CN115572411A - 一种荧光性聚苯乙烯微塑料及其制备方法与应用 - Google Patents

一种荧光性聚苯乙烯微塑料及其制备方法与应用 Download PDF

Info

Publication number
CN115572411A
CN115572411A CN202211327974.1A CN202211327974A CN115572411A CN 115572411 A CN115572411 A CN 115572411A CN 202211327974 A CN202211327974 A CN 202211327974A CN 115572411 A CN115572411 A CN 115572411A
Authority
CN
China
Prior art keywords
plastic
micro
polystyrene
fluorescent
fluorescent polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211327974.1A
Other languages
English (en)
Inventor
王超
顾馨悦
谷成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202211327974.1A priority Critical patent/CN115572411A/zh
Publication of CN115572411A publication Critical patent/CN115572411A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种荧光性聚苯乙烯微塑料及其制备方法与应用,属于微塑料改性技术领域。本发明在不使用任何荧光染料的情况下,通过控制一定的温度和老化时间等条件,对聚苯乙烯微塑料进行有效氧加成,得到可用于微塑料生物毒性研究的新型荧光性聚苯乙烯微塑料,并且克服由于荧光染料存在而导致的微塑料表面理化性质改变的问题,具有良好的应用前景。

Description

一种荧光性聚苯乙烯微塑料及其制备方法与应用
技术领域
本发明属于微塑料降解技术领域,更具体地说,涉及一种荧光性聚苯乙烯微塑料及其制备方法与应用。
背景技术
微塑料是指直径小于5mm的塑料颗粒,主要来源于塑料垃圾的降解或破碎过程和直接人工合成的塑料微珠产品。由于塑料的广泛使用,加上塑料本身难以降解,导致塑料污染成为一大难题。近年来,微塑料污染引起了环境研究人员甚至公众的广泛关注(Sussarellu,R.;Suquet,M.;et al.,Oyster reproduction is affected by exposureto polystyrene microplastics.Proceedings of the National Academy of Sciencesof the United States of America 2016,113,(9),2430-2435.)。
据报道,在过去的十年里,微塑料主要沉在海洋里(Browne,M.A.;Crump,P.;etal.Accumulation of microplastic on shorelines woldwide:sources andsinks.Environmental science&technology 2011,45,(21),9175-9179.)。然而,由于地膜覆盖、污水污泥甚至大气颗粒物沉积所产生的大量人为废物,导致各种微塑料在淡水地区和极地等陆地环境中,经常被检测到(Eriksen,M.;Mason,S.;et al.Microplasticpollution in the surface waters of the Laurentian Great Lakes.Marinepollution bulletin 2013,77,(1-2),177-182.Nizzetto,L.;Langaas,S.;etal.Pollution:Do microplastics spill on to farm soils?Nature 2016,537,(7621),488.Li,L.;Luo,Y.;et al.Effective uptake of submicrometre plastics by cropplants via a crack-entry mode.Nature Sustainability 2020,3.)。微塑料广泛分布于各种环境基质(如水、土壤和空气)中,不可避免地会被不同营养水平的动物甚至植物吸收(Rosenkranz,P.;Chaudhry,Q.;et al.A comparison of nanoparticle and fineparticle uptake by Daphnia magna.Environmental Toxicology and Chemistry2009,28,(10),2142-2149.Chua,E.M.;Shimeta,J.;et al.Assimilation of PolybrominatedDiphenyl Ethers from Microplastics by the Marine Amphipod,AllorchestesCompressa.Environmental Science&Technology 2014,48,(14),8127-8134.)。微塑料一旦被摄入和吸收,动物的摄食活性、存活率和生殖力都会受到明显的抑制,且总是伴随着炎症反应(Besseling,E.;Wegner,A.;et al.Effects of Microplastic on Fitness andPCB Bioaccumulation by the Lugworm Arenicola marina(L.).EnvironmentalScience&Technology 2013,47,(1),593-600.Cole,M.;Lindeque,P.;et al.The Impactof Polystyrene Microplastics on Feeding,Function and Fecundity in the MarineCopepod Calanus helgolandicus.Environmental Science&Technology 2015,49,(2),1130-1137.)。此外,微塑料表现出更强的威胁,因为它能够通过生物屏障,穿透组织,在器官中积累,从而破坏生物的行为和代谢(Mattsson,K.;Adolfsson,K.;etal.Translocation of40nm diameter nanowires through the intestinal epitheliumof Daphnia magna.Nanotoxicology2016,10,(8),1160-1167.Lu,Y.;Zhang,Y.;etal.Uptake and Accumulation of Polystyrene Microplastics in Zebrafish(Daniorerio)and Toxic Effects in Liver.Environmental Science&Technology 2016,50,(7),4054-4060.)。
为了研究生物对微塑料的吸收和转移机制,通常使用荧光染料标记的微塑料。例如,Lu等人利用4-氯-7-硝基苯并呋嗪标记的微塑料,确定了微塑料在斑马鱼体内的吸收和组织积累(Lu,Y.;Zhang,Y.;et al.Uptake and Accumulation of PolystyreneMicroplastics in Zebrafish(Danio rerio)and Toxic Effects inLiver.Environmental Science&Technology 2016,50,(7),4054-4060.)。Jin等也使用了类似的荧光微塑料,研究微塑料颗粒在小鼠肠道内的转移及其对肠道黏液分泌和屏障功能的影响(Jin,Y.;Lu,L.;et al.Impacts of polystyrene microplastic on the gutbarrier,microbiota and metabolism of mice.Science of The Total Environment2019,649,308-317.)。又例如,申请号201710545637.2,申请日为2017年7月6日提交的中国发明专利申请公开了一种制备颗粒状和薄片状荧光标记微塑料的方法,所述方法将塑料与染料混合,通过密炼工艺将塑料进行荧光标记、压片、粉碎、分散后过滤筛分,分别得到不同粒径范围内的颗粒状和薄片状的荧光标记微塑料,并用于各类微塑料的生态环境风险研究。
虽然用荧光染料标记的微塑料得到了广泛的应用,但是,通过这种添加荧光染料、附着外源分子的方式来实现荧光标记微塑料合成,不可避免地会改变微塑料表面的理化性质。因此,为了更好地进行微塑料生物毒性研究,迫切需要开发一种新型的荧光微塑料制备方法。
发明内容
1.要解决的问题
针对现有合成技术中存在的荧光微塑料容易发生表面理化性质改变的问题,本发明提供一种荧光性聚苯乙烯微塑料及其制备方法与应用。本发明在不使用任何荧光染料的情况下,采用加热老化的方式对聚苯乙烯微塑料进行有效氧加成,并且控制加热老化条件,得到可用于微塑料生物毒性研究的新型荧光性聚苯乙烯微塑料,有效解决了现有荧光标记微塑料合成需要添加荧光染料,从而导致微塑料表面理化性质改变的问题。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
本发明的一种制备荧光性聚苯乙烯微塑料的方法,包括将聚苯乙烯颗粒平铺形成聚苯乙烯颗粒层,而后对所述聚苯乙烯颗粒层加热,进行热老化反应,反应后得到荧光性聚苯乙烯微塑料。
优选地,所述聚苯乙烯颗粒的粒径为100~200nm,并且所述聚苯乙烯颗粒层的厚度为1.5~2mm。
优选地,所述热老化反应的反应温度为45~65℃,反应时间为48小时~30天。
更优选地,所述热老化反应的反应时间为15天。
优选地,在热老化反应过程中,对聚苯乙烯颗粒进行翻面处理,翻面处理的间隔时间为每8个小时进行一次。
优选地,本发明的一种制备荧光性聚苯乙烯微塑料的方法,具体制备过程为:将聚苯乙烯颗粒平铺在玻璃培养皿上,形成聚苯乙烯颗粒层;而后将铺有聚苯乙烯颗粒层的玻璃培养皿置于热氧老化箱内,加热进行热老化反应,在热老化反应过程中,对聚苯乙烯颗粒进行翻面处理,翻面处理的间隔时间为每8个小时进行一次,反应后得到荧光性聚苯乙烯微塑料;其中所述翻面处理的具体步骤为:摇晃玻璃培养皿,将玻璃培养皿上的聚苯乙烯颗粒倒入无尘称量纸内,而后倒回玻璃培养皿内,重新平铺至形成聚苯乙烯颗粒层。
本发明的一种荧光性聚苯乙烯微塑料,所述荧光性聚苯乙烯微塑料通过上述制备荧光性聚苯乙烯微塑料的方法制备得到,所述荧光性聚苯乙烯微塑料的密度为1.04~1.06g/cm3
本发明的荧光性聚苯乙烯微塑料在微塑料生物毒性中的应用,其中,所述应用包括将受试生物置于培养液中进行培养,而后将出生一天内的受试生物新生儿进行饥饿处理,同时暴露于根据权利要求6所述的荧光性聚苯乙烯微塑料中进行毒性试验,基于荧光性聚苯乙烯微塑料的荧光性检测受试生物新生儿的存活率和繁殖率;其中,在毒性试验过程中保持振荡,所述荧光性聚苯乙烯微塑料呈悬浮状态。
优选地,所述受试生物是大型溞,并且所述培养液包含222m g L-1CaCl2、60mg L- 1MgSO4、65mg L-1NaHCO3和6mg L-1KCl。
优选地,所述荧光性聚苯乙烯微塑料为0.001~1000mg L-1的荧光性聚苯乙烯微塑料悬浮液。
优选地,所述受试生物新生儿暴露于所述荧光性聚苯乙烯微塑料的时间为70~75小时。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的一种制备荧光性聚苯乙烯微塑料的方法,在一定加热老化条件下对聚苯乙烯(PS)微塑料进行老化,有效降解PS微塑料,并且可以同时实现PS微塑料的荧光性,整个制备过程中不投加任何外源荧光分子,有效避免由于荧光染料存在而导致的微塑料表面理化性质改变的问题;
(2)本发明的一种制备荧光性聚苯乙烯微塑料的方法,在微塑料老化过程中控制聚苯乙烯颗粒层的厚度并进行有规律间隔翻面处理,有效实现微塑料的荧光性。
(3)本发明的一种荧光性聚苯乙烯微塑料,制备得到后可直接应用于微塑料的生物毒性分析,有利于了解微塑料在食物链中的转移机制,在生物毒理学领域具有良好的应用前景。
附图说明
图1为本发明的一种制备荧光性聚苯乙烯微塑料的方法的原理示意图;
图2为本发明的荧光性聚苯乙烯微塑料制备方法中,PS微塑料加热老化前PSvirgin(a)和加热老化后PSaltered(b)的电子扫描电镜图像;
图3为本发明的荧光性聚苯乙烯微塑料制备方法中,PS微塑料加热老化前PSvirgin(a)和加热老化后PSaltered(b)的X射线光电子能谱图;(c)为PS微塑料加热老化前后的傅里叶红外光谱图;
图4为本发明的荧光性聚苯乙烯微塑料制备方法中,PSvirgin(a)和不同老化时间PSaltered(b)(c)(d)的荧光激发发射矩阵光谱图;
图5为本发明的荧光性聚苯乙烯微塑料的毒性试验中,大型溞肠道内荧光性聚苯乙烯微塑料的分布情况。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
如图1所示,本发明的一种新型荧光性聚苯乙烯微塑料的合成方法,包括将一定纯度(AR分析纯)的0.2g PS微塑料颗粒放置于直径为10cm的圆形玻璃皿中,平铺得到薄薄一层的PS微塑料颗粒,将装有聚苯乙烯微塑料颗粒的玻璃培养皿放置在热氧老化箱内,将温度设置到60℃,聚苯乙烯微塑料老化的时间段初步设置为0、5、15、30天。
每个老化时间段都放置有3个样品,以进行重复性实验,热老化反应样品的老化温度通常介于聚苯乙烯材料的使用温度与玻璃化转变温度95℃之间,反应温度设为60℃,并且热反应过程中保持对聚苯乙烯微塑料进行相同时间间隔的翻面,通常间隔时间为每8个小时进行一次,热老化反应后得到荧光性聚苯乙烯微塑料。
采用本发明的一种新型荧光性聚苯乙烯微塑料进行毒性试验,对微塑料生物毒性进行研究。研究微塑料生物毒性的方法的具体步骤为:
S10、将受试生物大型溞置于150mL烧杯中,使用含有222mg L-1CaCl2、60mg L- 1MgSO4、65mg L-1NaHCO3和6mg L-1KCl的培养液进行培养,并且加入0.1M NaOH和0.1M HCl调整培养液pH为7.8±0.2,以绿藻为日食料,培养密度为10mL/只,每天喂食,隔天换水;
S20、为了证实毒性结果的准确性,只在单性生殖三代以上的幼年蚤被用于毒性暴露。将10只6~24小时大型溞新生儿置于150mL烧杯中进行饥饿处理,而后向烧杯中加入100mL的浓度为0.001~1000mg L-1的本发明所述的新型荧光性聚苯乙烯微塑料悬浮液,在恒温培养箱20℃~25℃下进行毒性试验,并且进行光照14h,黑暗处理10h;
S30、毒性测试期间保持振荡培养来获得良好的悬浮的荧光性聚苯乙烯微塑料,72h后记录大型溞新生儿的死亡率,根据聚苯乙烯微塑料的荧光性检测其存活率和繁殖率。
需要说明的是,大型溞新生儿的不移动被定义为毒理学终点死亡率,表现为从烧杯底部轻轻搅拌测试悬浮液时,大水蚤在15秒内不能恢复运动。
实施例1
本实施例的一种新型荧光性聚苯乙烯微塑料的合成方法,其具体步骤为:
(1)制备带有荧光性聚苯乙烯微塑料颗粒,0.2g颗粒平铺于玻璃培养皿里,整体放在热氧箱里加热老化;
(2)将PS微塑料颗粒放置于401B型热氧老化箱中进行热老化反应,反应温度维持在60℃,在恒温周期30天内分相同时间间隔翻面,使PS微塑料颗粒变化均匀。
使用扫描电子显微镜(FEG Quanta 250,FEI Co.,Netherland)对本实施例的新型荧光性聚苯乙烯微塑料进行表征,观察PSvirgin和PSaltered的外观结构,在图像收集之前,通过溅射涂布器在微塑料表面涂上一层一层的黄金,以优化光学对比度。SEM图像如图2(a)和图2(b)所示,PSvirgin微塑料表面平整光滑,而PSaltered表面变得粗糙。
实施例2
本实施例的基本内容同实施例1,不同之处在于:
使用傅里叶变换红外光谱仪(FTIR,Bruker tensor 27)对新型荧光性聚苯乙烯微塑料进行表征。如图3(c)所示,PSvirgin样品中2952,1429,1335,1253,963,838,696和619cm-1处的红外吸收峰分别为C-H拉伸,-CH-变形,-CH2-变形,-CH-摇摆,反式-CH摆动,-CH2-摇摆。热老化后,PSaltered在1720和3350cm-1附近出现了三个新的吸收带,分别对应C=O和O-H拉伸模式。
为了进一步了解NP颗粒的表面变化,采用FTIR和X射线光电子能谱技术(XPS,PHI5000Versaprobe)研究官能团的变化。热老化可以引发脱氢反应,在此期间,塑料表面发生烯烃和多烯结构的形成。如图3(c)所示,热老化后,在1720和3350cm-1附近出现新的吸收带,出现在PSaltered的FTIR光谱中,分别对应于C=O和O-H拉伸模式。在PSaltered的FTIR光谱中观察到多烯结构的增强可以忽略不计,这可能是由于它们与苯环的C=C重叠。在图3(a)和3(b)中,PSaltered的XPS结果证实了多烯结构的产生,如291.5eV处π-π*震荡特征的增强峰值信号所证明的。基于聚合物结构、光谱表征和报告的降解途径,荧光发色团如在图1中所示,[-(C6H6)C=CH-]是指热老化PS-NPS的荧光单元。
实施例4
本实施例的基本内容同实施例1,不同之处在于:
采用配备了激发和发射单色仪的荧光分光光度计(Fluorolog,Johin Yvon SPEX,New Jersey)来记录PSvirgin和PSaltered微塑料的荧光光谱。三维荧光光谱图进一步证实了热老化PS微塑料的荧光特性。
如图4(a)-4(d)所示,PSvirgin和PSaltered的最大发射强度依赖于激发波长。图4(a)中PSvirgin的最大发射强度发生在最短的激发波长(即300nm),而图4(d)中热改变后的PS微塑料的最大发射强度在激发波长480nm处增加。这表明热老化过程可以延长PS微塑料的激发波长超过180nm。
图4(b)、4(c)、4(d)分别表示不同加热老化时间的PS微塑料的三维荧光光谱,时间依次为5d、15d、30d。老化时间越长,PS微塑料表现出荧光强度越强。
热老化后的PS微塑料在激发波长400~500nm处比未老化的PS微塑料粒子表现出更强的荧光。由于荧光显微镜下绿色通道和红色通道的激发波长分别在420-485nm和460-550nm范围内,热老化PS微塑料在不附着外部荧光分子的情况下,表现出作为荧光标记微塑料的巨大潜力。
实施例5
本实施例采用实施例1合成得到的新型荧光性聚苯乙烯微塑料进行毒性试验,其具体步骤为:将受试生物大型溞置于150mL烧杯中培养,使用含有222mg L-1CaCl2、60mg L- 1MgSO4、65mg L-1NaHCO3和6mg L-1KCl的培养液进行培养,并且加入0.1M NaOH和0.1M HCl调整培养液pH为7.8±0.2。以绿藻为日食料。培养密度为10mL/只,每天喂食,隔天换水,毒性试验在恒温培养箱20~25℃中进行,每天光照14h,黑暗处理10h。将出生24h以内的大型溞进行饥饿处理,持续暴露于1mg L-1荧光性聚苯乙烯微塑料中72h,根据聚苯乙烯微塑料的荧光性检测其存活率和繁殖率。
如图5所示,暴露过程中,运用荧光显微镜察肠道微塑料的分布情况,图中展示了荧光性聚苯乙烯微塑料在大型溞体内从摄入到分布到整个消化道,最后被排泄,验证了荧光性聚苯乙烯微塑料荧光自示踪的效果。
以上示意性的对本发明及实施方式进行描述,该描述没有限制性,所用的数据也只是本发明的实施方式之一,实际的数据组合并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本方面创造宗旨的情况下,不经创造性的设计出与该技术方案相似的实施方式及实施例,均属于本发明的保护范围。

Claims (10)

1.一种制备荧光性聚苯乙烯微塑料的方法,包括将聚苯乙烯颗粒平铺形成聚苯乙烯颗粒层,而后对所述聚苯乙烯颗粒层加热,进行热老化反应,反应后得到荧光性聚苯乙烯微塑料。
2.根据权利要求1所述的一种制备荧光性聚苯乙烯微塑料的方法,其特征在于:所述聚苯乙烯颗粒的粒径为100~200nm,并且所述聚苯乙烯颗粒层的厚度为1.5~2mm。
3.根据权利要求1所述的一种制备荧光性聚苯乙烯微塑料的方法,其特征在于:所述热老化反应的反应温度为45~65℃,反应时间为48小时~30天。
4.根据权利要求1-3中任一项所述的一种制备荧光性聚苯乙烯微塑料的方法,其特征在于:在热老化反应过程中,对聚苯乙烯颗粒进行翻面处理,翻面处理的间隔时间为每8个小时进行一次。
5.根据权利要求4所述的一种制备荧光性聚苯乙烯微塑料的方法,其特征在于,具体制备过程为:将聚苯乙烯颗粒平铺在玻璃培养皿上,形成聚苯乙烯颗粒层;而后将铺有聚苯乙烯颗粒层的玻璃培养皿置于热氧老化箱内,加热进行热老化反应,在热老化反应过程中,对聚苯乙烯颗粒进行翻面处理,翻面处理的间隔时间为每8个小时进行一次,反应后得到荧光性聚苯乙烯微塑料;其中所述翻面处理的具体步骤为:摇晃玻璃培养皿,将玻璃培养皿上的聚苯乙烯颗粒倒入无尘称量纸内,而后倒回玻璃培养皿内,重新平铺至形成聚苯乙烯颗粒层。
6.根据权利要求1-5中任一项所述的一种制备荧光性聚苯乙烯微塑料的方法制备得到的荧光性聚苯乙烯微塑料,所述荧光性聚苯乙烯微塑料的密度为1.04~1.06g/cm3
7.根据权利要求6所述的荧光性聚苯乙烯微塑料在微塑料生物毒性中的应用,其特征在于,所述应用包括将受试生物置于培养液中进行培养,而后将出生一天内的受试生物新生儿进行饥饿处理,同时暴露于根据权利要求6所述的荧光性聚苯乙烯微塑料中进行毒性试验,基于荧光性聚苯乙烯微塑料的荧光性检测受试生物新生儿的存活率和繁殖率;其中,在毒性试验过程中所述荧光性聚苯乙烯微塑料呈悬浮状态。
8.根据权利要求7所述的荧光性聚苯乙烯微塑料在微塑料生物毒性中的应用,其特征在于:所述受试生物是大型溞,并且所述培养液包含222m g L-1CaCl2、60mg L-1MgSO4、65mgL-1NaHCO3和6mg L-1KCl。
9.根据权利要求7所述的荧光性聚苯乙烯微塑料在微塑料生物毒性中的应用,其特征在于:所述荧光性聚苯乙烯微塑料为0.001~1000mg L-1的荧光性聚苯乙烯微塑料悬浮液。
10.根据权利要求7所述的荧光性聚苯乙烯微塑料在微塑料生物毒性中的应用,其特征在于:所述受试生物新生儿暴露于所述荧光性聚苯乙烯微塑料的时间为70~75小时。
CN202211327974.1A 2022-10-27 2022-10-27 一种荧光性聚苯乙烯微塑料及其制备方法与应用 Pending CN115572411A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211327974.1A CN115572411A (zh) 2022-10-27 2022-10-27 一种荧光性聚苯乙烯微塑料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211327974.1A CN115572411A (zh) 2022-10-27 2022-10-27 一种荧光性聚苯乙烯微塑料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115572411A true CN115572411A (zh) 2023-01-06

Family

ID=84587812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211327974.1A Pending CN115572411A (zh) 2022-10-27 2022-10-27 一种荧光性聚苯乙烯微塑料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115572411A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210806A1 (en) * 2006-08-22 2010-08-19 Gaetano Guerra New nanoporous crystalline form of syndiotactic polystirene, processes for its preparation and related molecular-complex crystalline forms
JP2012107922A (ja) * 2010-11-16 2012-06-07 Konica Minolta Medical & Graphic Inc 生物学的診断用蛍光微粒子および生物学的診断材料
CN103172941A (zh) * 2011-12-26 2013-06-26 苏州新波生物技术有限公司 聚苯乙烯荧光纳米颗粒及其制备和应用
US20210088449A1 (en) * 2018-02-22 2021-03-25 Council Of Scientific And Industrial Research Fluorescent polymer for visual solid and aqueous state sensing of volatile organic compounds
CN114292422A (zh) * 2021-12-30 2022-04-08 南京大学 一种新型荧光性聚氯乙烯微塑料及其合成方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210806A1 (en) * 2006-08-22 2010-08-19 Gaetano Guerra New nanoporous crystalline form of syndiotactic polystirene, processes for its preparation and related molecular-complex crystalline forms
JP2012107922A (ja) * 2010-11-16 2012-06-07 Konica Minolta Medical & Graphic Inc 生物学的診断用蛍光微粒子および生物学的診断材料
CN103172941A (zh) * 2011-12-26 2013-06-26 苏州新波生物技术有限公司 聚苯乙烯荧光纳米颗粒及其制备和应用
US20210088449A1 (en) * 2018-02-22 2021-03-25 Council Of Scientific And Industrial Research Fluorescent polymer for visual solid and aqueous state sensing of volatile organic compounds
CN114292422A (zh) * 2021-12-30 2022-04-08 南京大学 一种新型荧光性聚氯乙烯微塑料及其合成方法与应用

Similar Documents

Publication Publication Date Title
Chen et al. Is color a matter of concern during microplastic exposure to Scenedesmus obliquus and Daphnia magna?
Zhu et al. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms
Schiavo et al. Testing ZnO nanoparticle ecotoxicity: linking time variable exposure to effects on different marine model organisms
Zhang et al. A novel cadmium-containing wastewater treatment method: Bio-immobilization by microalgae cell and their mechanism
CN1176949C (zh) 几丁质珠、聚氨基葡糖珠、这些珠的制造方法和这些珠制得的载体以及微孢子虫孢子的制造方法
Doroudi et al. The effect of chemical cues on settlement behaviour of blacklip pearl oyster (Pinctada margaritifera) larvae
Zhang et al. Eco-friendly intracellular microalgae synthesis of fluorescent CdSe QDs as a sensitive nanoprobe for determination of imatinib
Hansen et al. Bacteria associated with a marine planktonic copepod in culture. II. Degradation of fecal pellets produced on a diatom, a nanoflagellate or a dinoflagellate diet
Parolini et al. Interactive effects between sinking polyethylene terephthalate (PET) microplastics deriving from water bottles and a benthic grazer
CN105154474B (zh) 红色纳米硒的生物制备方法
Matsunaga et al. The role of terrestrial humic substances on the shift of kelp community to crustose coralline algae community of the southern Hokkaido Island in the Japan Sea
Li et al. Preparation and antibacterial performance testing of Ag nanoparticles embedded biological materials
Pariyarath et al. Phycoremediation of tetracycline via bio-Fenton process using diatoms
CN104136625B (zh) 使用阳离子型有机粘土快速且有效收获绿藻类的方法
Hausmann et al. Advances in the production of sponge biomass Aplysina aerophoba—A model sponge for ex situ sponge biomass production
Liu et al. Insight into cyanobacterial preservation in shallow marine environments from experimental simulation of cyanobacteria-clay co-aggregation
Hansen et al. Physiological effects of the detergent linear alkylbenzene sulphonate on blue mussel larvae (Mytilus edulis) in laboratory and mesocosm experiments
Vona et al. Data from two different culture conditions of Thalassiosira weissflogii diatom and from cleaning procedures for obtaining monodisperse nanostructured biosilica
CN114292422B (zh) 一种荧光性聚氯乙烯微塑料及其合成方法与应用
Fukao et al. Marine mucilage in Ariake Sound, Japan, is composed of transparent exopolymer particles produced by the diatom Coscinodiscus granii
Movafeghi et al. Toxicity of cadmium selenide nanoparticles on the green microalga Chlorella vulgaris: inducing antioxidative defense response
CN115572411A (zh) 一种荧光性聚苯乙烯微塑料及其制备方法与应用
Jafari et al. Rice husk based MCM-41 nanoparticles loaded with Ag2S nanostructures by a green and room temperature method and its antimicrobial property
Osinga et al. Growth of the sponge Pseudosuberites (aff.) andrewsi in a closed system
Coelho et al. Routes of TBT uptake in the clam Ruditapes decussatus. II. Food as vector of TBT uptake

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination