CN115597503A - 基于脉冲激光的椭偏量测装置及相关的光操作方法 - Google Patents
基于脉冲激光的椭偏量测装置及相关的光操作方法 Download PDFInfo
- Publication number
- CN115597503A CN115597503A CN202211590013.XA CN202211590013A CN115597503A CN 115597503 A CN115597503 A CN 115597503A CN 202211590013 A CN202211590013 A CN 202211590013A CN 115597503 A CN115597503 A CN 115597503A
- Authority
- CN
- China
- Prior art keywords
- pulse train
- signal
- module
- ellipsometry
- detection signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/211—Ellipsometry
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本公开提供了一种基于脉冲激光的椭偏量测装置以及相关的光操作方法。该装置被配置为能够操作选择地在椭偏量测模式下工作,所述椭偏量测装置特别地包括:锁相放大模块,其被配置成接收来自于样品的第一检测信号,并且基于所述第一调制信号作为参考信号,以通过对所述第一检测信号的锁相放大,来产生经噪声处理的第一检测信号;以及控制和处理模块,其被配置成基于所述经噪声处理的第一检测信号,获得与所述样品的特性相关的信息。
Description
技术领域
本公开涉及光学量测及检测领域,并且更具体地涉及一种基于脉冲激光的椭偏量测装置及其相关的光操作方法。
背景技术
在集成电路制造过程中,为提高芯片良率,需对各工艺环节进行监测,以便在制造完成前及时发现工艺问题并纠正。目前,无接触式的光学量测与检测技术被大规模用于各工艺环节的监测。这其中,椭偏量测系统被大量应用于半导体生产过程中的镀膜工艺监测,以测量薄膜的厚度,光学常数等性质。
发明内容
本公开的目的在于提供一种新颖的椭偏量测装置及其相关的光操作方法,其至少可以在脉冲激光的情况下实现椭偏测量。
根据本公开的第一方面,其提供一种基于脉冲激光的椭偏量测装置。该椭偏量测装置被配置为能够操作选择地在椭偏量测模式下工作,所述椭偏量测装置包括:脉冲产生模块,其适于在所述椭偏量测模式下产生具有第一预定光强的第一激光脉冲串;调制模块,其被配置成接收所述第一激光脉冲串,并且基于第一调制信号对所述第一激光脉冲串的周期性调制,以获得经调制的第一激光脉冲串,其中所述经调制的第一激光脉冲串的每个周期内至少包含两个激光脉冲;入射模块,其至少包括起偏器,并且被配置用于将至少经过起偏处理的所述经调制的第一激光脉冲串入射至样品;反射模块,其至少包括检偏器,并且被配置用于至少对从所述样品反射或衍射的光信号进行检偏处理,以获得经处理的光信号;第一检测器,其被布置在所述反射模块的下游,以便检测所述经处理的光信号并输出相应的第一检测信号;锁相放大模块,其被配置成接收所述第一检测信号,并且基于所述第一调制信号作为参考信号,以通过对所述第一检测信号的锁相放大,来产生经噪声处理的第一检测信号;以及控制和处理模块,其被配置成基于所述经噪声处理的第一检测信号,获得与所述样品的特性相关的信息。
容易理解,利用本公开的椭偏量测装置,其可以有利地在脉冲激光的情况下实现椭偏量测。而且,由于脉冲激光还可以用于脉冲清洗,这使得本公开的椭偏量测装置兼具椭偏量测模式和脉冲清洗模式成为可能。
在一些实施例中,该椭偏量测装置还被配置为能够操作选择地在脉冲清洗模式工作;其中所述脉冲产生模块适于在所述脉冲清洗模式下产生具有第二预定光强的第二激光脉冲串,其中所述第二激光脉冲串被布置成经由所述调制模块和所述入射模块而入射至所述样品,以用于对所述样品的表面的空气分子污染层的清洗。
在一些实施例中,所述脉冲产生模块包括脉冲激光器和光强控制器,其中所述光强控制器被布置成能够操作选择地对脉冲激光器所产生的激光脉冲串的光强进行控制,以产生所述第一预定光强的第一激光脉冲串或所述第二预定光强的第二激光脉冲串。
在一些实施例中,在所述脉冲清洗模式下,所述调制模块还被配置成基于第二调制信号对所述第二激光脉冲串进行调制,以获得经调制的第二激光脉冲串,所述经调制的第二激光脉冲串经由所述入射模块而入射至所述样品,以用于对所述样品的表面的空气分子污染层进行清洗。
在一些实施例中,所述第一调制信号是周期性的方波信号,所述第二调制信号是单个方波信号。
在一些实施例中,所述光强控制器由从以下各项中选择:一组安装在可切换结构上的中性滤光片组;一组安装在可连续变换位置的连续变化中性滤光片组;起偏器与λ/2波片的组合,其中所述起偏器与λ/2波片之一是可旋转的;和电光调制器与起偏器的组合。
在一些实施例中,所述调制模块由从以下各项中选择:电光调制器以及起偏器的组合;和斩波器。
在一些实施例中,所述调制频率小于脉冲激光重频的四分之一。
在一些实施例中,所述入射模块还包括分光器,以用于从入射到样品的光束中分出参考光;所述椭偏量测装置还包括第二检测器,所述第二检测器适于检测参考光,并输出第二检测信号。
在一些实施例中,所述锁相放大模块还配置成接收所述第二检测信号,并且基于所述第一调制信号作为参考信号,以实现对所述第二检测信号的噪声处理,并输出经噪声处理的第二检测信号。
在一些实施例中,所述控制和处理模块还被配置成:基于所述经噪声处理的第二检测信号,对所述经噪声处理的第一检测信号进行校正。
在一些实施例中,所述第一调制信号的频率大于所述第一探测器和所述第二探测器的信号采集频率。
在一些实施例中,所述入射模块和所述反射模块中的至少一者还包括相位补偿器,所述相位补偿器被布置用于对相应光束的偏振分量进行相位延迟。
在一些实施例中,其中所述起偏器、所述检偏器和所述相位补偿器中的至少一者是可操作旋转地。
在一些实施例中,所述控制和处理模块还被配置为对所述起偏器、所述检偏器和所述相位补偿器中的至少一者的旋转进行控制。
根据本公开的第二方面,提供了一种基于脉冲激光的光操作方法,该光操作方法包括在椭偏量测模式下的第一操作方法,所述第一操作方法包括:产生具有第一预定光强的第一激光脉冲串;基于第一调制信号对所述第一激光脉冲串进行周期性调制,来获得经调制的第一激光脉冲串,其中所述经调制的第一激光脉冲串的每个周期内至少包含两个激光脉冲;至少使用起偏器对经调制的第一激光脉冲串进行起偏处理,并将经过起偏处理的所述经调制的第一激光脉冲串入射至样品;至少使用检偏器对从所述样品反射或衍射的光信号进行检偏处理,以获得经处理的光信号;检测所述经处理的光信号并输出相应的第一检测信号;基于所述第一调制信号作为参考信号,通过对所述第一检测信号进行锁相放大,来产生经噪声处理的第一检测信号;以及基于所述经噪声处理的第一检测信号,获得与所述样品的特性相关的信息。
在一些实施例中,所述光操作方法还包括在脉冲清洗模式下的第二操作方法,其中所述第二操作方法包括:产生具有第二预定光强的第二激光脉冲串;使用第二调制信号对所述第二激光脉冲串进行调制,以获得经调制的第二激光脉冲串;将所述经调制的所述第二激光脉冲串入射至样品,以对所述样品的表面的空气分子污染层进行清洗。
在一些实施例中,该光操作方法还包括:操作地选择所述椭偏量测模式和所述脉冲清洗模式中的一者。
在一些实施例中,所述操作地选择椭偏量测模式和脉冲清洗模式中的一者包括:调节光强控制器,以控制从脉冲激光器产生的激光脉冲串的光强。
在一些实施例中,该光操作方法还包括:对所述经过起偏处理的所述经调制的第一激光脉冲串进行分光,以产生参考光;对所述参考光进行检测,以输出第二检测信号;以及基于所述第一调制信号作为参考信号,通过对所述第二检测信号进行锁相放大,来产生经噪声处理的第二检测信号;以及基于所述经噪声处理的第二检测信号,实现对所述经噪声处理的第一检测信号进行校正。
在一些实施例中,所述至少使用起偏器对经调制的第一激光脉冲串进行起偏处理包括:使用第一相位补偿器,使经起偏处理的所述经调制的第一激光脉冲串的两个偏振分量之间产生相位延迟,并且使所述起偏器和所述第一相位补偿器之一在第一检测器检测时旋转;和/或所述至少使用检偏器对从所述样品反射或衍射的光信号进行检偏处理包括:使用第二相位补偿器,使所述光信号的两个偏振分量之间产生相位延迟,并且使所述检偏器和所述第二相位补偿器之一在第一检测器检测时旋转。
还应当理解,发明内容部分中所描述的内容并非旨在限定本公开的实施例的关键或重要特征,亦非用于限制本公开的范围。本公开实施例的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素。
图1示出了根据本公开的示例实施例的基于脉冲激光的椭偏量测装置的示意性结构图。
图2示出了根据本公开的示例实施例的各个信号的图示。
图3示出了根据本公开的示例实施例的基于脉冲激光的光操作方法的图示。
图4示出了根据本公开的示例实施例的基于脉冲激光的光操作方法中的第一操作方法的流程图。
图5示出了根据本公开的示例实施例的基于脉冲激光的光操作方法中的第二操作方法的流程图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
如前所述的,椭偏量测系统被大量应用于半导体生产过程中的镀膜工艺监测,以测量薄膜的厚度,光学常数等性质。但是,随着半导体工艺的持续发展,在一些场景中,所用薄膜的厚度已经达到1纳米或者亚纳米级别。那么相应的椭偏量测设备的测量性能也需要提高,比如对于厚度为1纳米的薄膜,其测量精度需要小于0.003纳米。
对上述这种情况,通常的宽光谱型椭偏量测装置(Broadband SpectroscopyEllipsometry)已经难以满足要求,需要使用基于单波长激光的单波长椭偏量测装置。例如,专利申请号CN114427834A已经描述了一种类型的基于单波长激光的椭偏量测装置。为了方便理解,该申请的全部内容通过引用而并入本文。
即便如此,在使用椭偏量测装置时还需要消除空气分子污染(即AirborneMolecular Contamination,AMC),因为即使在洁净室环境中,空气中还是会包含水分子、碳氢化合物等,它们会沉降到薄膜表面,并形成污染层,而污染层的厚度会随着薄膜暴露在环境中的时间而增加,即使在机台内部也会有污染层形成,达到0.1纳米甚至以上。这样,薄膜厚度的量测结果就会受到影响,产生误测误报。
然而,包括专利申请号CN114427834A在内的现有的椭偏量测装置大部分都是基于连续激光的,而没有使用脉冲激光,这是因为难以解决使用脉冲激光量测时的信噪比问题。这种方案的缺点在于需要额外的激光清洗装置,即需要使用两种独立的光路系统,从而会使得装配流程、工作时序变得复杂,也使得系统需要额外的一些诊断和监测程序。
为此,本公开设计了一种基于脉冲激光的椭偏量测装置,其特点在于:该装置可以使用脉冲激光来实现单波长的椭偏量测。此外,由于使用脉冲激光,该装置还可以兼具AMC层的清洗功能,而不需要配置额外的清洗模块。
图1示出了根据本公开的示例实施例的基于脉冲激光的椭偏量测装置的示意性结构图。
将会理解,本公开的椭偏量测装置100可以被配置成能够操作选择地在椭偏量测模式或脉冲清洗模式下工作。在这种情况下,椭偏量测装置100可以被操作选择地从椭偏量测模式切换至脉冲清洗模式,或者从脉冲清洗模式切换至椭偏量测模式。然而,将会理解,尽管本公开的椭偏量测装置100被设计成兼具椭偏量测模式或脉冲清洗模式这两者,但在一些特别的实施例中,椭偏量测装置100仅具有椭偏量测模式或脉冲清洗模式两者之一的功能也是可行的。
仅作为示例,如图1所示,该椭偏量测装置100可以主要包括脉冲产生模块10、调制模块20、入射模块30、反射模块40、第一检测器50、锁相放大模块60以及控制和处理模块70。
具体地,脉冲产生模块10可以被配置成在椭偏量测模式下产生具有第一预定光强的第一激光脉冲串,或者在脉冲清洗模式下产生具有第二预定光强的第二激光脉冲串。
典型地,脉冲产生模块10可以例如包括脉冲激光器101和光强控制器102。
脉冲激光器10的作用在于产生预定波长的激光脉冲。仅作为示例,该预定波长可以例如为355nm、535nm和632nm的单波长;脉冲宽度可以例如是纳秒、飞秒或皮秒级别。特别地,在一些实施例中,脉冲激光器的重复频率可以大于1MHz,这可以有助于后续的锁相放大模块60的工作。
光强控制器102的作用在于对脉冲激光器101所产生的激光脉冲的光强进行控制。典型地,光强控制器102是衰减器。在一些实施例中,光强控制器102可以由从以下各项中选择:一组安装在可切换结构上的中性滤光片组;一组安装在可连续变换位置的连续变化中性滤光片组;起偏器与λ/2波片的组合,其中所述起偏器与λ/2波片之一是可旋转的;和电光调制器与起偏器的组合。仅作为示例,上述可切换结构、连续变化中性滤光片组、或者起偏器与λ/2波片之一的旋转例如可以通过马达来控制。
取决于椭偏量测装置100所旨在要工作的模式,即椭偏量测模式或脉冲清洗模式,可以操作光强控制器102以使得脉冲产生模块10所输出的光强处于第一预定光强还是第二预定光强。一般而言,第二预定光强通常要大于第一预定光强,其可以更为有利地对所述样品的表面的空气分子污染层进行清洗。将会理解,一旦操作光强控制器102以使得脉冲产生模块10所输出的光强处于第一预定光强,则可以视为将椭偏量测装置100置于椭偏量测模式,而一旦操作光强控制器102以使得脉冲产生模块10所输出的光强处于第二预定光强,则可以视为将椭偏量测装置100置于脉冲清洗模式。除了上述椭偏量测模式和脉冲清洗模式之外,在一些实施例中,本公开的椭偏量测装置100还可以被配置在测试模式下操作,在该测试模式下,可以调节光强控制器102,来对脉冲产生模块10所输出的光强进行优化,从而选择出适用于椭偏量测模式的第一预定光强和适用于脉冲清洗模式的第二预定光强。
调制模块20可以被布置在脉冲产生模块10的下游,以便接收并调制来自脉冲产生模块10所输出的激光脉冲串。如参见后面的描述,将会理解,调制模块20的作用在于结合锁相放大模块60以实现对从样品反射或衍射的检测光信号的去噪。仅作为示例,在一些实施例中,调制模块20可以例如从以下各项中选择:电光调制器以及起偏器的组合,以及斩波器。
在椭偏量测模式,调制模块20可以被配置成:接收第一激光脉冲串,并且基于第一调制信号对所述第一激光脉冲串的周期性调制,以获得经调制的第一激光脉冲串。在一些实施例中,第一调制信号可以是调制模块20自己生成的。而在又一些实施例中,调制模块20可以从外部(例如,控制和处理模块70)接收第一调制信号。特别地,第一调制信号的调制频率需要小于激光脉冲重频的四分之一,以保证所述经调制的第一激光脉冲串的每个周期内至少包含两个激光脉冲。又特别地,第一调制信号的调制频率还需要大于后续将要描述的第一检测器和第二检测器的采样频率,以保证信号采样的完整性以及可靠性。仅作为示例,第一调制信号可以例如是周期性的方波信号。
而在脉冲清洗模式,调制模块20可以被配置成:接收第二激光脉冲串,并且基于第二调制信号对所述第二激光脉冲串的周期性调制,以获得经调制的第二激光脉冲串。随后,该经调制的第二激光脉冲串可以经由所述入射模块而入射至所述样品,以用于对所述样品的表面的空气分子污染层进行清洗。在一些实施例中,上述第二调制信号可以是单个的方波信号。可以理解,可以通过调节单个的方波信号的宽度来控制将要对所述样品的表面的空气分子污染层进行清洗的时间,从而实现清洗的目的。
还将会理解,不管是椭偏量测模式,还是脉冲清洗模式,其共用入射光路以及入射光路上的模块,这使得本公开的椭偏量测模式和脉冲清洗模式之间的切换变得方便。还将会理解,在脉冲清洗模式下,入射模块30仅起到入射通路的作用,而反射光路是不必要的,因此,可以在该模式下关闭反射光路或者反射光路上的模块,并且下面将主要以椭偏量测模式来描述椭偏量测装置中的其他模块的功能和配置。
在一些实施例中,可以在脉冲产生模块10和调制模块20之前布置可调节的反射镜103,以方便调节入射到样品的光束的指向。本领域技术人员容易理解,该反射镜103也可以被布置在入射到样品上的光路的其他位置。
入射模块30可以至少包括起偏器105,并且被配置用于将至少经过起偏处理的所述经调制的第一激光脉冲串入射至样品。在一些实施例中,除了起偏器105之外,入射模块30还可以可选地包括第一相位补偿器107和第一物镜108中的一者或多者。特别地,起偏器105、第一相位补偿器107和第一物镜108可以沿着入射光路依次布置。
与此相应地,反射模块40可以至少包括检偏器111,并且被配置用于至少对从所述样品反射或衍射的光信号进行检偏处理,以获得经处理的光信号。在一些实施例中,除了检偏器111之外,反射模块30还可以可选地包括第二物镜109和第二相位补偿器110中的一者或多者。特别地,第二物镜109、第二相位补偿器110和检偏器111可以沿着从样品反射的反射光路依次布置。
容易理解:上述起偏器105和检偏器111的作用在于限定从其出射的光的偏振方向为某一确定的线偏振方向;第一相位补偿器107和第二相位补偿器110的作用在于使得入射到其上的光的两个偏振分量之间产生相位延迟量,该延迟量与其方位角有关,如果旋转相位补偿器,则从其出射的光的偏振分量之间的延迟量会周期性地变化,即出射刚的偏振态发生周期性变化;第一物镜108的作用在于将光束会聚成一个小光斑至待测样品上,而第二物镜109的作用在于使得从样品上反射或衍射回来的光准直。
应当理解,上述入射模块30和反射模块40两者的上述具体布置是椭偏量测装置的典型配置,并且取决于其具体的配置,旋椭偏量测装置可以具有不同椭偏测量构型。
例如,在入射模块和反射模块的关键部件中包含起偏器105、第一物镜108、第二物镜109、检偏器111和第一检测器112的实施例中,如果在测量过程中,起偏器105或检偏器111旋转,则该椭偏量测装置为PRSA或PSAR椭偏构型,其中P代表起偏器、S代表样品、A代表检偏器、R代表旋转。
又例如,在入射模块和反射模块的关键部件中包含起偏器105、第一相位补偿器107或第二相位补偿器110、第一物镜108、第二物镜109、检偏器111和第一检测器112的实施例中,如果在测量过程中,第一相位补偿器107或第二相位补偿器110旋转,则该椭偏量测装置为PCRSA或PSCRA椭偏构型。
又例如,在入射模块和反射模块的关键部件中包含起偏器105、第一相位补偿器107、第一物镜108、第二物镜109、第二相位补偿器110、检偏器111和第一检测器112的实施例中,如果在测量过程中,第一相位补偿器107和第二相位补偿器110都旋转,即该椭偏量测装置为PCRSCRA椭偏构型,也称为穆勒矩阵型椭偏仪。
此外,在上述入射模块30和反射模块40中,还可以针对起偏器105和检偏器111中分别配置光收集器113,以便收集未从起偏器105或检偏器111通过的光,即泄漏光或垃圾光。
第一检测器50被布置在反射模块40的下游,以便检测所述经处理的光信号并输出相应的第一检测信号。仅作为示例,第一检测器可以是CCD、CMOS传感器,或者诸如光电管等一切可以用来探测光信号的传感器。
在此,本领域技术人员将会理解,由于使用激光脉冲作为入射到样品的光束,则第一检测器50所检测到的来自样品的光信号将表现出低的信噪比。
为了实现高的信噪比,本公开特别地设计了锁相放大模块60,该锁相放大模块60被配置成接收所述第一检测信号,并且基于所述第一调制信号作为参考信号,以通过对所述第一检测信号的锁相放大,来产生经噪声处理的第一检测信号。在一些实施例中,锁相放大模块60还可以耦接至调制模块20,以接收上述第一调制信号作为参考信号。
随后,控制和处理模块70可以被配置成基于所述经噪声处理的第一检测信号,来获得与所述样品的特性相关的信息。具体地,控制和处理模块70可以将上述经噪声处理的第一检测信号转换为傅里叶系数,然后计算与待测样品相关的参数信息。这些参数信息可以包括但不限于诸如薄膜的厚度、光学常数等。
此外,控制和处理模块70还可以被配置成控制椭偏量测装置中的相关硬件的工作模式、触发以及参数调节,以便实现在椭偏量测模式和脉冲清洗模式下的正常工作。譬如,这些相关硬件可以包括但不限于:脉冲产生模块10中的脉冲激光器101和光腔控制器102,入射模块30中的起偏器105和第一相位补偿器107,反射模块40中的第二相位补偿器110以及检偏器111,第一检测器50,锁相放大模块60,等。
在一些实施例中,控制和处理模块70可以进一步由信号采集和处理模块116和控制模块117组成。该信号采集和处理模块116可以用于对从锁相放大模块60输出的上述经噪声处理的第一检测信号进行进一步的信号采集和处理,以将上述经噪声处理的第一检测信号转换为傅里叶系数,然后计算与待测样品相关的参数信息。而控制模块117可以用于控制上述各个硬件的工作模式、触发以及参数调节,以便获得最终的数据。
譬如,控制模块117可以控制光强控制器10中的滤光片的切换(例如,经由可切换机构)或电光调制器的电压,以实现对脉冲产生模块所输出的光强的控制。又譬如,控制模块117可以在不同的椭偏构型布置中控制起偏器105、第一相位补偿器107、第二相位补偿器110以及检偏器111中的相应器件的旋转(例如,这可以经由对这些器件的相关旋转马达的控制实现),以实现在所述相应器件的不同方位角下的来自样品的光信号的检测,与此同时,控制模块117还可以同步地控制第一检测器50、锁相放大模块60和信号采集与处理模块116,以实现这些器件的同步触发。
为了更准确的获得检测结果,在一些实施例中,入射模块30还可以包括分光器106,以用于从入射到样品的光束中分出参考光。如后面将要描述的,该参考光的作用在于对入射到样品的测量光的光强波动进行校正。
在一些实施例中,该分光器106可以被布置在起偏器105之后,这对于使得入射到样品的测量光和参考光为来自同一方向的线偏振光是有利的。进一步地,分光器106的分光面可以被布置成与起偏器105的出光偏振方向平行或垂直,这有助于消除分光器对入射光偏振态的改变,也即消除了分光器偏振干扰,从而保持起偏器原有出光的偏振方向,保证了系统测量精度。需要说明的是,分光器的分光面与起偏器的出光偏振方向并非平行或垂直也是可能的,这可以后续通过校正来消除分光器的偏振干扰。
椭偏量测装置100还可以包括第二检测器114,其可以用于检测该参考光,并输出第二检测信号。进一步地,该第二检测信号将会被输出至锁相放大模块60,以利用锁相放大的原理进行噪声处理。具体地,类似于第一检测信号,可以同样使用上述第一调制信号作为参考信号。更进一步地,该控制和处理模块70还可以被配置成:基于所述经噪声处理的第二检测信号,对所述经噪声处理的第一检测信号进行校正。
将会理解,由于参考光和测量光来自于同一光源的光(更特别地,它们可以是来自同一偏振方向的偏振光),因此,以上述校正方式,能够有效地校正第一检测信号中源于光源的强度波动,这提高了系统测量的稳定性,从而实现了具备超高稳定度的椭偏测量系统。
此外,为了实现精密的数据同步,本公开还设计了双通道数据时钟同步的方案,也即所述第一探测器和所述第二探测器采集到的数据有同步的时钟。譬如,在一些实施例中,第一探测器和第二探测器可以共用上述控制和处理模块70中的时钟源,以便同步采集数据,也即实现了针对测量光和参考光的同步采集。进一步地,在又一些实施例中,还可以例如使用同一个时钟信号来同步锁相放大模块60和信号采集与处理模块116的操作。
需要说明的是,本公开并不限于上述同步的方案,任何用于同步上述起偏器105、第一相位补偿器107、第二补偿器110和检偏器111中的一者、所述第一探测器和所述第二探测器的数据采集,以及同步锁相放大模块60和信号采集与处理模块116两者的操作的方案,均应包含在本申请的保护范围内。
为了更好地理解本公开的相关器件所采用或输出的信号,图2示出了根据本公开的示例实施例的各个信号的图示。
以上已经详细地描述了根据本公开的示例实施例的椭偏量测装置中的各个部件以及具体结构,下面将参照图3至图5来简要描述根据本公开的示例实施例的基于脉冲激光的光操作方法。应当理解,本公开的光操作方法是与上面的椭偏量测装置相对应的,因此,本公开的光操作方法中的相关方法步骤可以通过上面的椭偏量测装置的相应模块来执行。
具体地,如图3所示,本公开的光操作方法300可以包括在椭偏量测模式下的第一操作方法310以及在脉冲清洗模式下的第二操作方法320。在一些实施例中,该方法300可以进一步包括选择椭偏量测模式以及脉冲清洗模式中的任一模式。在又一些实施例中,该方法300可以进一步包括任意地在椭偏量测模式以及脉冲清洗模式之间进行切换。特别地,上述选择或切换的操作可以通过调节上述脉冲产生模块中的光强控制器来进行。一旦调节到椭偏量测模式或脉冲清洗模式所对应的光强,则表示可以进行相应模式的操作。
具体地,如图4所示,第一操作方法310可以包括:
在框311,产生具有第一预定光强的第一激光脉冲串。在一些实施例中,该步骤可以通过上面的脉冲产生模块10来执行。特别地,该脉冲产生模块10可以包括脉冲激光器和光强调制器,其中可以利用光强调制器来调制脉冲激光器所产生的光强。
在框312,基于第一调制信号对所述第一激光脉冲串进行周期性调制,来获得经调制的第一激光脉冲串。
在一些实施例中,可以通过调制模块20来对所述第一激光脉冲串进行周期性调制,来获得经调制的第一激光脉冲串。在又一些实施例中,所述经调制的第一激光脉冲串的每个周期内至少包含两个激光脉冲。在又一些实施例中,上述第一调制信号可以来自调制模块20自身,或者从外部接收。在又一些实施例中,第一调制信号的调制频率需要小于激光脉冲重频的四分之一,以保证所述经调制的第一激光脉冲串的每个周期内至少包含两个激光脉冲。此外,第一调制信号的调制频率还需要大于前面描述的第一检测器和第二检测器的采样频率,以保证信号采样的完整性以及可靠性。
在框313,至少使用起偏器对经调制的第一激光脉冲串进行起偏处理,并将经过起偏处理的所述经调制的第一激光脉冲串入射至样品。作为示例,该步骤可以在包括上述起偏器的入射模块30中执行。
相应地,在框314,至少使用检偏器对从所述样品反射或衍射的光信号进行检偏处理,以获得经处理的光信号。作为示例,该步骤可以在包括上述检偏器的反射模块40中执行。
取决于椭偏量测装置100的不同椭偏构型,可以在入射模块30和反射模块40中进行不同的配置。例如,该不同的椭偏构型可以包括但不限于:PCRSA、PSCRA或PCRSCRA。
在一些实施例中,所述至少使用起偏器对经调制的第一激光脉冲串进行起偏处理可以包括:使用第一相位补偿器,使经起偏处理的所述经调制的第一激光脉冲串的两个偏振分量之间产生相位延迟,并且使所述起偏器和所述第一相位补偿器之一在第一检测器检测时旋转。
在又一些实施例中,所述至少使用检偏器对从所述样品反射或衍射的光信号进行检偏处理可以包括:使用第二相位补偿器,使所述光信号的两个偏振分量之间产生相位延迟,并且使所述检偏器和所述第二相位补偿器之一在第一检测器检测时旋转。
随后,在框315,检测所述经处理的光信号并输出相应的第一检测信号。作为示例,该步骤可以通过上述第一检测器50来执行。该第一检测器50可以例如是CCD、CMOS等的传感器。
接着,在框316,基于所述第一调制信号作为参考信号,通过对所述第一检测信号进行锁相放大,来产生经噪声处理的第一检测信号。作为示例,该步骤可以通过上面的锁相放大模块60来执行。可以理解,锁相放大模块60可以有效地去除所检测信号中的高频噪声,从而获得更高信噪比的经噪声处理的第一检测信号。
最后,在框317,。作为示例,该步骤可以例如在上面的控制和处理模块70中的信号采集和处理模块116中执行。上述样品的特性相关的信息包括但不限于:诸如薄膜的厚度、光学常数等。
此外,在基于所述经噪声处理的第一检测信号,获得与所述样品的特性相关的信息一些实施例中,第一操作方法320还可以包括:对所述经过起偏处理的所述经调制的第一激光脉冲串进行分光,以产生参考光;对所述参考光进行检测,以输出第二检测信号;以及基于所述第一调制信号作为参考信号,通过对所述第二检测信号进行锁相放大,来产生经噪声处理的第二检测信号;以及基于所述经噪声处理的第二检测信号,实现对所述经噪声处理的第一检测信号进行校正。
应当理解,上述分光的步骤可以通过上面的分光器来进行;对所述参考光进行检测可以通过上述第二检测器来进行;对所述第二检测信号进行锁相放大的操作可以通过上述锁相放大模块来进行;而对所述经噪声处理的第一检测信号进行校正可以通过上述控制和处理模块中的信号采集与处理模块来进行。
如图5所示,第二操作方法320可以包括:
在框321,产生具有第二预定光强的第二激光脉冲串。
在一些实施例中,该步骤可以通过上面的脉冲产生模块10来产生。特别地,该脉冲产生模块10可以包括脉冲激光器和光强调制器,其中可以利用光强调制器来调制脉冲激光器所产生的光强,以产生具有第二预定光强的第二激光脉冲串。
在框322,使用第二调制信号对所述第二激光脉冲串进行调制,以获得经调制的第二激光脉冲串。
在一些实施例中,该步骤可以通过上面的调制模块20来执行。类似地,第二调制信号可以由上面的调制模块20自身产生,或者从外部接收。
接着,在框333,将所述经调制的所述第二激光脉冲串入射至样品,以对所述样品的表面的空气分子污染层进行清洗。
在一些实施例中,该步骤可以例如通过入射模块30来执行。以这种方式,容易理解,这意味着椭偏量测模式和脉冲冲洗模式两者可以共用入射光路,这使得椭偏量测模式和脉冲冲洗模式两者的切换变得简单,并且使得整个椭偏量测装置的成本得以降低。
以上已经详细地描述了基于脉冲激光的椭偏量测装置以及相关的光操作方法的各个实施例。将会理解,本公开的方案使用了脉冲激光器实现椭偏量测,同时使用了锁相放大模块来实现噪声抑制,这提高了椭偏量测的性能。此外,本公开还使用了精确同步参考光、双通道时钟同步、分光器偏振干扰等技术,这进一步提高了椭偏量测的性能。容易理解,本公开的方案可以容易地满足先进工艺节点的薄膜量测需求。此外,还可以理解,由于使用了脉冲激光器,本装置可以在不需要额外光路的情况下,实现激光清洗的功能,并且系统方便简单。
此外,还已经详细地描述本公开的基于脉冲激光的椭偏量测方法或光操作方法的流程。将会理解,上面描述的流程仅仅是示例。尽管说明书中以特定的顺序描述了方法的步骤,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果,相反,描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
虽然已经在附图和前述描述中详细说明和描述了本发明,但这些说明和描述应被认为是说明性的或示例性的而不是限制性的;本发明不限于所公开的实施例。本领域技术人员在实践所请求保护的发明中,通过研究附图、公开和所附权利要求可以理解并且实践所公开的实施例的其它变体。
在权利要求中,词语“包括”并不排除其它元件,并且不定冠词“一”或“一个”不排除多个。单个元件或其它单元可以满足在权利要求中阐述的多个项目的功能。仅在互不相同的实施例或从属权利要求中记载某些特征的仅有事实,并不意味着不能有利地使用这些特征的组合。在不脱离本申请的精神和范围的情况下,本申请的保护范围涵盖在各个实施例或从属权利要求中记载的各个特征任何可能组合。
此外,在权利要求中的任何参考标记不应被理解为限制本发明的范围。
Claims (21)
1.一种基于脉冲激光的椭偏量测装置,其特征在于,所述椭偏量测装置被配置为能够操作选择地在椭偏量测模式下工作,所述椭偏量测装置包括:
脉冲产生模块(10),其适于在所述椭偏量测模式下产生具有第一预定光强的第一激光脉冲串;
调制模块(20),其被配置成接收所述第一激光脉冲串,并且基于第一调制信号对所述第一激光脉冲串的周期性调制,以获得经调制的第一激光脉冲串;
入射模块(30),其至少包括起偏器(105),并且被配置用于将至少经过起偏处理的所述经调制的第一激光脉冲串入射至样品;
反射模块(40),其至少包括检偏器(111),并且被配置用于至少对从所述样品反射或衍射的光信号进行检偏处理,以获得经处理的光信号;
第一检测器(50),其被布置在所述反射模块(40)的下游,以便检测所述经处理的光信号并输出相应的第一检测信号;
锁相放大模块(60),其被配置成接收所述第一检测信号,并且基于所述第一调制信号作为参考信号,以通过对所述第一检测信号的锁相放大,来产生经噪声处理的第一检测信号;以及
控制和处理模块(70),其被配置成基于所述经噪声处理的第一检测信号,获得与所述样品的特性相关的信息。
2.根据权利要求1所述的椭偏量测装置,其特征在于,所述椭偏量测装置还被配置为能够操作选择地在脉冲清洗模式工作;
其中所述脉冲产生模块(10)适于在所述脉冲清洗模式下产生具有第二预定光强的第二激光脉冲串,
其中所述第二激光脉冲串被布置成经由所述调制模块(20)、所述入射模块(30)而入射至所述样品,以便对所述样品的表面的空气分子污染层进行清洗。
3.根据权利要求2所述的椭偏量测装置,其特征在于,所述脉冲产生模块(10)包括脉冲激光器(101)和光强控制器(102),
其中所述光强控制器(102)被布置成能够操作选择地对脉冲激光器(101)所产生的激光脉冲串的光强进行控制,以产生具有所述第一预定光强的所述第一激光脉冲串或具有所述第二预定光强的所述第二激光脉冲串。
4.根据权利要求3所述的椭偏量测装置,其特征在于,在所述脉冲清洗模式下,所述调制模块(20)还被配置成基于第二调制信号对所述第二激光脉冲串进行调制,以获得经调制的第二激光脉冲串,所述经调制的第二激光脉冲串经由所述入射模块(30)而入射至所述样品,以便对所述样品的表面的空气分子污染层进行清洗。
5.根据权利要求4所述的椭偏量测装置,其特征在于,
所述第一调制信号是周期性的方波信号,所述第二调制信号是单个方波信号。
6.根据权利要求4所述的椭偏量测装置,其特征在于,所述光强控制器(102)由从以下各项中选择:
一组安装在可切换结构上的中性滤光片组;
一组安装在可连续变换位置的连续变化中性滤光片组;
起偏器与λ/2波片的组合,其中所述起偏器与所述λ/2波片之一是可旋转的;和
电光调制器与起偏器的组合。
7.根据权利要求6所述的椭偏量测装置,其特征在于,所述调制模块(20)由从以下各项中选择:
电光调制器以及起偏器的组合;和
斩波器。
8.根据权利要求7所述的椭偏量测装置,其中所述调制频率小于脉冲激光重频的四分之一。
9.根据权利要求6所述的椭偏量测装置,其特征在于,所述入射模块(30)还包括分光器(106),以用于从入射到样品的光束中分出参考光;
所述椭偏量测装置还包括第二检测器(114),所述第二检测器适于检测参考光,并输出第二检测信号。
10.根据权利要求9所述的椭偏量测装置,其特征在于,所述锁相放大模块(60)还配置成接收所述第二检测信号,并且基于所述第一调制信号作为参考信号,以实现对所述第二检测信号的噪声处理,并输出经噪声处理的第二检测信号。
11.根据权利要求10所述的椭偏量测装置,其特征在于,所述控制和处理模块(70)还被配置成:基于所述经噪声处理的第二检测信号,对所述经噪声处理的第一检测信号进行校正。
12.根据权利要求9-11中任一项所述的椭偏量测装置,其特征在于,所述第一调制信号的频率大于所述第一探测器和所述第二探测器的信号采集频率。
13.根据权利要求4所述的椭偏量测装置,其特征在于,所述入射模块(30)和所述反射模块(40)中的至少一者还包括相位补偿器,所述相位补偿器被布置用于在相应光束的偏振分量之间产生相位延迟。
14.根据权利要求13所述的椭偏量测装置,其特征在于,其中所述起偏器(105)、所述检偏器(111)和所述相位补偿器中的至少一者是可操作旋转地。
15.根据权利要求14所述的椭偏量测装置,其特征在于,所述控制和处理模块(70)还被配置为对所述起偏器(105)、所述检偏器(111)和所述相位补偿器中的至少一者的旋转进行控制。
16.一种基于脉冲激光的光操作方法,其特征在于,所述光操作方法包括在椭偏量测模式下的第一操作方法,所述第一操作方法包括:
产生具有第一预定光强的第一激光脉冲串;
基于第一调制信号对所述第一激光脉冲串进行周期性调制,以获得经调制的第一激光脉冲串;
至少使用起偏器对经调制的第一激光脉冲串进行起偏处理,并将经过起偏处理的所述经调制的第一激光脉冲串入射至样品;
至少使用检偏器对从所述样品反射或衍射的光信号进行检偏处理,以获得经处理的光信号;
检测所述经处理的光信号并输出相应的第一检测信号;
基于所述第一调制信号作为参考信号,通过对所述第一检测信号的锁相放大,来产生经噪声处理的第一检测信号;以及
基于所述经噪声处理的第一检测信号,获得与所述样品的特性相关的信息。
17.根据权利要求16所述的方法,其特征在于,所述光操作方法还包括在脉冲清洗模式下的第二操作方法,其中所述第二操作方法包括:
产生具有第二预定光强的第二激光脉冲串;
使用第二调制信号对所述第二激光脉冲串进行调制,以获得经调制的第二激光脉冲串;
将所述经调制的所述第二激光脉冲串入射至样品,以对所述样品的表面的空气分子污染层进行清洗。
18.根据权利要求17所述的方法,其特征在于,还包括:操作地选择所述椭偏量测模式和所述脉冲清洗模式两者中的一者。
19.根据权利要求18所述的方法,其特征在于,操作地选择所述椭偏量测模式和所述脉冲清洗模式两者中的一者包括:
调节光强控制器,以控制从脉冲激光器产生的激光脉冲串的光强。
20.根据权利要求17所述的方法,其特征在于,还包括:
对所述经过起偏处理的所述经调制的第一激光脉冲串进行分光,以产生参考光;
对所述参考光进行检测,以输出第二检测信号;以及
基于所述第一调制信号作为参考信号,通过对所述第二检测信号的锁相放大,来产生经噪声处理的第二检测信号;以及
基于所述经噪声处理的第二检测信号,实现对所述经噪声处理的第一检测信号进行校正。
21.根据权利要求18所述的方法,其特征在于,
所述至少使用起偏器对经调制的第一激光脉冲串进行起偏处理包括:使用第一相位补偿器,使经起偏处理的所述经调制的第一激光脉冲串的两个偏振分量之间产生相位延迟,并且使所述起偏器和所述第一相位补偿器之一在第一检测器检测时旋转;或
所述至少使用检偏器对从所述样品反射或衍射的光信号进行检偏处理包括:使用第二相位补偿器,使所述光信号的两个偏振分量之间产生相位延迟,并且使所述检偏器和所述第二相位补偿器之一在第一检测器检测时旋转。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211590013.XA CN115597503B (zh) | 2022-12-12 | 2022-12-12 | 基于脉冲激光的椭偏量测装置及相关的光操作方法 |
PCT/CN2023/086277 WO2024124751A1 (zh) | 2022-12-12 | 2023-04-04 | 基于脉冲激光的椭偏量测装置及相关的光操作方法 |
TW112117179A TWI855675B (zh) | 2022-12-12 | 2023-05-09 | 基於脈衝雷射的橢偏量測裝置及相關的光操作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211590013.XA CN115597503B (zh) | 2022-12-12 | 2022-12-12 | 基于脉冲激光的椭偏量测装置及相关的光操作方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115597503A true CN115597503A (zh) | 2023-01-13 |
CN115597503B CN115597503B (zh) | 2023-03-28 |
Family
ID=84851916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211590013.XA Active CN115597503B (zh) | 2022-12-12 | 2022-12-12 | 基于脉冲激光的椭偏量测装置及相关的光操作方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115597503B (zh) |
WO (1) | WO2024124751A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024124751A1 (zh) * | 2022-12-12 | 2024-06-20 | 睿励科学仪器(上海)有限公司 | 基于脉冲激光的椭偏量测装置及相关的光操作方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004070365A1 (en) * | 2003-02-03 | 2004-08-19 | Beaglehole Instruments Ltd | Method of performing optical measurement on a sample |
US20040189993A1 (en) * | 2003-03-31 | 2004-09-30 | Martin Ebert | System for performing ellipsometry using an auxiliary pump beam to reduce effective illumination spot size |
US7110113B1 (en) * | 2002-11-13 | 2006-09-19 | Kla-Tencor Technologies Corporation | Film measurement with interleaved laser cleaning |
US20130021609A1 (en) * | 2011-07-21 | 2013-01-24 | National Cheng Kung University | Modulated ellipsometer for the determination of the properties of optical materials |
CN105241820A (zh) * | 2015-10-13 | 2016-01-13 | 中北大学 | 一种弹光调制和电光调制级联的相位调制型椭偏仪 |
CN108801930A (zh) * | 2018-05-30 | 2018-11-13 | 华中科技大学 | 一种高时间分辨率的穆勒矩阵椭偏测量装置与方法 |
CN109115690A (zh) * | 2018-09-07 | 2019-01-01 | 中国人民解放军国防科技大学 | 实时偏振敏感的太赫兹时域椭偏仪及光学常数测量方法 |
US20190353584A1 (en) * | 2018-05-16 | 2019-11-21 | Agency For Science, Technology And Research | Differential Polarisation Imaging and Imaging Precision Ellipsometry |
CN113237551A (zh) * | 2021-04-30 | 2021-08-10 | 暨南大学 | 基于光学时间拉伸的斯托克斯矢量测量系统及方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7006222B2 (en) * | 2003-01-08 | 2006-02-28 | Kla-Tencor Technologies Corporation | Concurrent measurement and cleaning of thin films on silicon-on-insulator (SOI) |
US7369234B2 (en) * | 2003-02-03 | 2008-05-06 | Rudolph Technologies, Inc. | Method of performing optical measurement on a sample |
US20070171420A1 (en) * | 2005-12-22 | 2007-07-26 | Stmicroelectronics Sa | Pulsed ellipsometer device |
CN101231238A (zh) * | 2007-01-23 | 2008-07-30 | 中国科学院力学研究所 | 一种用于椭偏测量中的光强调节方法和装置 |
CN114427834A (zh) * | 2021-12-21 | 2022-05-03 | 睿励科学仪器(上海)有限公司 | 一种基于同步参考光校正的椭偏测量系统 |
CN115112028A (zh) * | 2022-08-10 | 2022-09-27 | 上海市计量测试技术研究院 | 一种基于激光椭偏系统的薄膜厚度测量装置及测量方法 |
CN115597503B (zh) * | 2022-12-12 | 2023-03-28 | 睿励科学仪器(上海)有限公司 | 基于脉冲激光的椭偏量测装置及相关的光操作方法 |
-
2022
- 2022-12-12 CN CN202211590013.XA patent/CN115597503B/zh active Active
-
2023
- 2023-04-04 WO PCT/CN2023/086277 patent/WO2024124751A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7110113B1 (en) * | 2002-11-13 | 2006-09-19 | Kla-Tencor Technologies Corporation | Film measurement with interleaved laser cleaning |
WO2004070365A1 (en) * | 2003-02-03 | 2004-08-19 | Beaglehole Instruments Ltd | Method of performing optical measurement on a sample |
US20040189993A1 (en) * | 2003-03-31 | 2004-09-30 | Martin Ebert | System for performing ellipsometry using an auxiliary pump beam to reduce effective illumination spot size |
US20130021609A1 (en) * | 2011-07-21 | 2013-01-24 | National Cheng Kung University | Modulated ellipsometer for the determination of the properties of optical materials |
CN105241820A (zh) * | 2015-10-13 | 2016-01-13 | 中北大学 | 一种弹光调制和电光调制级联的相位调制型椭偏仪 |
US20190353584A1 (en) * | 2018-05-16 | 2019-11-21 | Agency For Science, Technology And Research | Differential Polarisation Imaging and Imaging Precision Ellipsometry |
CN108801930A (zh) * | 2018-05-30 | 2018-11-13 | 华中科技大学 | 一种高时间分辨率的穆勒矩阵椭偏测量装置与方法 |
CN109115690A (zh) * | 2018-09-07 | 2019-01-01 | 中国人民解放军国防科技大学 | 实时偏振敏感的太赫兹时域椭偏仪及光学常数测量方法 |
CN113237551A (zh) * | 2021-04-30 | 2021-08-10 | 暨南大学 | 基于光学时间拉伸的斯托克斯矢量测量系统及方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024124751A1 (zh) * | 2022-12-12 | 2024-06-20 | 睿励科学仪器(上海)有限公司 | 基于脉冲激光的椭偏量测装置及相关的光操作方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2024124751A1 (zh) | 2024-06-20 |
TW202424421A (zh) | 2024-06-16 |
CN115597503B (zh) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5477275B2 (ja) | 塗装膜の検査装置および検査方法 | |
EP2072997B1 (en) | Terahertz wave time-waveform measuring device comprising a pulse front tilting unit | |
US10739251B2 (en) | High temporal resolution Mueller matrix elliptical polarization measuring device and method | |
CN109115690B (zh) | 实时偏振敏感的太赫兹时域椭偏仪及光学常数测量方法 | |
JP6646519B2 (ja) | 全反射分光計測装置及び全反射分光計測方法 | |
JP6397318B2 (ja) | 電場ベクトル検出方法及び電場ベクトル検出装置 | |
CN115597503B (zh) | 基于脉冲激光的椭偏量测装置及相关的光操作方法 | |
WO2020007370A1 (zh) | 一种检测设备及方法 | |
US7903238B2 (en) | Combination of ellipsometry and optical stress generation and detection | |
US8379215B2 (en) | Rotaryfrog systems and methods | |
JP2004205500A (ja) | 複屈折測定装置及び複屈折測定方法 | |
CN113340818B (zh) | 一种自洽验证差分光谱仪及测量方法 | |
CN113155040B (zh) | 一种探测反射光束角度变化的装置、方法及膜厚测量装置 | |
KR101316548B1 (ko) | 광―바이어스 이중변조 및 주파수 합성법을 이용하여 고속 고감도 측정이 가능한 시간 영역 분광기 | |
CN113091624A (zh) | 一种探测反射光变化的装置及方法 | |
CN208847653U (zh) | 一种实时偏振敏感的太赫兹时域椭偏仪 | |
US7295325B2 (en) | Time-resolved measurement technique using radiation pulses | |
TWI855675B (zh) | 基於脈衝雷射的橢偏量測裝置及相關的光操作方法 | |
CN113358604B (zh) | 一种斜入射式光谱型反射差分测量装置及方法 | |
JP2019095249A (ja) | 光学解析装置及び光学解析方法 | |
TWI479141B (zh) | Ellipsometry and polarization modulation ellipsometry method for the | |
RU2008652C1 (ru) | Способ определения эллипсометрических параметров объекта | |
KR102380250B1 (ko) | 반사도 및 입사 광량의 측정 장치 | |
US11300502B1 (en) | Time-wavelength optical sampling systems and methods for determining composition of a sample based on detected pulses of different durations | |
US20240085345A1 (en) | Method and apparatus for separation of the second harmonic generation components, through variation in the input probing laser polarization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |