方式中各个步骤的单元。
第三方面,提供了一种图像处理装置,包括:接收接口和处理器;接收接口用于接收原始图像;处理器,用于调用存储器中存储的计算机程序,以执行如第一方面或第一方面的任意可能的实现方式中提供的图像处理方法。
第四方面,提供了一种电子设备,包括摄像头模组、处理器和存储器;摄像头模组,用于获取原始图像;存储器,用于存储可在处理器上运行的计算机程序;处理器,用于执行如第一方面或第一方面的任意可能的实现方式中提供的图像处理方法。
在第四方面一种可能的实现方式中,摄像头模组包括彩色摄像头和黑白摄像头;彩色摄像头和黑白摄像头用于对相同的待拍摄场景进行拍摄;彩色摄像头,用于在处理器获取拍照指令后,获取多帧第一图像和多帧第二图像,多帧第一图像至少包括1帧长曝光图像和1帧短曝光图像;第二图像为正常曝光的拜耳格式图像;黑白摄像头,用于在处理器获取拍照指令后,获取至少1帧第三图像,第三图像为灰阶图像。
在第四方面一种可能的实现方式中,摄像头模组包括彩色摄像头和黑白摄像头;彩色摄像头和黑白摄像头用于对相同的待拍摄场景进行拍摄;彩色摄像头,用于在处理器获取拍照指令后,获取多帧第二图像,第二图像为正常曝光的拜耳格式图像;黑白摄像头,用于在处理器获取所述拍照指令后,获取多帧第一图像和至少1帧第三图像,多帧第一图像至少包括1帧长曝光图像和1帧短曝光图像;第三图像为灰阶图像。
第五方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如第一方面或第一方面的任意可能的实现方式中提供的图像处理方法。
第六方面,提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序包括程序指令,程序指令当被处理器执行时,使处理器执行如第一方面或第一方面的任意可能的实现方式中提供的图像处理方法。
第七方面,提供了一种计算机程序产品,计算机程序产品包括存储了计算机程序的计算机可读存储介质,计算机程序使得计算机执行如第一方面或第一方面的任意可能的实现方式中提供的图像处理方法。
本申请提供的图像处理方法、装置和电子设备,通过获取原始图像,对原始图像增设方差图层,形成图层集,再利用深度学习网络模型对图层集进行处理,得到第一增强图像,然后,再对第一增强图像进行颜色增强处理和/或亮度增强处理,得到第二增强图像。由于增设的方差图层所包括的像素对应的方差值由原始图像对应的感光度确定,所以,通过增设方差图层,可以增加先验信息,使得后续可以根据不同噪声水平来进行不同强度的降噪,从而保留更多细节,实现提高图像的清晰度的目的。
又因为深度学习网络模型可以对图层集同时进行多种处理,例如,进行降噪、去马赛克、彩色融合和多曝光融合等,避免了串行处理所造成的错误累积,由此,也可以提高图像的清晰度。
此外,通过对第一增强图像进行颜色增强和/或亮度增强,可以增强图像的视觉效果,从而使得增强后的图像内容和图像色彩都更能满足用户的视觉需求。
附图说明
图1为相关技术提供的一种对原始图像进行处理的流程示意图;
图2为相关技术提供的一种去马赛克方法的示意图;
图3为利用图2所示的去马赛克方法重建的位于RGB颜色空间的彩色图像的示意图;
图4为本申请实施例提供的一种电子设备的结构示意图;
图5为本申请实施例提供的一种图像处理装置的硬件架构图;
图6为本申请实施例提供的一种图像处理方法的流程示意图;
图7为本申请实施例提供的一种对第二图像进行黑电平校正的示意图;
图8为本申请实施例提供的一种对第二图像进行配准的流程示意图;
图9为本申请实施例提供的一种对第二图像进行通道拆分的示意图;
图10为本申请实施例提供的一种对第二图像进行通道拆分并增设方差图层的示意图;
图11为本申请实施例提供的方差图层的示意图;
图12为本申请实施例提供的利用深度学习网络模型获取图层集对应的第一增强图像的流程示意图;
图13为本申请实施例提供的又一种图像处理方法的流程示意图;
图14为本申请实施例提供一种对第一增强图像进行增强处理,得到第二增强图像的流程示意图;
图15为本申请实施例提供的又一种图像处理方法的流程示意图;
图16为本申请实施例提供的另一种对第一增强图像进行增强处理,得到第二增强图像的流程示意图;
图17为本申请实施例提供的又一种图像处理方法的流程示意图;
图18为本申请实施例提供的又一种图像处理方法的流程示意图;
图19为本申请实施例提供的又一种图像处理方法的流程示意图;
图20为本申请实施例提供的又一种图像处理方法的流程示意图;
图21为本申请实施例提供的又一种图像处理方法的流程示意图;
图22为本申请实施例提供的又一种图像处理方法的流程示意图;
图23为本申请实施例提供的又一种图像处理方法的流程示意图;
图24为本申请实施例提供的又一种图像处理方法的流程示意图;
图25为本申请实施例提供的又一种图像处理方法的流程示意图;
图26为本申请实施例提供的又一种图像处理方法的流程示意图;
图27为本申请实施例提供的一种图像处理装置的结构示意图;
图28为申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1、RGB(red,green,blue)颜色空间,指的是一种与人的视觉系统结构相关的颜色模型。根据人眼睛的结构,将所有颜色都当作是红色、绿色和蓝色的不同组合。
2、YUV颜色空间,指的是一种颜色编码方法,Y表示亮度,U和V表示的则是色度。上述RGB颜色空间着重于人眼对色彩的感应,YUV颜色空间则着重于视觉对亮度的敏感程度,RGB颜色空间和YUV颜色空间可以互相转换。
3、像素值,指的是位于RGB颜色空间的彩色图像中每个像素对应的一组颜色分量。例如,每个像素对应一组三基色分量,其中,三基色分量分别为红色分量R、绿色分量G和蓝色分量B。
4、拜耳格式(bayer pattern)彩色滤波阵列(color filter array,CFA),图像由实际的景物转换为图像数据时,通常是图像传感器分别接收红色通道信号、绿色通道信号和蓝色通道信号,三个通道信号的信息,然后将三个通道信号的信息合成彩色图像,但是,这种方案中每个像素位置处都对应需要三块滤镜,价格昂贵且不好制作,因此,可以在图像传感器表面覆盖一层彩色滤波阵列,以获取三个通道信号的信息。拜耳格式彩色滤波阵列指的是滤镜以棋盘格式进行排布。例如,该拜耳格式彩色滤波阵列中的最小重复单元为:一个获取红色通道信号的滤镜、两个获取绿色通道信号的滤镜、一个获取蓝色通道信号的滤镜以2×2的方式排布。
5、拜耳格式图像(bayer image),即基于拜耳格式彩色滤波阵列的图像传感器输出的图像。该图像中的多种颜色的像素以拜耳格式进行排布。其中,拜耳格式图像中的每个像素仅对应一种颜色的通道信号。示例性的,由于人的视觉对绿色较为敏感,所以,可以设定绿色像素(对应绿色通道信号的像素)占全部像素的50%,蓝色像素(对应蓝色通道信号的像素)和红色像素(对应红色通道信号的像素)各占全部像素的25%。其中,拜耳格式图像的最小重复单元为:一个红色像素、两个绿色像素和一个蓝色像素以2×2的方式排布。
6、灰阶图像(gray image),灰阶图像是单通道图像,用于表示不同亮度程度,最亮为全白,最暗为全黑。也就是说,灰阶图像中的每个像素对应黑色到白色之间的不同程度的亮度。通常为了对最亮到最暗之间的亮度变化进行描述,将其进行划分,例如划分为256份,即代表256个等级的亮度,并称之为256个灰阶(第0灰阶~第255灰阶)。
7、坏点校正,坏点即为全黑环境下输出图像中的白点,高亮环境下输出图像中的黑点。一般情况下,三基色通道信号应与环境亮度呈线性响应关系,但是由于图像传感器输出的信号不良,就可能出现白点或黑点,对此,可以自动检测坏点并自动修复,或者,建立坏点像素链表进行固定位置的坏像素点修复。其中,一个点即指的是一个像素。
8、降噪,指的是减少图像中噪声的过程。一般方法有均值滤波、高斯滤波、双边滤波等。
9、配准,指的是在同一区域内以不同成像手段所获得的不同图像的地理坐标的匹配。其中,包括几何纠正、投影变换与统一比例尺三方面的处理。
10、超分辨率(super resolution,SR)重建操作,指的是由多张低分辨率图像合成1帧高分辨率图像,或者,从单张低分辨率图像获取高分辨率图像。
11、黑电平校正,由于图像传感器存在暗电流,导致在没有光线照射的时候,像素也对应有一定的输出电压,并且,不同位置处的像素可能对应不同的输出电压,因此,需要对没有光亮时(即,黑色)像素对应的输出电压进行校正。
12、自动白平衡,为了消除光源对图像传感器成像的影响,模拟人类视觉的颜色恒常性,保证在任何场景下看到的白色是真正的白色,因此,需要对色温进行校正,自动将白平衡调到合适的位置。
以上是对本申请实施例所涉及术语的简单介绍,以下不再赘述。
当前,无论是单反相机、卡片机或者手机等电子设备,都是通过成像镜头(lens)获取光信号并发送给图像传感器,图像传感器经过光电转换,将生成的原始图像再发送给图像信号处理器(image signal processor,ISP)处理,ISP将处理后生成的彩色图像再发送给后端的其他器件处理。在此基础上,为了提高获取的彩色图像的视觉效果,通常会将图像传感器生成的原始图像进行一系列处理,然后再发送给ISP。
图1示出了一种相关技术中对原始图像进行处理的流程示意图。
如图1所示,以图像传感器生成5帧拜耳格式图像为例,该5帧拜耳格式图像先经过降噪、去马赛克处理生成位于RGB颜色空间的彩色图像;然后,经过降噪、亮度处理后,由RGB颜色空间转换成位于YUV颜色空间的图像;再经过第三次降噪等处理后再发送给ISP。
应理解,在使用图像传感器获取拜耳格式图像时,光照程度和图像传感器本身的性能将使得生成的拜耳格式图像具有大量噪声,这些噪声会使得拜耳格式图像整体变得模糊,丢失很多细节,所以需要进行降噪,以降低噪声的影响。此外,经过去马赛克处理生成位于RGB颜色空间的彩色图像时,经过亮度处理,由RGB颜色空间转换成位于YUV颜色空间的图像时也会相应具有噪声,因此,也需要进行降噪。
应理解,由于拜耳格式图像是图像传感器基于拜耳格式彩色滤波阵列实现的,所以,拜耳格式图像中每个像素只对应一种颜色的通道信号。若要根据该拜耳格式图像,再现出位于RGB颜色空间的彩色图像,则需要还原出每个像素位置处的其他两个未知颜色的通道信号。应理解,一个像素位置分布有一个像素。
还原出每个像素位置处的其他两个未知颜色的通道信息的方法被称为去马赛克方法,常用的去马赛克方法为:针对每个颜色通道信号在水平或垂直方向进行插值得到其他两个颜色通道信号,重建出位于RGB颜色空间的彩色图像。例如,某个像素位置仅能捕捉到绿色通道信号,则基于周围像素位置的通道信号为该像素位置插值得到蓝色通道信号和红色通道信号。由于仅仅通过插值得到的其他颜色通道信号不太准确,使得彩色图像可能出现摩尔纹等问题,导致重建的彩色图像清晰度不高。
为了提高重建的彩色图像的清晰度,相关技术中提出了另一种去马赛克方法。
示例性的,图2为相关技术提供的一种去马赛克方法的示意图。如图2中的(a)所示,拜耳格式图像P0(假设是位于初始位置的拜耳格式图像)中每个像素位置对应一种颜色的通道信号,例如某个像素位置仅对应红色通道信号、绿色通道信号或蓝色通道信号中的一种。
基于此,如图2中的(b)所示,通过将拜耳格式图像P0整体向右移动一个像素位置,可得到偏移的拜耳格式图像P1;如图2中的(c)所示,将拜耳格式图像P0整体向下移动一个像素位置,可得到偏移的拜耳格式图像P2;如图2中的(d)所示,将拜耳格式图像P0整体向右下方移动一个像素位置,可得到偏移的拜耳格式图像P3。应理解,除了位置信息,拜耳格式图像P1、拜耳格式图像P2和拜耳格式图像P3所包括的色彩信息与拜耳格式图像P0是一模一样的。
然后,根据拜耳格式图像P0、拜耳格式图像P1、拜耳格式图像P2和拜耳格式图像P3,即可重建出位于RGB颜色空间的彩色图像。由于重建出的彩色图像中像素对应的通道信号,都是通过真实的拜耳格式图像P0恢复的,而不是通过插值得到的,所以可以提升重建出的彩色图像的清晰度,即,此种方法重建出的彩色图像的清晰度比插值方法重建出的彩色图像的清晰度要高。可以理解的是,拜耳格式图像的一个通道信号对应于彩色图像的一种颜色分量。
但是,按照上述方法操作的实际结果并不理想。图3为利用图2所示的去马赛克方法重建的位于RGB颜色空间的彩色图像的示意图。例如,如图3所示,虽然通过将拜耳格式图像P0整体向右、向下以及向右下方偏移,可以重建出所有像素位置处的红色通道信号,但是,却还是无法获知部分像素位置处对应的通道信号的信息。例如,无法获知第一行第一列像素位置对应的绿色通道信号,以及无法获知第一行像素位置和第一列像素位置中每个像素位置对应的蓝色通道信号。其中,假设水平方向x为行,垂直方形y为列,则沿水平方向x排布的像素位置为一行像素位置,沿垂直方向y排布的像素位置为一列像素位置。
在上述方法的基础上,为了进一步提高重建的彩色图像的清晰度,相关技术中又提出了一种基于多帧配准方式的去马赛克方法,通过利用帧间的位移来填补缺失的通道信号。
可以理解的是,由于在拍摄时,电子设备受到手抖等因素会导致拍摄的多帧拜耳格式图像会出现无法克服的位移,所以,可以利用多帧帧间的位移来填补缺失的通道信号。
该基于多帧配准方式的去马赛克方法为:采集多帧拜耳格式图像,选取第1帧拜耳格式图像为参考图像,将其他帧拜耳格式图像与参考图像进行配准;然后,利用配准后的其他帧拜耳格式图像与参考图像的位置偏移,来填补参考图像上空缺的通道信号;最后,没有填补完的像素位置才会通过插值补全,由此来重建彩色图像。
然而,该基于多帧配准方式的去马赛克方法还是会出现几点缺陷。例如,由于手抖方向具有不确定性,导致多帧原始图像之间的位移方向具有不确定性,而且软件配准也不能精确到像素级别,所以,在实际实现过程中,基于多帧配准方式的去马赛克方法,还是无法精确地实现单个像素的位置移动,因此,就不能保证所有像素位置都能得到填充。比如,抖动时仅横向方向上出现了抖动,配准时在横向方向上就可以做填补,但是竖向方向上没有位移,就没有办法进行填补,那么,没有填充完全的像素位置仍然需要进行插值方式来计算实现,这样,还是不够准确,还是影响重构的彩色图像的清晰度。
此外,相对于图1,虽然利用上述多帧配准方式的去马赛克方法可以同时完成去马赛克和超分辨率重建操作,但是,该方法仍需要单独再进行坏点校正、降噪、锐化等图像处理操作,由此,还是会出现像素之间互相干扰和依赖,以及错误累积的问题,影响重建的图像的清晰度。
有鉴于此,本申请实施例提供了一种图像处理方法,通过获取原始图像,对原始图像增设方差图层,形成图层集,再利用深度学习网络模型对图层集进行处理,得到第一增强图像,然后,再对第一增强图像进行颜色增强处理和/或亮度增强处理,得到第二增强图像。由于增设的方差图层所包括的像素对应的方差值由原始图像对应的感光度确定,所以,通过增设方差图层,可以增加先验信息,使得后续可以根据不同噪声水平来进行不同强度的降噪,从而保留更多细节,实现提高图像的清晰度的目的。
本申请实施例提供的图像处理方法可以适用于各种电子设备,对应的,本申请实施例提供的图像处理装置可以为多种形态的电子设备。
在本申请的一些实施例中,该电子设备可以为单反相机、卡片机等各种摄像装置、手机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personalcomputer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等,或者可以为其他能够进行图像处理的设备或装置,对于电子设备的具体类型,本申请实施例不作任何限制。
下文以电子设备为手机为例,图4示出了本申请实施例提供的一种电子设备100的结构示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processingunit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
处理器110可以运行本申请实施例提供的图像处理方法的软件代码,拍摄得到清晰度较高的图像。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuitsound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purposeinput/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(displayserial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wirelesslocal area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(codedivision multiple access,CDMA),宽带码分多址(wideband code division multipleaccess,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidounavigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellitesystem,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emittingdiode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrixorganic light emitting diode的,AMOLED),柔性发光二极管(flex light-emittingdiode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot lightemitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
摄像头193用于捕获图像。可以通过应用程序指令触发开启,实现拍照功能,如拍摄获取任意场景的图像。摄像头可以包括成像镜头、滤光片、图像传感器等部件。物体发出或反射的光线进入成像镜头,通过滤光片,最终汇聚在图像传感器上。图像传感器主要是用于对拍照视角中的所有物体(也可称为待拍摄场景、目标场景,也可以理解为用户期待拍摄的场景图像)发出或反射的光汇聚成像;滤光片主要是用于将光线中的多余光波(例如除可见光外的光波,如红外)滤去;图像传感器主要是用于对接收到的光信号进行光电转换,转换成电信号,并输入处理器130进行后续处理。其中,摄像头193可以位于电子设备100的前面,也可以位于电子设备100的背面,摄像头的具体个数以及排布方式可以根据需求设置,本申请不做任何限制。
示例性的,电子设备100包括前置摄像头和后置摄像头。例如,前置摄像头或者后置摄像头,均可以包括1个或多个摄像头。以电子设备100具有4个摄像头为例,其中,有1个前置摄像头,3个后置摄像头,这样,电子设备100启动1个前置摄像头或者启动3个后置摄像头进行拍摄时,可以使用本申请实施例提供的图像处理方法。或者,摄像头设置于电子设备100的外置配件上,该外置配件可旋转的连接于手机的边框,该外置配件与电子设备100的显示屏194之间所形成的角度为0-360度之间的任意角度。比如,当电子设备100自拍时,外置配件带动摄像头旋转到朝向用户的位置。当然,手机具有多个摄像头时,也可以只有部分摄像头设置在外置配件上,剩余的摄像头设置在电子设备100本体上,本申请实施例对此不进行任何限制。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
内部存储器121还可以存储本申请实施例提供的图像处理方法的软件代码,当处理器110运行所述软件代码时,执行图像处理方法的流程步骤,得到清晰度较高的图像。
内部存储器121还可以存储拍摄得到的图像。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐等文件保存在外部存储卡中。
当然,本申请实施例提供的图像处理方法的软件代码也可以存储在外部存储器中,处理器110可以通过外部存储器接口120运行所述软件代码,执行图像处理方法的流程步骤,得到清晰度较高的图像。电子设备100拍摄得到的图像也可以存储在外部存储器中。
应理解,用户可以指定将图像存储在内部存储器121还是外部存储器中。比如,电子设备100当前与外部存储器相连接时,若电子设备100拍摄得到1帧图像时,可以弹出提示信息,以提示用户将图像存储在外部存储器还是内部存储器;当然,还可以有其他指定方式,本申请实施例对此不进行任何限制;或者,电子设备100检测到内部存储器121的内存量小于预设量时,可以自动将图像存储在外部存储器中。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
本申请实施例提供的图像处理方法,还可以适用于各种图像处理装置。图5示出了本申请实施例提供的一种图像处理装置200的硬件架构图。如图5所示,该图像处理装置200例如可以为处理器芯片。示例性的,图5所示的硬件架构图可以是图4中的处理器110,本申请实施例提供的图像处理方法可以应用在该处理器芯片上。
如图5所示,该图像处理装置200包括:至少一个CPU,存储器、微控制器(microcontroller unit,MCU)、GPU、NPU、内存总线、接收接口和发送接口等。除此之外,该图像处理装置200还可以包括AP、解码器以及专用的图形处理器等。
该图像处理装置200的上述各个部分通过连接器相耦合,示例性的,连接器包括各类接口、传输线或总线等,这些接口通常是电性通信接口,但是,也可能是机械接口或其他形式的接口,本申请实施例对此不做任何限制。
可选地,CPU可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。
可选地,CPU可以是多个处理器构成的处理器组,多个处理器之间通过一个或多个总线彼此耦合。该连接接口可以为处理器芯片的数据输入的接口,在一种可选地情况下,该接收接口和发送接口可以是高清晰度多媒体接口(high definition multimediainterface,HDMI)、V-By-One接口、嵌入式显示端口(embedded display port,eDP)、移动产业处理器接口(mobile industry processor interface,MIPI)display port(DP)等,该存储器可以参考上述对内部存储器121部分的描述。在一种可能实现的方式中,上述各部分集成在同一个芯片上。在另一个可能实现的方式中,CPU、GPU、解码器、接收接口以及发送接口集成在一个芯片上,该芯片内部的各部分通过总线访问外部的存储器。专用图形处理器可以为专用ISP。
可选地,NPU也可以作为独立的处理器芯片。该NPU用于实现各种神经网络或者深度学习的相关运算。本申请实施例提供的图像处理方法可以由GPU或NPU实现,也可以由专门的图形处理器来实现。
应理解,在本申请实施例中涉及的芯片是以集成电路工艺制造在同一个半导体衬底上的系统,也叫半导体芯片,其可以是利用集成电路工艺制作在衬底上形成的集成电路的集合,其外层通常被半导体封装材料封装。所述集成电路可以包括各类功能器件,每一类功能器件包括逻辑门电路、金属氧化物半导体(metal oxide semiconductor,MOS)晶体管、二极管等晶体管,也可以包括电容、电阻或电感等其他部件。每个功能器件可以独立工作或者在必要的驱动软件的作用下工作,可以实现通信、运算或存储等各类功能。
下面结合说明书附图,对本申请实施例所提供的对原始图像进行处理的图像处理方法进行详细介绍。
图6为本申请实施例所示的一种图像处理方法的流程示意图。如图6所示,该图像处理方法10包括:S10至S40。
S10、获取原始图像。
该图像处理方法的执行主体可以是上述图4所示的设置有摄像头模组的电子设备100,还可以是上述图5所示的图像处理装置200。当执行主体是电子设备时,通过摄像头模组中的摄像头获取原始图像,具体通过几个摄像头或者通过哪个摄像头获取,可以根据需要进行设置和更改,本申请实施例对此不进行任何限制。当执行主体是图像处理装置时,可以通过接收接口获取原始图像,而该原始图像为与图像处理装置连接的电子设备的摄像头模组所拍摄得到的。
其中,原始图像也可称为RAW图。原始图像可以是1帧,也可以是多帧。原始图像可以是拜耳格式图像,也可以是灰阶图像,或者,也可以部分是拜耳格式图像,部分是灰阶图像,具体可以根据需要进行获取,本申请实施例对此不进行任何限制。
可选地,原始图像包括:多帧第一图像、多帧第二图像,至少1帧第三图像中的至少一项。
其中,第一图像、第二图像和第三图像为对相同的待拍摄场景拍摄的图像;多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像,多帧第二图像均为正常曝光的拜耳格式图像。当原始图像包括1帧或多帧第三图像时,第三图像为灰阶图像。
可选地,上述S10可以表述为:
获取多帧第一图像,或者;
获取多帧第二图像,或者;
获取至少1帧第三图像,或者;
获取多帧第一图像和多帧第二图像,或者;
获取多帧第二图像和至少1帧第三图像,或者;
获取多帧第一图像和至少1帧第三图像,或者;
获取多帧第一图像、多帧第二图像和至少1帧第三图像。
应理解,长曝光图像指的是拍摄时经过较长时间曝光所得到的图像,短曝光图像指的是拍摄时经过较短时间曝光所得到的图像,其中,长曝光和短曝光都是相对正常曝光的时间而言的。曝光时间即为图像传感器采集图像时,进行光电转换所使用的时间。
应理解,当获取到2帧第一图像时,该2帧第一图像分别为1帧长曝光图像和1帧短曝光图像;当获取到3帧以及更多帧第一图像时,该多帧第一图像除了1帧是长曝光图像,1帧是短曝光图像,其他图像可以是长曝光图像也可以短曝光图像,具体可以根据需要进行获取,本申请实施例对此不进行任何限制。
可选地,至少1帧长曝光图像均为拜耳格式图像或均为灰阶图像,至少1帧短曝光图像均为拜耳格式图像或均为灰阶图像。
即,长曝光图像可以为长曝光的拜耳格式图像或长曝光的灰阶图像,短曝光图像可以为短曝光的拜耳格式图像或短曝光的灰阶图像。
此处,当长曝光图像和短曝光图像均为拜耳格式图像时,第一图像和第二图像可以由同一个摄像头捕捉得到。当长曝光图像和短曝光图像均为灰阶图像时,第一图像和第三图像可以由同一个摄像头捕捉得到。当然,也可以分开由多个不同的摄像头得到,本申请实施例对此不进行限制。
可选地,多帧原始图像的尺寸可以全部相同。当然,多帧原始图像的尺寸也可以部分相同,部分不同;也可以完全不相同。本申请实施例对此不进行任何限制。
当获取的多帧原始图像尺寸不同时,可以进行放大或缩小,使得所有原始图像尺寸一致,以便于后续进行处理和计算。
可选地,多帧原始图像可以是连续获取的,获取的间隔时间可以相同也可以不同。当然,多帧原始图像也可以不是连续获取的。
可选地,当获取多帧第一图像时,多帧第一图像可以是连续获取的。当获取多帧第二图像时,多帧第二图像可以是连续获取的。当第三图像的数量大于1帧时,多帧第三图像也可以是连续获取的。
S20、对原始图像增设方差图层(variance image),得到图层集。
图层集包括原始图像和方差图层。方差图层包括多个像素,每个像素对应的方差值由原始图像对应的感光度确定。
应理解,方差图层是为原始图像新增的,并未对原始图像做变动,也未与原始图像做融合。
可选地,在对原始图像增设方差图层之前,该方法10还包括:
对原始图像进行第一处理。
其中,第一处理包括:黑电平校正。
当原始图像包括:多帧第一图像、多帧第二图像、至少1帧第三图像中的至少一项时,上述S20可以表述为:对多帧第一图像、多帧第二图像、至少1帧第三图像中的至少一项进行黑电平校正。
其中,可以对多帧第一图像中的至少1帧第一图像进行黑电平校正,对多帧第二图像中的至少1帧第二图像进行黑电平校正,对至少1帧第三图像中的至少1帧进行黑电平校正。
示例性的,图7为本申请实施例提供的一种对第二图像进行黑电平校正的示意图。
可选地,第一处理还包括:坏点校正。
可选地,当原始图像包括多帧第一图像和/或多帧第二图像,第一处理还包括:配准。
此外,当原始图像包括的至少1帧第三图像为多帧第三图像时,第一处理还包括:配准。
当针对多帧第一图像进行配准时,可以以第1帧第一图像为参考帧,基于第1帧第一图像,将其他帧第一图像和第1帧第一图像分别进行配准。
其中,当针对多帧第一图像进行配准时,可以以第1帧长曝光图像为参考帧,基于第1帧长曝光图像,将其他帧长曝光图像和第1帧长曝光图像分别进行配准。还可以以第1帧短曝光图像为参考帧,基于第1帧短曝光图像,将其他帧短曝光图像和第1帧短曝光图像分别进行配准。
当针对多帧第二图像进行配准时,可以以第1帧第二图像为参考帧,基于第1帧第二图像,将其他帧第二图像和第1帧第二图像进行配准。
当第三图像仅有1帧时,不进行配准。当原始图像包括多帧第三图像时,可以以第1帧第三图像为参考帧,基于第1帧第三图像,将其他帧第三图像和第1帧第三图像进行配准。
示例性的,图8为本申请实施例提供的一种对第二图像进行配准的流程示意图。如图8所示,以第1帧第二图像为参考帧,对其进行特征点检测;对其他帧第二图像中的任意1帧也进行特征点检测,然后,将两者检测得到的特征点进行匹配,再计算变换矩阵进行变换。
对第一图像、第三图像进行配准的流程,与上述图8对第二图像进行配准的流程类似,在此不再赘述。可以理解的是,对多帧第一图像、多帧第二图像和多帧第三图像分别进行配准,可以提高后续图像处理过程中的准确性。
可选地,当原始图像包括的多帧第一图像均为拜耳格式图像时,和/或,当原始图像包括多帧第二图像时,第一处理还包括:自动白平衡。
当多帧第一图像均为拜耳格式图像时,即,当长曝光图像为长曝光的拜耳格式图像,短曝光图像为短曝光的拜耳格式图像时,针对多帧第一图像,第一处理还包括:自动白平衡。其中,可以针对每帧第一图像进行自动白平衡的处理。
针对多帧第二图像,第一处理还包括:自动白平衡。其中,可以针对每帧第二图像进行自动白平衡的处理。
应理解,当第一处理包括配准、黑电平校正、坏点校正、自动白平衡中的至少两项时,其顺序可以根据需要进行调整,本申请实施例对此不进行任何限制。
示例性的,当第一处理包括黑电平校正和自动白平衡时,可以先进行黑电平校正,再进行自动白平衡。
示例性的,当第一处理包括配准和黑电平校正时,可以先进行配准,再进行黑电平校正。
示例性的,当第一处理包括配准、黑电平校正和自动白平衡时,可以先进行配准、再进行黑电平校正,然后,再进行自动白平衡。
应理解,虽然黑电平校正、坏点校正、配准的顺序可以互换,但是通常是在进行了黑电平校正、坏点校正之后,再进行配准,这样,配准更加准确,后续更容易判断出噪声和细节,更便于后续去噪。
可选地,针对均为拜耳格式图像的多帧第一图像,和/或,针对多帧第二图像,第一处理还包括:通道拆分(bayer to canvas)。
其中,通道拆分指的是将拜耳格式图像拆分成多个单通道的待增强子图层,每个单通道的待增强子图层只包含一种颜色通道信号,由此,可以保留更多的细节。
示例性的,当拜耳格式图像包括由对应红色通道信号的红色像素、对应绿色通道信号的绿色像素和对应蓝色通道信号的蓝色像素组成时,该拜耳格式图像可以拆分成3个单通道的待增强子图层,其中,一个单通道的待增强子图层只包含红色通道信号,一个单通道的待增强子图层只包含绿色通道信号,另一个单通道的待增强子图层只包含蓝色通道信号。
基于此,当多帧第一图像均为拜耳格式图像时,即,当长曝光图像为长曝光的拜耳格式图像,短曝光图像为短曝光的拜耳格式图像时,针对多帧第一图像,第一处理还包括:通道拆分。其中,可以针对每帧第一图像进行通道拆分,示例性的,将每帧第一图像拆分成3个单通道的待增强子图层。
针对多帧第二图像,可以针对每帧第二图像进行通道拆分,示例性的,图9为本申请实施例提供的一种对第二图像进行通道拆分的示意图,如图9所示,将每帧第二图像拆分成3个单通道的待增强子图层。
应理解,第一图像为灰阶图像,第三图像为灰阶图像,而灰阶图像本身为单通道图像,所以,对灰阶图像不用进行通道拆分。
可选地,针对每帧原始图像增设1帧方差图层。
应理解,获取原始图像时,每帧原始图像都可以确定出其对应的各项曝光参数,其中,包括感光度。感光度与原始图像的噪声水平相关,感光度越高,原始图像中的噪点越多,后期进行降噪处理时,相应的,就需要越高的降噪强度。
在本申请实施例中,方差图层与原始图像的尺寸相同,由此,所包括的像素个数也相同,每个像素对应的方差值由原始图像对应的感光度确定。
应理解,无论多帧原始图像中的每帧原始图像对应的感光度相同或者不相同,针对每帧原始图像都可以增设1帧方差图层,增设的方差图层中像素对应的方差值由对应的原始图像的感光度确定。此外,还可以根据需要对曝光参数进行设置和更改,本申请实施例对此不进行任何限制。
示例性的,图10为本申请实施例提供的一种对第二图像进行通道拆分并增设方差图层的示意图。如图10所示,将每帧第二图像拆分成3个单通道的待增强子图层,并增设1帧方差图层。
可选地,当多帧原始图像对应的感光度均相同时,对多帧原始图像增设1帧方差图层。
应理解,由于多帧原始图像对应的感光度均相同,所以由每帧原始图像对应的感光度确定的方差图层是一样的,因此,可以仅增设1帧方差图层,即可增加先验信息。
可选地,方差图层包括第一方差图层,第二方差图层和第三方差图层。
当多帧第一图像对应的感光度均相同时,对多帧第一图像增设1帧第一方差图层,第一方差图层中每个像素对应的方差值由任意1帧第一图像对应的感光度确定。
当多帧第二图像对应的感光度均相同时,对多帧第二图像增设1帧第二方差图层,第二方差图层中每个像素对应的方差值由任意1帧第二图像对应的感光度确定。
当多帧第三图像对应的感光度均相同时,对多帧第三图像增设1帧第三方差图层,第三方差图层中每个像素对应的方差值由任意1帧第三图像对应的感光度确定。
应理解,当多帧第一图像对应的感光度均相同时,由每帧第一图像对应的感光度确定的方差图层均相同,因此,可以由任意1帧第一图像对应的感光度确定出方差图层,并作为增设的第一方差图层。
应理解,当多帧第二图像对应的感光度均相同时,由每帧第二图像对应的感光度确定的方差图层均相同,因此,可以由任意1帧第二图像对应的感光度确定出方差图层,并作为增设的第二方差图层。
应理解,当多帧第三图像对应的感光度均相同时,由每帧第三图像对应的感光度确定的方差图层均相同,因此,可以由任意1帧第三图像对应的感光度确定出方差图层,并作为增设的第三方差图层。
此处,由于多帧第一图像图像对应的感光度相同,多帧第二图像对应的感光度相同,多帧第三图像对应的感光度相同,但第一图像、第二图像和第三图像对应的感光度不同,所以,针对第一图像、第二图像和第三图像可以增设不同的方差图层,以增加不同的先验信息。
可选地,针对上述所述的方差图层,方差图层中每个像素对应的方差值为:与方差图层对应的原始图像的感光度,或者;
每个像素对应的方差值为:与方差图层对应的原始图像的感光度和预设基准值的比值,或者;
方差图层包括多个子区域,每个子区域包括多个像素,位于不同子区域中的像素对应的方差值不同,位于不同子区域的像素对应的系数不同,第一子区域中的像素对应的方差值为:与方差图层对应的原始图像的感光度和第一系数的乘积。
应理解,第一子区域为方差图层所包括的多个子区域的任意一个。
应理解,预设基准值、子区域的划分、系数均可以根据需要进行设定,本申请实施例对此不进行任何限制。
应理解,对不同子区域设定不同的系数,将感光度与不同系数相乘得到不同的方差值,也即方差图层包括不同的方差值,这样就相当于增设了不同的先验信息,后续进行降噪时,即可根据先验信息进行区分,对不同子区域进行不同强度的降噪。例如,对方差值大,即噪声大的子区域提高降噪强度,而对方差值小,即噪声小的子区域降低降噪强度。
示例性的,如图11中的(a)所示,假设某帧原始图像对应的感光度为800,则方差图层中每个像素对应的方差值为800。
或者,如图11中的(b)所示,假设预设基准值为100,原始图像对应的感光度为800,此时,将感光度与预设基准值的比值作为每个像素对应的方差值,也即,每个像素对应的方差值为8。
或者,如图11中的(c)所示,假设方差图层中的子区域F为人脸所在区域,其他为非人脸区域,则可以将位于子区域F中的像素和位于非人脸区域中的像素所对应的方差值进行区分,例如,位于子区域F中的像素对应的方差值为20,其他像素对应的方差值为100,其中,方差值20为感光度和系数x1的乘积,方差值100为感光度和系数x2的乘积。
S30、利用深度学习网络模型对图层集进行处理,获取对应的第一增强图像。第一增强图像位于RGB颜色空间。
应理解,图层集包括方差图层,还包括原始图像或者包括原始图像进行第一处理后所对应的图像数据,由此,将图层集所包括的图像数据同时输入深度学习网络模型中,对图层集进行处理,然后,输出对应的第一增强图像。
其中,第一增强图像位于RGB颜色空间。也就是说,第一增强图像包括的每个像素均包括三个颜色分量,即,每个像素均包括红色分量、绿色分量和蓝色分量。也可以理解为:第一增强图像为彩色图像。
其中,深度学习网络模型可以根据需要进行选择和更改,本申请实施例对此不进行任何限制。
可选地,深度学习网络模型可以进行降噪、去马赛克处理。
应理解,由于去马赛克和降噪均为与细节恢复相关的运算,而先进行去马赛克处理会影响降噪效果,先降噪会影响去马赛克的效果,因此,本申请实施例将降噪和去马赛克均通过一个深度学习网络模型来实现,避免了多种处理串行进行是不同处理之间的相互影响,以及所带来的错误累计,提升了图像细节恢复的效果。
此处,第一增强图像的尺寸与图层集中的图像、原始图像的尺寸均相同。
可选地,深度学习网络模型包括:第一深度学习网络模型、第二深度学习网络模型和第三深度学习网络模型。
则上述S30可以表述为:
当图层集由多帧第一图像得到时,利用第一深度学习网络模型进行降噪和去马赛克,获取图层集对应的第一增强图像。
当图层集由多帧第二图像得到时,利用第一深度学习网络模型进行降噪和去马赛克,获取图层集对应的第一增强图像。
当图层集由多帧第三图像得到时,利用第一深度学习网络模型进行降噪和去马赛克,获取图层集对应的第一增强图像。
当图层集由多帧第二图像和至少1帧第三图像得到时,利用第二深度学习网络模型进行降噪、去马赛克和彩色融合(mono color fusion,MCF),获取图层集对应的第一增强图像。
当图层集由多帧第一图像和多帧第二图像得到时,利用第三深度学习网络模型进行降噪、去马赛克、彩色融合和多曝光融合,获取图层集对应的第一增强图像。
当图层集由多帧第一图像和至少1帧第三图像得到时,利用第三深度学习网络模型进行降噪、去马赛克、彩色融合和多曝光融合,获取图层集对应的第一增强图像。
当图层集由多帧第一图像、多帧第二图像、和至少1帧第三图像得到时,利用第三深度学习网络模型进行降噪、去马赛克、彩色融合和多曝光融合,获取图层集对应的第一增强图像。
应理解,彩色融合指的是多帧不同颜色的图像进行融合。
多曝光融合指的是将多帧不同曝光度的图像进行融合。
示例性的,图12为本申请实施例提供的一种利用深度学习网络模型获取图层集对应的第一增强图像的流程示意图。如图12所示,图层集由多帧第一图像、多帧第二图像和1帧第三图像得到,将图层集全部输入深度学习网络模型中,进行多种处理,例如进行降噪、去马赛克等之后,则输出对应的第一增强图像。该第一增强图像为位于RGB颜色空间的图像,包括3种颜色的单通道图像。
可选地,第一深度学习网络模块可以为Unet模型、Resnet模型和PSPnet模型中的任意一种。当然,第一深度学习网络模型也可以为其他模型,本申请实施例对此不进行任何限制。
可选地,第二深度学习网络模型、第三深度学习网络模型可以分别为Unet模型、Resnet模型和Hdrnet模型中的任意一种。当然,第二深度学习网络模型、第三深度学习网络模型也可以为其他模型,本申请实施例对此不进行任何限制。
S40、对第一增强图像进行增强处理,得到第二增强图像。
增强处理包括颜色增强处理和/或亮度增强处理。
此处,第二增强图像的尺寸与第一增强图像的尺寸相同。
可选地,结合图13,上述S40可以包括:
S410、利用分割模型对第一增强图像进行分割,得到掩膜图。
其中,利用分割模型可以对第一增强图像中的人体与非人体、人脸与非人脸、物体与非物体等内容进行分割,具体分割依据可以根据需要进行设定和更改,本申请实施例对此不进行任何限制。
可选地,分割模型可以为Unet模型、Resnet模型和PSPnet模型中的任意一种。当然,分割模型也可以为其他模型,本申请实施例对此不进行任何限制。分割模型可以与第一深度学习网络模型相同或者不相同,具体可以根据需要进行设定。
在本申请实施例中,掩膜图为二值图像,即,掩膜图所包括的像素为白色或者为黑色,或者说,掩膜图中的像素可以对应0和1,0和1分别代表白色和黑色。
示例性的,利用分割模型将第一增强图像划分为人体区域和非人体区域,并且,人体区域中包括的像素均对应白色,非人体区域中包括的像素均对应黑色。
此处,掩膜图的尺寸与第一增强图像的尺寸相同。
S420、根据第一增强图像和掩膜图,利用色调映射模型进行处理,得到增益系数图(gain map)。增益系数图包括多个像素,每个像素对应一个增益值。
可选地,色调映射模型可以为Unet模型、Resnet模型和Hdrnet模型中的任意一种。当然,色调映射模型也可以为其他模型,本申请实施例对此不进行任何限制。色调映射模型可以与第二深度学习网络模型、第三深度学习网络模型相同或不相同,具体可以根据需要进行设置。
此处,增益系数图与第一增强图像、掩膜图的尺寸均相同。
S430、将第一增强图像与增益系数图相乘,得到第二增强图像。
应理解,上述S430可以表述为:将第一增强图像中像素对应的像素值与增益系数图对应位置处的像素所对应的增益值进行相乘,得到第二增强图像中对应位置处的像素的像素值。
应理解,增益系数图包括多个像素,每个像素对应的增益值可以相同也可以不相同。当增益系数图中的像素对应的增益值不相同时,可以对第一增强图像中的像素进行不同的增强,如此,可调整的动态范围更大。例如,可以让第一增强图像中部分像素值较大的像素变小,部分像素值较小的像素变大。也就是说,可以对第一增强图像进行非线性的增强,由此,针对第一增强图像可以处理的更加细腻。
可选地,增益系数图包括3帧颜色增益系数图和/或1帧亮度增益系数图,每帧颜色增益系数图针对第一争取图像的单一颜色进行增强,亮度增益系数图用于对第一增强图像的亮度进行增强。
应理解,由于第一增强图像位于RGB颜色空间,也即,每个像素对应一组红色分量、绿色分量和蓝色分量,因此,增益系数图可以包括3帧颜色增益系数图,其中,红色增益系数图用于对红色进行增强,绿色增益系数图用于对绿色进行增强,蓝色增益系数图用于对蓝色进行增强。此处,针对第一增强图像中的任意一个像素,对应的红色分量与红色增益系数图对应位置处的增益值相乘,绿色分量与绿色增益系数图对应位置处的增益值相乘,蓝色分量与蓝色增益系数图对应位置处的增益值相乘。
示例性的,第一增强图像中某个像素对应的像素值为(10,125,30),3帧颜色增益系数图对应位置处的增益值分别为2、1和3,则相乘后,第二增强图像中对应位置处的像素的像素值为(20,125,90)。
应理解,第一增强图像中像素对应的红色分量、绿色分量和蓝色分量均与亮度增益系数图中对应位置处的增益值进行相乘,由此,可以对亮度增强。
此处,当3帧颜色增益系数图均相同时,将第一增强图像与颜色增益系数图相乘,效果等同于对第一增强图像进行亮度增强。
示例性的,图14为本申请实施例提供的一种对第一增强图像进行增强处理,得到第二增强图像的流程示意图。如图14所示,将第一增强图像输入分割模型,可以得到第一增强图像对应的掩膜图,该掩膜图为二值图像,例如将第一增强图像分割为人体区和非人体区。然后,将第一增强图像和掩膜图同时输入色调映射模型,通过色调映射模型进行处理,可以得到相应的颜色增益系数图和/或亮度增益系数图。
基于此,将第一增强图像与颜色增益系数图和/或亮度增益系数图进行相乘,由此,可以得到颜色增强和/或亮度增强了的第二增强图像。
本申请实施例提供了一种图像处理方法,通过获取原始图像,对原始图像增设方差图层,形成图层集,再利用深度学习网络模型对图层集进行处理,得到第一增强图像,然后,再对第一增强图像进行颜色增强处理和/或亮度增强处理,得到第二增强图像。由于增设的方差图层所包括的像素对应的方差值由原始图像对应的感光度确定,所以,通过增设方差图层,可以增加先验信息,使得后续可以根据不同噪声水平来进行不同强度的降噪,从而保留更多细节,实现提高图像的清晰度的目的。
又因为深度学习网络模型可以对图层集同时进行多种处理,例如,进行降噪、去马赛克、彩色融合和多曝光融合等,避免了串行处理所造成的错误累积,由此,也可以提高图像的清晰度。
此外,还对第一增强图像进行了颜色增强和/或亮度增强,增强了图像的视觉效果,从而使得增强后的图像内容和图像色彩都更能满足用户的视觉需求。
可选地,图15为本申请实施例提供的又一种图像处理方法。如图15所示,当原始图像包括多帧第一图像时,并且,还包括多帧第二图像和至少1帧第三图像中的至少一项时,在上述S410之前,该方法10还包括以下S408~S409:
S408、利用多帧第一图像中的长曝光图像和短曝光图像,对第一增强图像进行长短曝光融合,得到中间增强图像。
可选地,上述S408可以包括:
将第一增强图像与第一待融合图像进行融合,得到中间融合图像。
将中间融合图像与第二待融合图像进行融合,得到中间增强图像。
其中,第一待融合图像、第二待融合图像分别为长曝光图像和短曝光图像。
应理解,当第一待融合图像为长曝光图像,第二待融合图像为短曝光图像时,上述S408可以表述为:将第一增强图像与长曝光图像进行融合,得到中间融合图像;然后,将中间融合图像与短曝光图像进行融合,得到中间增强图像。
其中,当第一图像包括多帧长曝光图像和多帧短曝光图像时,可以将第一增强图像与多帧长曝光图像进行融合,然后,再与多帧短曝光图像进行融合。
当第一待融合图像为短曝光图像,第二待融合图像为长曝光图像时,上述S408可以表述为:将第一增强图像与短曝光图像进行融合,得到中间融合图像;然后,将中间融合图像与长曝光图像进行融合,得到中间增强图像。
其中,当第一图像包括多帧长曝光图像和多帧短曝光图像时,可以将第一增强图像与多帧短曝光图像进行融合,然后,再与多帧长曝光图像进行融合。
在本申请实施例中,将第一增强图像与长曝光图像进行融合,可以提升第一增强图像中曝光不够的暗区的细节,而与短曝光图像进行融合,可以提升第一增强图像中过曝区域的细节。因此,对第一增强图像进行长短曝光融合处理,可以同时提升第一增强图像中暗区和过曝区域的细节,提升动态范围,从而实现提升图像的清晰度的目的。
可选地,在进行融合之前,还可以对第一待融合图像、第二待融合图像分别进行配准。
此处,在将第一增强图像与第一待融合图像进行融合之前,可以以第一增强图像为参考帧,对第一待融合图像进行配准。在将中间融合图像和第二待融合图像进行融合之前,以中间融合图像为参考帧,对第二待融合图像进行配准。
也就是说,当第一待融合图像为长曝光图像,第二待融合图像为短曝光图像时,在将第一增强图像与长曝光图像进行融合之前,可以以第一增强图像为参考帧,对长曝光图像进行配准。在将中间融合图像和短曝光图像进行融合之前,可以以中间融合图像为参考帧,对短曝光图像进行配准。
或者,当第一待融合图像为短曝光图像,第二待融合图像为长曝光图像时,在将第一增强图像与短曝光图像进行融合之前,可以以第一增强图像为参考帧,对短曝光图像进行配准。在将中间融合图像和长曝光图像进行融合之前,可以以中间融合图像为参考帧,对长曝光图像进行配准。
可选地,对短曝光图像进行配准之前,还可以进行提亮。
应理解,可以对短曝光图像中每个像素对应的像素值乘以预设系数,以对短曝光图像进行提亮。当然,也可以以其他方式进行提亮,本申请实施例对此不进行任何限制。
S409、将中间增强图像作为第一增强图像。
应理解,当进行融合或增强处理后,可以使用更高位宽的存储器进行存储,以储存更多的图像数据。
示例性的,图16为本申请实施例提供的另一种对第一增强图像进行增强处理,得到第二增强图像的流程示意图。
如图16所示,假设第一待融合图像为长曝光图像,对该长曝光图像进行配准处理,第二待融合图像为短曝光图像,对该短曝光图像进行提亮和配准处理;然后,将第一增强图像与配准后的长曝光图像进行融合,得到中间融合图像,再将中间融合图像和进行了提亮和配准处理的短曝光图像进行融合,得到中间增强图像。
基于此,可以将中间增强图像作为第二增强图像,或者,可以将中间增强图像作为第一增强图像,继续获取对应的掩膜图,并利用中间增强图像和掩膜图按照S410至S430的方法,得到对应的第二增强图像。
可选地,在上述S40或S430之后,该方法10还包括:
对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
应理解,第一增强图像位于RGB颜色空间,对第一增强图像进行增强处理后,得到的第二增强图像还是位于RGB颜色空间。
此处,将位于RGB颜色空间的第二增强图像转换为位于YUV颜色空间的第一目标图像,可以减少后续计算量,节省存储空间。
可选地,当多帧原始图像包括至少1帧第三图像时,该方法10还包括:
对至少1帧第三图像进行色彩空间转换,得到位于YUV颜色空间的第二目标图像。
将第一目标图像和第二目标图像进行彩色融合,生成第三目标图像。
应理解,第三图像为灰阶图像,为单通道图像,转换为位于YUV颜色空间的第二目标图像时,仅有对应的亮度信息,减小了后续计算量。
可选地,对第一增强图像、第一目标图像、第三目标图像还可以进行颜色、亮度、锐度和尺寸等至少一项进行调整,本申请实施例对此不进行任何限制。
结合以上,本申请还提供如下实施例:
实施例1,一种图像处理方法,如图17所示,该方法包括以下S1010至S1040。
S1010、获取1帧或多帧原始图像。
S1020、对每帧原始图像增设1帧方差图层,得到图层集;图层集包括原始图像以及相同数量的方差图层。方差图层包括多个像素,每个像素对应的方差值由原始图像对应的感光度确定。
其中,方差图层中每个像素对应的方差值为:与方差图层对应的原始图像的感光度,或者;每个像素对应的方差值为:与方差图层对应的原始图像的感光度和预设基准值的比值,或者;方差图层包括多个子区域,每个子区域包括多个像素,位于不同子区域中的像素对应的方差值不同,位于不同子区域的像素对应的系数不同,第一子区域中的像素对应的方差值为:与方差图层对应的原始图像的感光度和第一系数的乘积。
S1030、利用深度学习网络模型对图层集进行处理,得到第一增强图像。
其中,第一增强图像位于RGB颜色空间。
利用深度学习网络模型对图层集例如进行降噪、去马赛克等处理。
S1040、对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
实施例2,一种图像处理方法,如图18所示,该方法包括以下S2010至S2060。
S2010、获取多帧第一图像。
其中,多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像。多帧第一图像均为拜耳格式图像或均为灰阶图像。
S2020、以多帧第一图像均为拜耳格式图像为例,对多帧第一图像进行配准、黑电平校正、自动白平衡、通道拆分。
其中,通道拆分指的是将每帧第一图像拆分成3个单通道的待增强子图层,每个单通道的待增强子图层只包含一种颜色通道信号。
S2030、针对每帧第一图像增设1帧方差图层,得到图层集;图层集包括多帧第一图像以及相同数量的方差图层。方差图层包括多个像素,每个像素对应的方差值由第一图像对应的感光度确定。
应理解,此处对方差图层的描述与上述S1020中对方差图层的描述相同,在此不再赘述。
S2040、利用第三深度学习网络模型对图层集进行降噪、去马赛克、彩色融合和多曝光融合处理,得到第一增强图像。
其中,第一增强图像位于RGB颜色空间。
第三深度学习网络模型为Unet模型、Resnet模型和Hdrnet模型中的任意一种。
S2050、对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
应理解,上述S2050可以包括:
S2051、利用分割模型进行分割,得到第一增强图像对应的掩膜图。
分割模型为Unet模型、Resnet模型和PSPnet模型中的任意一种。
S2052、根据第一增强图像和掩膜图,利用色调映射模型进行处理,获取对应的增益系数图;增益系数图包括多个像素,每个像素对应一个增益值。
色调映射模型为Unet模型、Resnet模型和Hdrnet模型中的任意一种。
S2053、将第一增强图像与增益系数图相乘,得到第二增强图像。
其中,增益系数图包括3帧颜色增益系数图和/或1帧亮度增益系数图,每帧颜色增益系数图只对一种颜色进行增强,亮度增益系数图用于对亮度进行增强。
S2060、对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
实施例3,一种图像处理方法,如图19所示,该方法包括以下S3010至S3060。
S3010、获取多帧第二图像。
其中,第二图像为正常曝光的拜耳格式图像。
S3020、对多帧第二图像进行配准、黑电平校正、自动白平衡、通道拆分。
其中,通道拆分指的是将每帧第一图像拆分成3个单通道的待增强子图层,每个单通道的待增强子图层只包含一种颜色通道信号。
S3030、针对每帧第二图像增设1帧方差图层,得到图层集;图层集包括多帧第二图像以及相同数量的方差图层。方差图层包括多个像素,每个像素对应的方差值由第一图像对应的感光度确定。
应理解,此处对方差图层的描述与上述S1020中对方差图层的描述相同,在此不再赘述。
S3040、利用第一深度学习网络模型对图层集进行降噪、去马赛克,得到第一增强图像。
其中,第一增强图像位于RGB颜色空间。
第一深度学习网络模型为Unet模型、Resnet模型和PSPnet模型中的任意一种。
S3050、对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
其中,S3050可以包括上述S2051至S2053,在此不再赘述。
S3060、对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
实施例4,一种图像处理方法,如图20所示,该方法包括以下S4010至S4060。
S4010、获取多帧第一图像和多帧第二图像。
其中,多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像,多帧第一图像均为所述拜耳格式图像。第二图像为正常曝光的拜耳格式图像。
S4020、对多帧第一图像和多帧第二图像分别进行配准、黑电平校正、自动白平衡和通道拆分。
S4030、针对每帧第一图像增设1帧第一方差图层,针对每帧第二图像增设1帧第二方差图层,得到图层集;图层集包括多帧第一图像以及相同数量的第一方差图层,并且,图层集还包括多帧第二图像以及相同数量的第二方差图层。第一方差图层包括多个像素,每个像素对应的方差值由第一图像对应的感光度确定;第二方差图层包括多个像素,每个像素对应的方差值由第二图像对应的感光度确定。
应理解,此处,对第一方差图层和第二方差图层的描述与上述S1020中对方差图层的描述相同,在此不再赘述。
S4040、利用第三深度学习网络模型对图层集进行降噪、去马赛克、色彩融合和多曝光融合处理,得到第一增强图像。
其中,第一增强图像位于RGB颜色空间。
第三深度学习网络模型为Unet模型、Resnet模型和Hdrnet模型中的任意一种。
S4050、对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
其中,S4050可以包括上述S2051至S2053。
S4060、对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
实施例5,一种图像处理方法,如图21所示,该方法包括以下S5010至S5060。
S5010、获取多帧第二图像和多帧第三图像。
其中,第二图像为正常曝光的拜耳格式图像。第三图像为灰阶图像。
S5020、对多帧第二图像进行配准、黑电平校正、自动白平衡和通道拆分;对多帧第三图像进行配准、黑电平校正。
S5030、针对每帧第二图像增设1帧第二方差图层,针对每帧第三图像增设1帧第三方差图层,得到图层集;图层集包括多帧第二图像以及相同数量的第二方差图层,还包括多帧第三图像以及相同数量的第三方差图层。第二方差图层包括多个像素,每个像素对应的方差值由第二图像对应的感光度确定;第三方差图层包括多个像素,每个像素对应的方差值由第三图像对应的感光度确定。
应理解,此处,对第二方差图层和第三方差图层的描述与上述S1020中对方差图层的描述相同,在此不再赘述。
S5040、利用第二深度学习网络模型进行降噪、去马赛克和色彩融合,获取图层集对应的第一增强图像。
其中,第一增强图像位于RGB颜色空间。
第二深度学习网络模型为Unet模型、Resnet模型和Hdrnet模型中的任意一种。
S5050、对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
其中,S5050可以包括上述S2051至S2053。
S5060、对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
实施例6,一种图像处理方法,如图22所示,该方法包括以下S6010至S6070。
S6010、获取多帧第一图像和多帧第二图像。
其中,多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像,多帧第一图像均为所述拜耳格式图像。第二图像为正常曝光的拜耳格式图像。
S6020、对多帧第二图像进行配准、黑电平校正、自动白平衡和通道拆分。
其中,通道拆分指的是将每帧第一图像拆分成3个单通道的待增强子图层,每个单通道的待增强子图层只包含一种颜色通道信号。
S6030、针对每帧第二图像增设1帧方差图层,得到图层集;图层集包括多帧第二图像以及相同数量的方差图层。方差图层包括多个像素,每个像素对应的方差值由第二图像对应的感光度确定。
应理解,此处,对方差图层的描述与上述S1020中对方差图层的描述相同,在此不再赘述。
S6040、利用第一深度学习网络模型对图层集进行降噪、去马赛克处理,得到第一增强图像。
其中,第一增强图像位于RGB颜色空间。
第一深度学习网络模型为Unet模型、Resnet模型和PSPnet模型中的任意一种。
S6050、利用第一图像中的长曝光图像和短曝光图像,对第一增强图像进行长短曝光融合处理,得到中间增强图像。然后,将中间增强图像作为第一增强图像。
S6060、对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
其中,S6060可以包括上述S2051至S2053。
S6070、对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
实施例7,一种图像处理方法,如图23所示,该方法包括以下S7010至S7090。
S7010、获取多帧第一图像、多帧第二图像和1帧第三图像。
其中,多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像,多帧第一图像均为拜耳格式图像。第二图像为正常曝光的拜耳格式图像,第三图像为灰阶图像。
S7020、对多帧第二图像进行配准、黑电平校正、自动白平衡和通道拆分。
其中,通道拆分指的是将每帧第一图像拆分成3个单通道的待增强子图层,每个单通道的待增强子图层只包含一种颜色通道信号。
S7030、针对每帧第二图像增设1帧方差图层,得到图层集;图层集包括多帧第二图像和相同数量的方差图层。方差图层包括多个像素,每个像素对应的方差值由第二图像对应的感光度确定。
应理解,此处,对方差图层的描述与上述S1020中对方差图层的描述相同,在此不再赘述。
S7040、利用第一深度学习网络模型对图层集进行降噪、去马赛克处理,得到第一增强图像。
其中,第一增强图像位于RGB颜色空间。
第一深度学习网络模型为Unet模型、Resnet模型和PSPnet模型中的任意一种。
S7050、利用第一图像中的长曝光图像和短曝光图像,对第一增强图像进行长短曝光融合处理,得到中间增强图像。然后,将中间增强图像作为第一增强图像。
S7060、对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
其中,S7060可以包括上述S2051至S2053。
S7070、对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
S7080、对第三图像进行色彩空间转换,得到位于YUV颜色空间的第二目标图像。
S7090、将第一目标图像和第二目标图像进行色彩融合,生成第三目标图像。
实施例8,一种图像处理方法,如图24所示,该方法包括以下S8010至S8080。
S8010、获取多帧第一图像、多帧第二图像和1帧第三图像。
其中,多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像,多帧第一图像均为拜耳格式图像。第二图像为正常曝光的拜耳格式图像,第三图像为灰阶图像。
S8020、对多帧第一图像和多帧第二图像分别进行配准、黑电平校正、自动白平衡和通道拆分。
S8030、针对每帧第一图像增设1帧第一方差图层,针对每帧第二图像增设1帧第二方差图层,得到图层集;图层集包括多帧第一图像以及相同数量的第一方差图层,还包括多帧第二图像以及相同数量的第二方差图层。第一方差图层包括多个像素,每个像素对应的方差值由第一图像对应的感光度确定;第二方差图层包括多个像素,每个像素对应的方差值由第二图像对应的感光度确定。
应理解,此处,对第一方差图层和第二方差图层的描述与上述S1020中对方差图层的描述相同,在此不再赘述。
S8040、利用第三深度学习网络模型对图层集进行降噪、去马赛克、色彩融合和多曝光融合处理,得到第一增强图像。
其中,第一增强图像位于RGB颜色空间。
第三深度学习网络模型为Unet模型、Resnet模型和Hdrnet模型中的任意一种。
S8050、对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
其中,S8050可以包括上述S2051至S2053。
S8060、对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
S8070、对第三图像进行色彩空间转换,得到位于YUV颜色空间的第二目标图像。
S8080、将第一目标图像和第二目标图像进行色彩融合,生成第三目标图像。
实施例9,一种图像处理方法,如图25所示,该方法包括以下S9010至S9070。
S9010、获取多帧第一图像、多帧第二图像和多帧第三图像。
其中,多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像,多帧第一图像均为拜耳格式图像。第二图像为正常曝光的拜耳格式图像,第三图像为灰阶图像。
S9020、对多帧第二图像进行配准、黑电平校正、自动白平衡和通道拆分;对多帧第三图像进行配准、黑电平校正。
S9030、针对每帧第二图像增设1帧第二方差图层,针对每帧第三图像增设1帧第三方差图层,得到图层集;图层集包括多帧第二图像以及相同数量的第二方差图层,还包括多帧第三图像以及相同数量的第三方差图层。第二方差图层包括多个像素,每个像素对应的方差值由第二图像对应的感光度确定;第三方差图层包括多个像素,每个像素对应的方差值由第三图像对应的感光度确定。
应理解,此处,对第二方差图层和第三方差图层的描述与上述S1020中对方差图层的描述相同,在此不再赘述。
S9040、利用第二深度学习网络模型对图层集进行降噪、去马赛克和色彩融合处理,得到第一增强图像。
其中,第一增强图像位于RGB颜色空间。
第二深度学习网络模型为Unet模型、Resnet模型和Hdrnet模型中的任意一种。
S9050、利用第一图像中的长曝光图像和短曝光图像,对第一增强图像进行长短曝光融合处理,得到中间增强图像。然后,将中间增强图像作为第一增强图像。
S9060、对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
其中,S9060可以包括上述S2051至S2053。
S9070、对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
实施例10,一种图像处理方法,如图26所示,该方法包括以下S10010至S10060。
S10010、获取多帧第一图像、多帧第二图像和多帧第三图像。
其中,多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像,多帧第一图像均为拜耳格式图像。第二图像为正常曝光的拜耳格式图像,第三图像为灰阶图像。
S10020、对多帧第一图像和多帧第二图像分别进行配准、黑电平校正、自动白平衡和通道拆分。对多帧第三图像进行配准、黑电平校正。
S10030、针对每帧第一图像增设1帧第一方差图层,针对每帧第二图像增设1帧第二方差图层,针对每帧第三图像增设1帧第三方差图层,得到图层集;图层包括多帧第一图像以及相同数量的第一方差图层,还包括多帧第二图像以及相同数量的第二方层图层,多帧第三图像以及相同数量的第三方差图层。第一方差图层包括多个像素,每个像素对应的方差值由第一图像对应的感光度确定;第二方差图层包括多个像素,每个像素对应的方差值由第二图像对应的感光度确定;第三方差图层包括多个像素,每个像素对应的方差值由第三图像对应的感光度确定。
应理解,此处,对第一方差图层、第二方差图层和第三方差图层的描述与上述S1020中对方差图层的描述相同,在此不再赘述。
S10040、利用第三深度学习网络模型对图层集进行降噪、去马赛克、色彩融合和多曝光融合处理,得到第一增强图像。
其中,第一增强图像位于RGB颜色空间。
第三深度学习网络模型为Unet模型、Resnet模型和Hdrnet模型中的任意一种。
S10050、对第一增强图像进行增强处理,得到第二增强图像,增强处理包括颜色增强处理和/或亮度增强处理。
其中,S10050可以包括上述S2051至S2053。
S10060、对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
上述主要从电子设备或图像处理装置的角度对本申请实施例提供的方案进行了介绍。可以理解的是,电子设备和图像处理装置,为了实现上述功能,其包含了执行每一个功能相应的硬件结构或软件模块,或两者结合。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对电子设备和图像处理装置进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
图27为本申请实施例提供的一种图像处理装置的结构示意图。如图27所示,该图像处理装置200包括获取模块210和处理模块220,处理模块220可以包括第一处理模块、第二处理模块和第三处理模块。
该图像处理装置可以执行以下方案:
获取模块210,用于获取原始图像。
第一处理模块,用于对原始图像增设方差图层,得到图层集。图层集包括原始图层和方差图层,方差图层包括多个像素,每个像素对应的房差之由原始图像对应的感光度确定。
第二处理模块,用于利用深度学习网络模型对图层集进行处理,得到第一增强图像。第一增强图像位于RGB颜色空间。
第三处理模块,用于对第一增强图像进行增强处理,得到第二增强图像。增强处理包括颜色增强处理和/或亮度增强处理。
可选地,原始图像包括:多帧第一图像、多帧第二图像、至少1帧第三图像中的至少一项。
其中,第一图像、第二图像和第三图像为对相同的待拍摄场景拍摄的图像。多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像,第二图像为正常曝光的拜耳格式图像,第三图像为灰阶图像时。
可选地,1帧或多帧长曝光图像均为拜耳格式图像或均为灰阶图像,1帧或多帧短曝光图像均为拜耳格式图像或均为灰阶图像。
可选地,在对原始图像增设方差图层之前,第一处理模块还用于对原始图像进行第一处理。其中,第一处理模块,可以用于对原始图像进行黑电平校正。
可选地,当原始图像包括多帧第一图像和/或多帧第二图像时,第一处理模块,还用于对原始图像进行配准。
可选地,当原始图像包括多帧第三图像时,第一处理模块,还用于对原始图像进行配准。
可选地,当原始图像包括的多帧第一图像均为拜耳格式图像时,和/或,当原始图像包括多帧第二图像时,第一处理模块,还用于对原始图像进行通道拆分。
其中,通道拆分指的是将拜耳格式图像拆分成多个单通道的待增强子图层,每个单通道的待增强子图层只包含一种颜色通道信号。
可选地,第一处理模块,还用于针对每帧原始图像增设1帧方差图层。
可选地,当多帧原始图像对应的感光度均相同时,第一处理模块,还用于对多帧原始图像增设1帧方差图层。
可选地,方差图层包括第一方差图层、第二方差图层和第三方差图层。
当多帧第一图像对应的感光度均相同时,第一处理模块,用于对多帧第一图像增设1帧第一方差图层,第一方差图层中每个像素对应的方差值由任意1帧第一图像对应的感光度确定。
当多帧第二图像对应的感光度均相同时,第一处理模块,用于对多帧第二图像增设1帧第二方差图层,第二方差图层中每个像素对应的方差值由任意1帧所述第二图像对应的感光度确定。
当多帧第三图像对应的感光度均相同时,第一处理模块,用于对多帧第三图像增设1帧第三方差图层,第三方差图层中每个像素对应的方差值由任意1帧第三图像对应的感光度确定。
其中,方差图层中每个像素对应的方差值为:与方差图层对应的原始图像的感光度,或者;
每个像素对应的方差值为:与方差图层对应的原始图像的感光度和预设基准值的比值,或者;
方差图层包括多个子区域,每个子区域包括多个像素,位于不同子区域中的像素对应的方差值不同,位于不同子区域的像素对应的系数不同,第一子区域中的像素对应的方差值为:与方差图层对应的原始图像的感光度和第一系数的乘积。
可选地,深度学习网络模型包括:第一深度学习网络模型、第二深度学习网络模型和第三深度学习网络模型。
则当图层集由多帧第二图像得到时,第二处理模块,用于利用第一深度学习网络模型对图层集进行降噪和去马赛克,得到所述第一增强图像;
当图层集由多帧第二图像和至少1帧第三图像得到时,第二处理模块,用于利用第二深度学习网络模型对图层集进行降噪、去马赛克和彩色融合,得到第一增强图像。
当图层集由多帧第二图像和多帧第一图像得到时,或者;
当图层集由多帧第二图像、多帧第一图像和至少1帧第三图像得到时,第二处理模块,用于利用第三深度学习网络模型进行降噪、去马赛克、彩色融合和多曝光融合,得到第一增强图像。
可选地,第三处理模块,还用于利用分割模型对第一增强图像进行分割,得到掩膜图;根据第一增强图像和掩膜图,利用色调映射模型进行处理,获取增益系数图;增益系数图包括多个像素,每个像素对应一个增益值;将第一增强图像与增益系数图相乘,得到第二增强图像。
其中,增益系数图包括3帧颜色增益系数图和/或1帧亮度增益系数图,每帧颜色增益系数图只对一种颜色进行增强,亮度增益系数图用于对亮度进行增强。
可选地,当原始图像包括多帧第一图像时,在利用分割模型对第一增强图像进行处理,得到掩膜图之前,第二处理模块还用于:
利用多帧第一图像中的长曝光图像和短曝光图像,对第一增强图像进行长短曝光融合处理,得到中间增强图像;将中间增强图像作为第一增强图像。
可选地,第二处理模块,还用于将第一增强图像与第一待融合图像进行融合,得到中间融合图像;将中间融合图像与第二待融合图像进行融合,得到中间增强图像;
其中,第一待融合图像、第二待融合图像分别为长曝光图像和短曝光图像。
可选地,该图像处理装置,还可以包括第四处理模块,该第四处理模块,用于对第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
可选地,当多帧原始图像包括至少1帧第三图像时,第四处理模块,还用于对每帧第三图像进行色彩空间转换,得到位于YUV颜色空间的第二目标图像;将第一目标图像和所述第二目标图像进行彩色融合,生成第三目标图像。
作为一个示例,结合图5所示的图像处理装置,图27中的获取模块210可以由图5中的接收接口来实现,图27中的处理模块220可以由图5中的中央处理器、图形处理器、微控制器和神经网络处理器中的至少一项来实现,本申请实施例对此不进行任何限制。
本申请实施例还提供另一种图像处理装置,包括:接收接口和处理器;
接收接口用于接收原始图像;
处理器,用于调用存储器中存储的计算机程序,以执行如上述所述的图像处理方法10。
本申请实施例还提供另一种电子设备,包括摄像头模组、处理器和存储器。
摄像头模组,用于获取原始图像;
存储器,用于存储可在处理器上运行的计算机程序;
处理器,用于执行如上述所述的图像处理方法10。
可选地,摄像头模组包括彩色摄像头和黑白摄像头;彩色摄像头和黑白摄像头用于对相同的待拍摄场景进行拍摄。
彩色摄像头,用于在处理器获取拍照指令后,获取多帧第一图像和多帧第二图像,多帧第一图像至少包括1帧长曝光图像和1帧短曝光图像;第二图像为正常曝光的拜耳格式图像;
黑白摄像头,用于在处理器获取拍照指令后,获取至少1帧第三图像,第三图像为灰阶图像。
可选地,摄像头模组包括彩色摄像头和黑白摄像头;彩色摄像头和黑白摄像头用于对相同的待拍摄场景进行拍摄。
彩色摄像头,用于在处理器获取拍照指令后,获取多帧第二图像,第二图像为正常曝光的拜耳格式图像。
黑白摄像头,用于在处理器获取拍照指令后,获取多帧第一图像和至少1帧第三图像,多帧第一图像至少包括1帧长曝光图像和1帧短曝光图像;第三图像为灰阶图像。
严格来说,是通过彩色摄像头和黑白摄像头中的图像处理器来获取图像。其中,图像传感器例如可以为电荷耦合元件(charge-coupled device,CCD)、互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图像处理装置上运行时,使得该图像处理装置执行如图6、图13、或者图15至图26中任一项所示的方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在图像处理装置上运行时,使得图像处理装置可以执行图6、图13、或者图15至图26中任一项所示的方法。
图28为本申请实施例提供的一种芯片的结构示意图。图28所示的芯片可以为通用处理器,也可以为专用处理器。该芯片包括处理器401。其中,处理器401用于支持图像处理装置执行图6、图13、或者图15至图26中任一项所示的技术方案。
可选的,该芯片还包括收发器402,收发器402用于接受处理器401的控制,用于支持通信装置执行图6、图13、或者图15至图26中任一项所示的技术方案。
可选的,图28所示的芯片还可以包括:存储介质403。
需要说明的是,图28所示的芯片可以使用下述电路或者器件来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其他适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
上述本申请实施例提供的电子设备、图像处理装置、计算机存储介质、计算机程序产品、芯片均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,例如,上述检测方法的各个实施例中某些步骤可以是不必须的,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本申请实施例中,“预先设定”、“预先定义”可以通过在设备(例如,包括电子设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

1.一种图像处理方法,其特征在于,所述方法包括:
获取原始图像;
对所述原始图像增设方差图层,得到图层集,所述图层集包括所述原始图像和所述方差图层,所述方差图层包括多个像素,每个像素对应的方差值由所述原始图像对应的感光度确定;
利用深度学习网络模型对所述图层集进行处理,得到第一增强图像,所述第一增强图像位于RGB颜色空间;
对所述第一增强图像进行增强处理,得到第二增强图像,所述增强处理包括颜色增强处理和/或亮度增强处理。
2.根据权利要求1所述的方法,其特征在于,所述原始图像包括:多帧第一图像、多帧第二图像、至少1帧第三图像中的至少一项;
其中,所述第一图像、所述第二图像和所述第三图像为对相同的待拍摄场景拍摄的图像;所述多帧第一图像包括至少1帧长曝光图像和至少1帧短曝光图像,所述多帧第二图像均为正常曝光的拜耳格式图像,所述至少1帧第三图像为灰阶图像。
3.根据权利要求2所述的方法,其特征在于,所述至少1帧长曝光图像均为所述拜耳格式图像或均为所述灰阶图像,所述至少1帧短曝光图像均为所述拜耳格式图像或均为所述灰阶图像。
4.根据权利要求2或3所述的方法,其特征在于,在对所述原始图像增设所述方差图层之前,所述方法还包括:对所述原始图像进行第一处理;
所述第一处理包括:黑电平校正。
5.根据权利要求4所述的方法,其特征在于,当所述原始图像包括的所述至少1帧第三图像为多帧第三图像时,所述第一处理还包括:配准。
6.根据权利要求4或5所述的方法,其特征在于,当所述原始图像包括的所述多帧第一图像均为所述拜耳格式图像时,和/或,当所述原始图像包括所述多帧第二图像时,所述第一处理还包括:自动白平衡。
7.根据权利要求4至6中任一项所述的方法,其特征在于,当所述原始图像包括的所述多帧第一图像均为所述拜耳格式图像时,和/或,当所述原始图像包括所述多帧第二图像时,所述第一处理还包括:通道拆分;
其中,通道拆分用于将所述拜耳格式图像拆分成多个单通道的待增强子图层,每个单通道的待增强子图层只包含一种颜色通道信号。
8.根据权利要求1至7中任一项所述的方法,其特征在于,对每帧原始图像增设1帧所述方差图层。
9.根据权利要求1至7中任一项所述的方法,其特征在于,当多帧所述原始图像对应的感光度均相同时,对多帧所述原始图像增设1帧所述方差图层。
10.根据权利要求5至7中任一项所述的方法,其特征在于,所述方差图层包括第一方差图层、第二方差图层和第三方差图层;
当所述多帧第一图像对应的感光度均相同时,对所述多帧第一图像增设1帧所述第一方差图层,所述第一方差图层中每个像素对应的方差值由任意1帧所述第一图像对应的感光度确定;
当所述多帧第二图像对应的感光度均相同时,对所述多帧第二图像增设1帧所述第二方差图层,所述第二方差图层中每个像素对应的方差值由任意1帧所述第二图像对应的感光度确定;
当所述多帧第三图像对应的感光度均相同时,对所述多帧第三图像增设1帧所述第三方差图层,所述第三方差图层中每个像素对应的方差值由任意1帧所述第三图像对应的感光度确定。
11.根据权利要求1至10中任一项所述的方法,其特征在于,所述方差图层中每个像素对应的方差值为:与所述方差图层对应的所述原始图像的所述感光度,或者;
所述每个像素对应的方差值为:与所述方差图层对应的所述原始图像的所述感光度和预设基准值的比值,或者;
所述方差图层包括多个子区域,每个子区域包括多个像素,位于不同子区域中的像素对应的方差值不同,所述位于不同子区域的像素对应的系数不同,第一子区域中的像素对应的方差值为:与所述方差图层对应的所述原始图像的所述感光度和第一系数的乘积。
12.根据权利要求2、3、5中任一项所述的方法,其特征在于,所述深度学习网络模型包括:第一深度学习网络模型、第二深度学习网络模型和第三深度学习网络模型;
则所述利用深度学习网络模型对图层集进行处理,得到第一增强图像,包括:
当所述图层集由所述多帧第二图像得到时,利用所述第一深度学习网络模型对所述图层集进行降噪和去马赛克,得到所述第一增强图像;
当所述图层集由所述多帧第二图像和所述至少1帧第三图像得到时,利用所述第二深度学习网络模型对所述图层集进行所述降噪、所述去马赛克和彩色融合,得到所述第一增强图像;
当所述图层集由所述多帧第二图像和所述多帧第一图像得到时,或者;
当所述图层集由所述多帧第二图像、所述多帧第一图像和所述至少1帧第三图像得到时,利用所述第三深度学习网络模型对所述图层集进行所述降噪、所述去马赛克、所述彩色融合和多曝光融合,得到第一增强图像。
13.根据权利要求1至12中任一项所述的方法,其特征在于,所述对所述第一增强图像进行增强处理,得到第二增强图像,包括:
利用分割模型对所述第一增强图像进行分割,得到掩膜图;
根据所述第一增强图像和所述掩膜图,利用色调映射模型进行处理,得到增益系数图;所述增益系数图包括多个像素,每个像素对应一个增益值;
将所述第一增强图像与所述增益系数图相乘,得到所述第二增强图像。
14.根据权利要求13所述的方法,其特征在于,所述增益系数图包括3帧颜色增益系数图和/或1帧亮度增益系数图,每帧颜色增益系数图针对所述第一增强图像的单一颜色进行增强,所述亮度增益系数图用于对所述第一增强图像的亮度进行增强。
15.根据权利要求2、3、5、12中任一项所述的方法,其特征在于,当所述原始图像包括所述多帧第一图像,并且,还包括所述多帧第二图像和所述至少1帧第三图像中的至少一项时,在所述利用分割模型,获取所述第一增强图像对应的掩膜图之前,所述方法还包括:
利用所述多帧第一图像的所述长曝光图像和所述短曝光图像,对所述第一增强图像进行长短曝光融合处理,得到中间增强图像;
将所述中间增强图像作为所述第一增强图像。
16.根据权利要求15所述的方法,其特征在于,所述利用所述长曝光图像和所述短曝光图像,对所述第一增强图像进行长短曝光融合处理,得到中间增强图像,包括:
将所述第一增强图像与第一待融合图像进行融合,得到中间融合图像;
将所述中间融合图像与第二待融合图像进行融合,得到所述中间增强图像;
其中,所述第一待融合图像、所述第二待融合图像分别为所述长曝光图像和所述短曝光图像。
17.根据权利要求1至16中任一项所述的方法,其特征在于,在得到所述第二增强图像之后,所述方法还包括:
对所述第二增强图像进行色彩空间转换,得到位于YUV颜色空间的第一目标图像。
18.根据权利要求17所述的方法,其特征在于,当所述原始图像包括至少1帧第三图像时,所述方法还包括:
对所述至少1帧第三图像进行所述色彩空间转换,得到位于所述YUV颜色空间的第二目标图像;
将所述第一目标图像和所述第二目标图像进行彩色融合,生成第三目标图像。
19.一种图像处理装置,其特征在于,包括:接收接口和处理器;
所述接收接口用于接收原始图像;
所述处理器,用于调用存储器中存储的计算机程序,以执行如权利要求1至18任一项所述的图像处理方法。
20.一种电子设备,其特征在于,包括摄像头模组、处理器和存储器;
所述摄像头模组,用于获取原始图像;
所述存储器,用于存储可在所述处理器上运行的计算机程序;
所述处理器,用于执行如权利要求1至18中任一项所述的图像处理方法。
21.根据权利要求20所述的电子设备,其特征在于,所述摄像头模组包括彩色摄像头和黑白摄像头;所述彩色摄像头和所述黑白摄像头用于对相同的待拍摄场景进行拍摄;
所述彩色摄像头,用于在所述处理器获取拍照指令后,获取多帧第一图像和多帧第二图像,所述多帧第一图像至少包括1帧长曝光图像和1帧短曝光图像;所述第二图像为正常曝光的拜耳格式图像;
所述黑白摄像头,用于在所述处理器获取所述拍照指令后,获取至少1帧第三图像,所述第三图像为灰阶图像。
22.根据权利要求20所述的电子设备,其特征在于,所述摄像头模组包括彩色摄像头和黑白摄像头;所述彩色摄像头和所述黑白摄像头用于对相同的待拍摄场景进行拍摄;
所述彩色摄像头,用于在所述处理器获取拍照指令后,获取多帧第二图像,所述第二图像为正常曝光的拜耳格式图像;
所述黑白摄像头,用于在所述处理器获取所述拍照指令后,获取多帧第一图像和至少1帧第三图像,所述多帧第一图像至少包括1帧长曝光图像和1帧短曝光图像;所述第三图像为灰阶图像。
23.一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至18中任一项所述的图像处理方法。
24.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时,使所述处理器执行如权利要求1至18任一项所述的图像处理方法。
CN202110771030.2A 2021-07-07 2021-07-07 图像处理方法、装置和电子设备 Active CN115601244B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110771030.2A CN115601244B (zh) 2021-07-07 2021-07-07 图像处理方法、装置和电子设备
PCT/CN2022/093917 WO2023279863A1 (zh) 2021-07-07 2022-05-19 图像处理方法、装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110771030.2A CN115601244B (zh) 2021-07-07 2021-07-07 图像处理方法、装置和电子设备

Publications (2)

Publication Number Publication Date
CN115601244A true CN115601244A (zh) 2023-01-13
CN115601244B CN115601244B (zh) 2023-12-12

Family

ID=84800310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110771030.2A Active CN115601244B (zh) 2021-07-07 2021-07-07 图像处理方法、装置和电子设备

Country Status (2)

Country Link
CN (1) CN115601244B (zh)
WO (1) WO2023279863A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116055847A (zh) * 2023-03-28 2023-05-02 荣耀终端有限公司 图像增强处理方法和电子设备
CN117132629A (zh) * 2023-02-17 2023-11-28 荣耀终端有限公司 图像处理方法和电子设备
CN117351100A (zh) * 2023-12-04 2024-01-05 成都数之联科技股份有限公司 一种色环电阻颜色提取方法、装置、设备和介质
CN117392732A (zh) * 2023-12-11 2024-01-12 深圳市宗匠科技有限公司 肤色检测方法、装置、计算机设备和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117132479A (zh) * 2023-04-28 2023-11-28 荣耀终端有限公司 摩尔纹的消除方法、电子设备及可读存储介质
CN117745620B (zh) * 2024-02-19 2024-07-23 荣耀终端有限公司 一种图像处理方法及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510630A (zh) * 2020-04-24 2020-08-07 Oppo广东移动通信有限公司 图像处理方法、装置及存储介质
CN112581379A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 图像增强方法以及装置
CN112927144A (zh) * 2019-12-05 2021-06-08 北京迈格威科技有限公司 图像增强方法、图像增强装置、介质和电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333673B2 (en) * 2003-10-30 2008-02-19 Samsung Electronics Co., Ltd. Method and apparatus for image detail enhancement without zigzagged edge artifact
CN109889800B (zh) * 2019-02-28 2021-09-10 深圳市商汤科技有限公司 图像增强方法和装置、电子设备、存储介质
CN112529775A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 一种图像处理的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112581379A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 图像增强方法以及装置
CN112927144A (zh) * 2019-12-05 2021-06-08 北京迈格威科技有限公司 图像增强方法、图像增强装置、介质和电子设备
CN111510630A (zh) * 2020-04-24 2020-08-07 Oppo广东移动通信有限公司 图像处理方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张凯旭: "基于深度学习的低照度图像复原算法研究", 《中国优秀硕士学位论文全文数据库》, no. 12, pages 1 - 52 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117132629A (zh) * 2023-02-17 2023-11-28 荣耀终端有限公司 图像处理方法和电子设备
CN116055847A (zh) * 2023-03-28 2023-05-02 荣耀终端有限公司 图像增强处理方法和电子设备
CN116055847B (zh) * 2023-03-28 2023-08-11 荣耀终端有限公司 图像增强处理方法和电子设备
CN117351100A (zh) * 2023-12-04 2024-01-05 成都数之联科技股份有限公司 一种色环电阻颜色提取方法、装置、设备和介质
CN117351100B (zh) * 2023-12-04 2024-03-22 成都数之联科技股份有限公司 一种色环电阻颜色提取方法、装置、设备和介质
CN117392732A (zh) * 2023-12-11 2024-01-12 深圳市宗匠科技有限公司 肤色检测方法、装置、计算机设备和存储介质
CN117392732B (zh) * 2023-12-11 2024-03-22 深圳市宗匠科技有限公司 肤色检测方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
WO2023279863A1 (zh) 2023-01-12
CN115601244B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
CN115601244B (zh) 图像处理方法、装置和电子设备
CN114092364B (zh) 图像处理方法及其相关设备
CN115601274B (zh) 图像处理方法、装置和电子设备
CN113810600B (zh) 终端的图像处理方法、装置和终端设备
CN113810601B (zh) 终端的图像处理方法、装置和终端设备
CN111770282B (zh) 图像处理方法及装置、计算机可读介质及终端设备
CN113570617B (zh) 图像处理方法、装置和电子设备
CN116416122B (zh) 图像处理方法及其相关设备
CN115631250B (zh) 图像处理方法与电子设备
CN113592751A (zh) 图像处理方法、装置和电子设备
CN115150542A (zh) 一种视频防抖方法及相关设备
CN117135471B (zh) 一种图像处理方法和电子设备
US20230113058A1 (en) Electronic device including image sensor and operating method thereof
CN117135293B (zh) 图像处理方法和电子设备
CN115955611B (zh) 图像处理方法与电子设备
CN116437222B (zh) 图像处理方法与电子设备
CN114390195B (zh) 一种自动对焦的方法、装置、设备及存储介质
CN115705663A (zh) 图像处理方法与电子设备
CN115706869A (zh) 终端的图像处理方法、装置和终端设备
CN115526786B (zh) 图像处理方法及其相关设备
CN116055855B (zh) 图像处理方法及其相关设备
CN115529448B (zh) 图像处理方法及相关装置
CN117422646B (zh) 去反光模型的训练方法、去反光模型和去反光方法
US20230388677A1 (en) Electronic device including image sensor and operating method thereof
CN118509715A (zh) 一种光斑显示方法、装置及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant