CN115566938B - 新型风机启动前高速逆风转动状态下的转子预定位方法 - Google Patents

新型风机启动前高速逆风转动状态下的转子预定位方法 Download PDF

Info

Publication number
CN115566938B
CN115566938B CN202211478597.1A CN202211478597A CN115566938B CN 115566938 B CN115566938 B CN 115566938B CN 202211478597 A CN202211478597 A CN 202211478597A CN 115566938 B CN115566938 B CN 115566938B
Authority
CN
China
Prior art keywords
motor
speed
coil winding
rotor assembly
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211478597.1A
Other languages
English (en)
Other versions
CN115566938A (zh
Inventor
杨飞
王敏
罗松
李超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Broad Ocean Motor Co Ltd
Original Assignee
Zhongshan Broad Ocean Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Broad Ocean Motor Co Ltd filed Critical Zhongshan Broad Ocean Motor Co Ltd
Priority to CN202211478597.1A priority Critical patent/CN115566938B/zh
Publication of CN115566938A publication Critical patent/CN115566938A/zh
Application granted granted Critical
Publication of CN115566938B publication Critical patent/CN115566938B/zh
Priority to US18/221,869 priority patent/US20240178777A1/en
Priority to CA3210117A priority patent/CA3210117A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/008Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/22Arrangements for starting in a selected direction of rotation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了新型风机启动前高速逆风转动状态下的转子预定位方法,主要特点:使所有下桥臂电子开关管开通,实现短路刹车降低的电机转速,检测定子各相线圈绕组的相电流,计算得定子各相线圈绕组的反电动势,根据各相线圈绕组的反电动势计算得转子组件的位置角
Figure DEST_PATH_IMAGE001
;判断各相线圈绕组的相电流是否均小于预设定的國值电流I0,如果否,则返回短路刹车;如果是,则计算拉停转子组件的电阻转矩,再拉停转子组件,实现转子组件的启动前的预定位。它无需等待外界风力变小后才能再启动,给用户带来使用便利;即使外界风力又突变为强逆风,但这时转子组件处于制动刹车状态,仍可以拉停转子组件,本发明的应对策略更加完善,启动成功率更高,稳定性更加好。

Description

新型风机启动前高速逆风转动状态下的转子预定位方法
技术领域
本发明涉及新型风机启动前高速逆风转动状态下的转子预定位方法。
背景技术
目前,空调外机的风机因受外界风力影响,启动前处于静止、顺风运行或者逆风转动状态等三种状态,当风机处于静止、顺风运行这两种状态,则启动成功率较高,但当风机处于逆风转动状态时,如果还用原来的启动方法,启动成功率会大幅降低。
有鉴于此,公开号为:CN103956940B、专利名称为:空调室外机中直流电机的逆风启动方法或者装置,该专利利用母线电流、母线电压和反电动势的采样等3个参数来控制电机的逆风启动,方案比较笼统,难以实施。
专利号为:CN107317526B、专利名称是:无传感永磁同步电机的启动方法以及无传感永磁同步电机,该专利介绍了一种通过将所有下桥臂电子开关管开通,而此时的定子线圈绕组处于短路状态,从而产生制动转矩,实现短路刹车功能,电机顺风逆风转动的速度逐渐降低,然后再启动的方案;但该方案存在如下问题:它所应对的工况为开环拖动过程中,整个过程是在开环拖动启动过程,而直接进行短路刹车功能,外界出现强逆风导致的开环切闭环不收敛,进而导致启动失败。
以上专利只是针对电机转子处于低转速的逆风启动,当电机在恶劣环境,对电机转子处于高转速的逆风状态,例如达到800转/分,这时候,一般的逆风启动的方法启动成功率会大幅降低。
风机未启动前处于高速逆风运行(被外界风吹起),为了提高启动成功率,现有方案一般等待外界风力变小,电机由高速逆风运行转变为低速逆风状态(低速逆风一般在300转/分以下转速),然后再启动,但该方案仍存在的问题或缺陷:(1)还需等待外界风力变小后才能再启动,否则无法无法正常启动,导致给用户带来使用的不便。(2)在低速逆风启动过程中,然后外界风力又突变为强逆风,使风机又处于于高速逆风运行,则仍然会导致启动失败,不稳定。
发明内容
本发明的目的是提供新型风机启动前高速逆风转动状态下的转子预定位方法,解决现有技术中风机未启动前处于高速逆风运行状态,需等待外界风力变小后才能再启动,导致给用户带来使用的不便,且在低速逆风启动过程中,可能外界风力又突变为强逆风,使风机又处于于高速逆风运行,导致启动失败,启动不稳定的技术问题。
本发明是通过如下技术方案来实现:
新型风机启动前高速逆风转动状态下的转子预定位方法,新型风机包括永磁同步电机和风轮,永磁同步电机包括电机本体和电机控制器,电机本体包括定子组件和永磁转子组件,电机控制器包括微处理器和逆变电路,逆变电路包括多个桥臂,每个桥臂包括上桥臂电子开关管和下桥臂电子开关管,其特征在于:转子预定位方法如下:
步骤一:电机在高速逆风转动状态,微处理器输出信号到逆变电路,使所有上桥臂电子开关管关闭,使所有下桥臂电子开关管开通,进行短路刹车,降低逆风转动的速度;
步骤二:检测定子各相线圈绕组的相电流;
步骤三:根据各相线圈绕组的相电流计算得到定子各相线圈绕组的反电动势;
步骤四:根据各相线圈绕组的反电动势计算得到转子组件的位置角
Figure 712780DEST_PATH_IMAGE001
步骤五:判断各相线圈绕组的相电流是否均小于预设定的國值电流I0;如果否,则返回步骤一;如果是,则进入步骤六:
步骤六:根据得到的转子组件的位置角
Figure 98762DEST_PATH_IMAGE002
计算拉停转子组件的电阻转矩,然后拉 停转子组件,实现转子组件的启动前的预定位。
上述的永磁同步电机是3相永磁同步电机,3相线圈绕组的相电流ia、ib、ic
上述的步骤二中检测定子各相线圈绕组的相电流ia、ib、ic是通过电流传感器或采样电阻获得。
上述步骤三中各相线圈绕组的反电动势计算如下:
Figure 737554DEST_PATH_IMAGE003
上述3相线圈绕组三相相反电动势ea、eb、ec,电机定子绕组电感Ls,电机定子线圈绕组的电阻Rs,ω为电机运行电角频率,j是一个系数。
上述的步骤四中计算转子组件的位置角
Figure 601605DEST_PATH_IMAGE002
如下:
对ea、eb、ec进行clark变换,得到eα、eβ
Figure 258720DEST_PATH_IMAGE004
再由eα、eβ计算反正切得到转子位置角度:
Figure 550024DEST_PATH_IMAGE005
上述步骤六中拉停转子组件的电阻转矩计算如下:
T e=i s×sin(θ is-ω 0*t-θ 0 )×1.5×np×φf
其中dq轴电流矢量为is,电流矢量角为θis,np为电机极对数,φf为永磁体磁链,ω0是电机低速运行的角速度,t是时间。
上述当θis0时,使得在后续半个电周期内持续产生负转矩,从而将低速运行中的转子组件拉停。
上述在步骤六后面增加步骤七:运行风机电机的正常启动程序。
上述所述的风机电机的正常启动程序是给予电机一个初始电流进行开环控制拖动电机,等电机转速到达某个速度值V0再进入闭环控制。
上述的速度值V0是在300转/分-400转/分的范围的取值。
本发明与现有技术相比,具有如下效果:
(1)本发明提供的新型风机启动前高速逆风转动状态下的转子预定位方法,使启动前高速逆风转动状态下的转子组件快速被拉停,然后实现正常启动过程,可以大幅提高电机启动前高速逆风转动状态下的启动成功率,无需等待外界风力变小后才能再启动,给用户带来使用便利;即使外界风力又突变为强逆风,但这时转子组件处于制动刹车状态,只有各相线圈绕组的相电流是否均小于预设定的國值电流I0,才拉停转子组件,本发明的应对策略更加完善,启动成功率更高,稳定性更加好。
(2)本发明采用短路刹车角度估算策略实时估算电机转子位置,待拉停电机后,利用估算到的转子位置进行预定位,可大幅提高预定位成功率,以便后续正常启动运行。
(3)本发明的其它优点在实施例部分展开详细描述。
附图说明
图1是本发明风机电机的立体图;
图2是本发明风机电机的电机控制器的立体图;
图3是本发明风机的结构剖视图;
图4是本发明风机电机的实施电路方框图;
图5是本发明制动刹车状态的等效电路图;
图6是本发明的矢量控制原理方框图;
图7是本发明的拉停转子组件的电阻转矩计算原理示意图;
图8是本发明的控制流程方框图;
图9是本发明运行过程中利用实验手段检测其中一相线圈绕组的电流变化示意图。
具体实施方式
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
见图1、图2、图3所示,本发明的新型风机包括永磁同步电机和风轮3,永磁同步电机包括电机本体1和电机控制器2, 所述的电机本体1包括定子组件12、转子组件13 和机壳组件11,定子组件12包括定子铁芯和卷绕在定子铁芯上的线圈绕组,定子组件12安装在机壳组件11上,转子组件13 套装在定子组件12 的内侧,电机控制器2包括控制盒22和安装在控制盒22 里面的控制线路板21,控制线路板21上都会安装电子元器件。控制线路板21的电路结构如图4所示,包括整流电路、直流母线、逆变电路、微处理器MCU、各相线圈绕组的相电流检测电路和转子位置检测电路。
如图4所示,电机控制器包括交流滤波电路B2、整流电路B3、直流滤波电路B4、直流母线薄膜电容B5、逆变电路B6、微处理器MCU和相电流检测电路,三相电源B1(是交流电源)依次经过交流滤波电路B2、整流电路B3、直流滤波电路B4对直流母线薄膜电容B5进行充电,直流母线薄膜电容B5为逆变电路B6提供高压直流电;相电流检测电路检测流过线圈绕组的相电流并送到到微处理器MCU,微处理器MCU控制逆变电路工作,逆变电路控制定子组件的各相线圈绕组的通断电,永磁同步电机采用FOC磁场定向控制方式;电机本体1是3相电机,电机本体1的定子组件含有3相线圈绕组。逆变电路B6中有3个桥臂,其中上桥臂电子开关管是Q1、Q3和Q5,下桥臂电子开关管是Q2、Q4和Q6,PMSM为永磁同步电机的缩写英文,P1、P2、P3、P4、P5和P6分别为电子开关管Q1、电子开关管Q2、电子开关管Q3、电子开关管Q4、电子开关管Q5和电子开关管Q6的PWM开关信号。
如图8所示,本发明的新型风机启动前高速逆风转动状态下的转子预定位方法,新型风机包括永磁同步电机和风轮,永磁同步电机包括电机本体和电机控制器,电机本体包括定子组件和永磁转子组件,电机控制器包括微处理器和逆变电路,逆变电路包括多个桥臂,每个桥臂包括上桥臂电子开关管和下桥臂电子开关管,其特征在于:转子预定位方法如下:
步骤一:电机在高速逆风转动状态,微处理器输出信号到逆变电路,使所有上桥臂电子开关管关闭,使所有下桥臂电子开关管开通,进行短路刹车,降低逆风转动的速度;
步骤二:检测定子各相线圈绕组的相电流;
步骤三:根据各相线圈绕组的相电流计算得到定子各相线圈绕组的反电动势;
步骤四:根据各相线圈绕组的反电动势计算得到转子组件的位置角
Figure 489161DEST_PATH_IMAGE001
步骤五:判断各相线圈绕组的相电流是否均小于预设定的國值电流I0;如果否,则返回步骤一;如果是,则进入步骤六:
步骤六:根据得到的转子组件的位置角
Figure 953640DEST_PATH_IMAGE002
计算拉停转子组件的电阻转矩,然后拉 停转子组件,实现转子组件的启动前的预定位。
上述步骤一的运行原理是:电机在高速逆风转动状态,永磁转子组件中的永磁体的磁链切割定子组件中的绕组绕组产生定子线圈绕组的反电动势,微处理器输出信号到逆变电路,使所有上桥臂电子开关管关闭,使所有下桥臂电子开关管开通,而此时的定子线圈绕组处于短路状态,从而产生制动转矩,实现短路刹车功能,电机逆风转动的速度逐渐降低;
本发明提供的新型风机启动前高速逆风转动状态下的转子预定位方法,使启动前高速逆风转动状态下的转子组件快速被拉停,然后实现正常启动过程,可以大幅提高电机启动前高速逆风转动状态下的启动成功率,无需等待外界风力变小后才能再启动,给用户带来使用便利;即使外界风力又突变为强逆风,但这时转子组件处于制动刹车状态,只有各相线圈绕组的相电流是否均小于预设定的國值电流I0,才拉停转子组件,本发明的应对策略更加完善,启动成功率更高,工作更稳定可靠。
上述的永磁同步电机是3相永磁同步电机,3相线圈绕组A、B、C的相电流分别为ia、ib、ic
上述的步骤二中检测定子各相线圈绕组的相电流ia、ib、ic是通过电流传感器或采样电阻获得。
由短路刹车状态下的简化电路,以母线电容负极为参考电压,如图5所示,计算得到电机绕组三相相反电动势ea、eb、ec,设电机绕组中性点电压为Un,电机定子绕组电感LS,电机定子绕组RS,ω为电机运行电角频率。可得电压方程组:
Figure 468192DEST_PATH_IMAGE006
Figure 930397DEST_PATH_IMAGE007
可解的Un=0。则可通过短路刹车时的相电流计算得到电机绕组相反电动势表达式, 上述步骤三中各相线圈绕组的反电动势计算如下:
Figure 278202DEST_PATH_IMAGE008
上述3相线圈绕组三相相反电动势ea、eb、ec,电机定子绕组电感Ls,电机定子线圈绕组的电阻Rs,ω为电机运行电角频率,j是一个系数。
上述的步骤四中计算转子组件的位置角
Figure 484055DEST_PATH_IMAGE002
如下:
对ea、eb、ec进行clark变换,得到eα、eβ
Figure 86069DEST_PATH_IMAGE009
再由eα、eβ计算反正切得到转子位置角度:
Figure 984755DEST_PATH_IMAGE010
判断3相线圈绕组的相电流ia、ib、ic是否均小于预设定的國值电流I0,在短路刹车过程中,由于风机一致处于外界逆风吹动叶片状态,所以存在持续的反向负载力矩。最终短路刹车所产生的短路电流,进而产生正向的电磁转矩与反向负载转矩形成平衡,在此平衡态,电机以ω 0转速恒速运行;若短路刹车电流(即三相电流ia、ib、ic)大于电流阈值I0,说明电机仍以较高转速运行,回到步骤一继续进行短路刹车,若短路刹车电流(即三相电流ia、ib、ic)均小于电流阈值I0,则说明电机达到预定位启动条件。进入步骤六;
转子预定位采用的是以某一方向的电流对转子组件进行定位,使得转子组件固定在该位置,具体实现如图6所示,控制dq轴电流以及电流矢量角度。如图7所示,设预定位电流矢量为i s,角度为θ is,实际的电机转子位置为θ e,则电磁转矩:
T e=i s×sin(θ is-θ e)×1.5×np×φf
其中np为电机极对数,φf为永磁体磁链。
由于此时电机仍然以低速ω 0在运行,所以θ e=ω 0*t+θ 0 ,其中θ 0 为步骤四中计算得到的转子位置角,带入电磁转矩公式
T e=i s×sin(θ is-ω 0*t-θ 0 )×1.5×np×φf
从力矩表达式可以分析得出,当θ is=θ 0 时,可使得在后续半个电周期内持续产生负转矩,从而具有最大可能性将低速运行中的电机转子拉停,所以在步骤六中最优的电流预定位角度是θ 0 ,可使预定位拉停电机成功率最大化。
上述在步骤六后面增加步骤七:运行风机电机的正常启动程序。
上述所述的风机电机的正常启动程序是给予电机一个初始电流进行开环控制拖动电机,等电机转速到达某个速度值V0再进入闭环控制。
上述的速度值V0是在300转/分-400转/分的范围的取值。
经过实验、模拟、使用本发明的技术方案证明是可行,具体结果为见图9所示,在低压直流BLDC电机驱动的风轮项目中,在启动前逆风800转/分状态可实现稳定启动,图9中为电机的A相电流检测图,在经过短路刹车后,电机运行在稳定低速,然后进行预定位,最后实现正常启动过程。倘若没有本发明的技术方案的控制策略,会导致启动前处于逆风800转/分状态的风机电机的启动失败。
以上实施例为本发明的较佳实施方式,但本发明的实施方式不限于此,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.新型风机启动前高速逆风转动状态下的转子预定位方法,新型风机包括永磁同步电机和风轮,永磁同步电机包括电机本体和电机控制器,电机本体包括定子组件和永磁转子组件,电机控制器包括微处理器和逆变电路,逆变电路包括多个桥臂,每个桥臂包括上桥臂电子开关管和下桥臂电子开关管,其特征在于:转子预定位方法如下:
步骤一:电机在高速逆风转动状态,微处理器输出信号到逆变电路,使所有上桥臂电子开关管关闭,使所有下桥臂电子开关管开通,进行短路刹车,降低逆风转动的速度;
步骤二:检测定子各相线圈绕组的相电流;
步骤三:根据各相线圈绕组的相电流计算得到定子各相线圈绕组的反电动势;
步骤四:根据各相线圈绕组的反电动势计算得到转子组件的位置角
Figure 686804DEST_PATH_IMAGE002
步骤五:判断各相线圈绕组的相电流是否均小于预设定的阈 值电流I0;如果否,则返回步骤一;如果是,则进入步骤六:
步骤六:根据得到的转子组件的位置角
Figure 149010DEST_PATH_IMAGE004
计算拉停转子组件的电阻转矩,然后拉停转子组件,实现转子组件的启动前的预定位。
2.根据权利要求1所述的新型风机启动前高速逆风转动状态下的转子预定位方法,其特征在于:永磁同步电机是3相永磁同步电机,3相线圈绕组的相电流ia、ib、ic
3.根据权利要求2所述的新型风机启动前高速逆风转动状态下的转子预定位方法,其特征在于:步骤二中检测定子各相线圈绕组的相电流ia、ib、ic是通过电流传感器或采样电阻获得。
4.根据权利要求3所述的新型风机启动前高速逆风转动状态下的转子预定位方法,其特征在于:步骤三中各相线圈绕组的反电动势计算如下:
Figure DEST_PATH_IMAGE005
上述3相线圈绕组三相相反电动势ea、eb、ec,电机定子绕组电感Ls,电机定子线圈绕组的电阻Rs,ω为电机运行电角频率,j是一个系数。
5.根据权利要求4所述的新型风机启动前高速逆风转动状态下的转子预定位方法,其特征在于:步骤四中计算转子组件的位置角
Figure 231235DEST_PATH_IMAGE004
如下:
对ea、eb、ec进行clark变换,得到eα、eβ
Figure 686356DEST_PATH_IMAGE006
再由eα、eβ计算反正切得到转子位置角度:
Figure DEST_PATH_IMAGE007
6.根据权利要求5所述的新型风机启动前高速逆风转动状态下的转子预定位方法,其特征在于:步骤六中拉停转子组件的电阻转矩计算如下:
T e=i s×sin(θ is-ω 0*t-θ 0 )×1.5×np×φf
其中dq轴电流矢量为is,电流矢量角为θis,np为电机极对数,φf为永磁体磁链,ω0是电机低速运行的角速度,t是时间。
7.根据权利要求6所述的新型风机启动前高速逆风转动状态下的转子预定位方法,其特征在于:当θis0时,使得在后续半个电周期内持续产生负转矩,从而将低速运行中的转子组件拉停。
8.根据权利要求7所述的新型风机启动前高速逆风转动状态下的转子预定位方法,其特征在于:在步骤六后面增加步骤七:运行风机电机的正常启动程序。
9.根据权利要求8所述的新型风机启动前高速逆风转动状态下的转子预定位方法,其特征在于:所述的风机电机的正常启动程序是给予电机一个初始电流进行开环控制拖动电机,等电机转速到达某个速度值V0再进入闭环控制。
10.根据权利要求8所述的新型风机启动前高速逆风转动状态下的转子预定位方法,其特征在于:速度值V0是在300转/分-400转/分的范围的取值。
CN202211478597.1A 2022-11-24 2022-11-24 新型风机启动前高速逆风转动状态下的转子预定位方法 Active CN115566938B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211478597.1A CN115566938B (zh) 2022-11-24 2022-11-24 新型风机启动前高速逆风转动状态下的转子预定位方法
US18/221,869 US20240178777A1 (en) 2022-11-24 2023-07-13 Method for pre-positioning rotor of outdoor fan in high-speed counter-rotation state before operation
CA3210117A CA3210117A1 (en) 2022-11-24 2023-08-24 Method for pre-positioning rotor of outdoor fan in high-speed counter-rotation state before operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211478597.1A CN115566938B (zh) 2022-11-24 2022-11-24 新型风机启动前高速逆风转动状态下的转子预定位方法

Publications (2)

Publication Number Publication Date
CN115566938A CN115566938A (zh) 2023-01-03
CN115566938B true CN115566938B (zh) 2023-03-24

Family

ID=84770674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211478597.1A Active CN115566938B (zh) 2022-11-24 2022-11-24 新型风机启动前高速逆风转动状态下的转子预定位方法

Country Status (3)

Country Link
US (1) US20240178777A1 (zh)
CN (1) CN115566938B (zh)
CA (1) CA3210117A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882763B (zh) * 2023-03-03 2023-05-05 中山大洋电机股份有限公司 永磁同步电机输出电压自适应的转子预定位控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07337080A (ja) * 1994-06-10 1995-12-22 Hitachi Ltd 空気調和機
JP2005057993A (ja) * 2003-07-23 2005-03-03 Matsushita Electric Ind Co Ltd モータ駆動装置及びそれを用いたディスク装置
CN108418480A (zh) * 2018-03-27 2018-08-17 苏州半唐电子有限公司 一种无传感永磁同步电机的启动方法
CN111740656A (zh) * 2020-06-17 2020-10-02 深圳和而泰智能控制股份有限公司 一种电机控制方法及相关装置
CN113572397A (zh) * 2021-06-30 2021-10-29 广东华芯微特集成电路有限公司 一种燃气强排风风机逆风快速启动方法、系统及电子设备
CN113765442A (zh) * 2021-08-23 2021-12-07 广东工业大学 一种提高永磁同步电机风机逆风起动能力的方法
CN114244223A (zh) * 2021-11-17 2022-03-25 国网上海市电力公司 计及矢量分区筛选的三电平电摩电机预测控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07337080A (ja) * 1994-06-10 1995-12-22 Hitachi Ltd 空気調和機
JP2005057993A (ja) * 2003-07-23 2005-03-03 Matsushita Electric Ind Co Ltd モータ駆動装置及びそれを用いたディスク装置
CN108418480A (zh) * 2018-03-27 2018-08-17 苏州半唐电子有限公司 一种无传感永磁同步电机的启动方法
CN111740656A (zh) * 2020-06-17 2020-10-02 深圳和而泰智能控制股份有限公司 一种电机控制方法及相关装置
CN113572397A (zh) * 2021-06-30 2021-10-29 广东华芯微特集成电路有限公司 一种燃气强排风风机逆风快速启动方法、系统及电子设备
CN113765442A (zh) * 2021-08-23 2021-12-07 广东工业大学 一种提高永磁同步电机风机逆风起动能力的方法
CN114244223A (zh) * 2021-11-17 2022-03-25 国网上海市电力公司 计及矢量分区筛选的三电平电摩电机预测控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
空调室外直流风机的无位置传感器启动方法;张国柱;《日用电器》;20160731(第7期);第61-65页 *

Also Published As

Publication number Publication date
CN115566938A (zh) 2023-01-03
CA3210117A1 (en) 2024-05-24
US20240178777A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
WO2020228201A1 (zh) 无位置传感器矢量控制永磁同步电机平滑启动控制方法
CN115566938B (zh) 新型风机启动前高速逆风转动状态下的转子预定位方法
CN104868808B (zh) 两相励磁机的航空三级式无刷发电系统起动励磁控制方法
CN107241046A (zh) 一种无位置传感器的bldc电机的启动方法
CN105763121B (zh) 面向变负载超高速磨削的同步电主轴加加速强磁控制方法
CN109861622B (zh) 共直流母线开绕组永磁同步电机系统的低开关频率控制策略
CN202696533U (zh) 一种变速永磁交流发电机系统
CN108847796B (zh) 三级式无刷同步电机磁阻式起动控制方法及系统
CN106411195A (zh) 无刷直流电机电流变化率积分等值控制方法
CN110995109B (zh) 一种交流调磁型记忆电机直接转矩磁链控制方法
JP3788925B2 (ja) 永久磁石型同期発電機を用いた風力発電装置とその始動方法
Kiran et al. Sensorless speed estimation and control of brushless doubly-fed reluctance machine drive using model reference adaptive system
CN113285646B (zh) 一种不使用外接制动单元的驱动器制动控制方法
CN110212823B (zh) 母线电压控制方法、以及风机母线控制电路和空调器
CN106998166A (zh) 一种永磁同步电机的软启动方法及控制装置
Li et al. A novel control strategy of hybrid excited flux-switching machine in both constant torque and power range
Kumar et al. Sensorless speed control of brushless doubly-fed reluctance machine for pump storage and wind power application
Kumar et al. Q-mras based speed sensorless vector controlled synchronous reluctance motor drive
CN207835373U (zh) 一种自动调节发动机转速的控制系统
JP2524575B2 (ja) 可変速揚水発電装置における可変速発電電動機の制動装置
CN113472256B (zh) 航空三级式起动发电系统励磁控制器对转子位置估算方法
Naxin et al. Optimal efficiency control of field-oriented induction motor drive and rotor resistance adaptive identifying
CN117856665B (zh) 一种三电平逆变器永磁同步电机飞车启动方法及装置
CN113719973B (zh) 空调器逆风控制方法、装置、空调器及可读存储介质
CN110995085B (zh) 考虑不可控发电故障的变磁通记忆电机多步调磁控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant