CN115544319A - 工业互联网大数据平台及数据处理方法 - Google Patents

工业互联网大数据平台及数据处理方法 Download PDF

Info

Publication number
CN115544319A
CN115544319A CN202211486600.4A CN202211486600A CN115544319A CN 115544319 A CN115544319 A CN 115544319A CN 202211486600 A CN202211486600 A CN 202211486600A CN 115544319 A CN115544319 A CN 115544319A
Authority
CN
China
Prior art keywords
industrial
data
processed
equipment
acquiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211486600.4A
Other languages
English (en)
Other versions
CN115544319B (zh
Inventor
赵文政
刘林平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Zheta Technology Co ltd
Shanghai Information Technology Co ltd
Original Assignee
Shanghai Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Information Technology Co ltd filed Critical Shanghai Information Technology Co ltd
Priority to CN202211486600.4A priority Critical patent/CN115544319B/zh
Publication of CN115544319A publication Critical patent/CN115544319A/zh
Application granted granted Critical
Publication of CN115544319B publication Critical patent/CN115544319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/901Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/253Grammatical analysis; Style critique

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种工业互联网大数据平台及数据处理方法,所述平台包括:数据采集模块、日志获取模块、设备确认模块以及数据获取模块,所述方法是在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件;若所述待处理工业数据满足所述预设条件,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集;获取关键事件规则标识,通过所述关键事件规则标识在所述工业设备日志集中对所有工业设备信息进行匹配,以获得目标设备;根据所述目标设备对应的目标设备标识在所述待处理工业数据中进行匹配以获得有效工业数据。本发明实现了在工业生产过程中有效提炼数据的技术效果。

Description

工业互联网大数据平台及数据处理方法
技术领域
本发明涉及工业互联网领域,尤其涉及工业互联网大数据平台及数据处理方法。
背景技术
随着随着科技的发展,制造业在发展过程中逐渐由满足产品和服务功能的阶段转向个 性化定制的阶段,生产模式也由单一的管道型转变为生态型。在这种大环境下,工业制造与工业互联网的联系越来越紧密,工业制造正朝着数字化、网络化、自动化和智能化方向发展。 随着工业制造规模的增大,制造生态越来越复杂,工业设备也在生产过程中产生了大量的数据。鉴于企业发展的需要,工业数据中的一部分需要进行提炼和分析。当前对于工业数据的提取往往是通过对每个产生的数据进行分析和提取,这样对企业中的计算机造成了极大的负载。
因此,如何实现在工业生产过程中有效提炼数据进行分析成为了一个亟待解决的技术问题。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明的主要目的在于提供一种工业互联网大数据平台及数据处理方法,旨在解决在工业生产过程中有效提炼数据进行分析的技术问题。
为实现上述目的,本发明提供一种工业互联网大数据平台,所述工业互联网大数据平台包括:数据采集模块、日志获取模块、设备确认模块以及数据获取模块;
所述数据采集模块,用于在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件;
所述日志获取模块,用于若所述待处理工业数据满足所述预设条件,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集;
所述设备确认模块,用于获取关键事件规则标识,通过所述关键事件规则标识在所述工业设备日志集中对所述所有工业设备信息进行匹配,以获得目标设备;
所述数据获取模块,用于根据所述目标设备对应的目标设备标识在所述待处理工业数据中进行匹配以获得有效工业数据。
可选的,所述数据采集模块还用于获取预设周期规则,根据所述预设周期规则在目标接口采集待处理工业数据;
将所述待处理工业数据存入预设存储空间中;
在所述预设存储空间中根据预设阈值判断所述待处理工业数据是否有效。
可选的,所述日志获取模块还用于获取所述待处理工业数据中所有数据来源接口信息;
根据所述数据来源接口信息确定对应的待匹配工业设备;
根据所述待匹配工业设备确定工业设备信息;
获取所述工业设备信息中的工业设备日志集。
可选的,所述设备确认模块还用于获取关键事件规则标识,根据所述关键事件规则标识获取匹配条件;
在所述工业设备日志集中根据所述匹配条件确定第二工业设备集合;
在所述第二工业设备集合中获取所有工业设备对应的事件信息;
根据所述关键事件规则标识和所述事件信息在所述第二工业设备集合中获取目标设备。
可选的,所述设备确认模块还用于获取所述关键事件规则标识对应的关键事件,确定所述关键事件对应的预设匹配属性集合;
将所述事件信息在所述预设匹配属性集合中进行匹配;
根据匹配结果确定目标设备。
可选的,所述设备确认模块,还用于获取所述关键事件规则标识对应的规则语法,对所述规则语法进行词法分析,根据词法分析结果将存在词法错误的规则语法删除,得到待处理规则语法;
对所述待处理规则语法进行语法分析,根据语法分析结果将存在语法错误的规则语法删除得到目标语法规则;
根据所述目标语法规则获取对应的关键事件,确定关键事件对应的预设匹配属性集合。
可选的,所述数据获取模块还用于获取所述待处理工业数据中的标识信息,建立所述标识信息与工业设备的关系映射表;
获取预设冗余设备标识信息,并在所述关系映射表中删除所述冗余设备标识信息以更新关系映射表;
在所述关系映射表中结合所述目标设备对应的目标设备标识进行匹配以获得有效工业数据。
进一步地,为实现上述目的,本发明还提供一种数据处理方法,所述数据处理方法应用于工业互联网大数据平台,所述方法包括:
在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件;
若所述待处理工业数据满足所述预设条件,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集;
获取关键事件规则标识,通过所述关键事件规则标识在所述工业设备日志集中对所述所有工业设备信息进行匹配,以获得目标设备;
根据所述目标设备对应的目标设备标识在所述待处理工业数据中进行匹配以获得有效工业数据。
可选地,所述在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件包括:
获取预设周期规则,根据所述预设周期规则在目标接口采集待处理工业数据;
将所述待处理工业数据存入预设存储空间中;
在所述预设存储空间中根据预设阈值判断所述所述待处理工业数据是否有效。
可选地,所述根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集包括:
获取所述待处理工业数据中所有数据来源接口信息;
根据所述数据来源接口信息确定对应的待匹配工业设备;
根据所述待匹配工业设备确定工业设备信息;
获取所述工业设备信息中的工业设备日志集。
本发明在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件;若所述待处理工业数据满足所述预设条件,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集;获取关键事件规则标识,通过所述关键事件规则标识在所述工业设备日志集中对所述所有工业设备信息进行匹配,以获得目标设备;根据所述目标设备对应的目标设备标识在所述待处理工业数据中进行匹配以获得有效工业数据;在满足预设条件的情况下根据待处理工业数据获取待处理工业设备信息并确定工业设备日志集,通过关键事件规则标识在工业设备日志集中获取目标设备,根据目标设备以匹配有效工业数据,实现了在工业生产过程中有效提炼数据的技术效果。
附图说明
图1为本发明工业互联网大数据平台第一实施例的结构框图;
图2是本发明数据处理方法第一实施例的流程示意图;
图3是本发明数据处理方法第二实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
参照图1,图1为本发明工业互联网大数据平台第一实施例的结构框图。所述工业互联网大数据平台包括:数据采集模块10、日志获取模块20、设备确认模块30以及数据获取模块40。
所述数据采集模块10,用于在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件。
需要说明的是,本实施例的执行主体可以是具有数据处理、网络通信以及程序运行功能的计算服务设备,例如智能手机、平板电脑、个人电脑等,也可以是其他能够实现上述功能的设备,本实施例对此不作限制。本实施例及下述各实施例将以数据处理设备为例进行具体说明。
需要说明的是,所述预设周期是指在根据实际需要所预先配置的预设周期,所述预设周期可以是20小时之内也可以是1小时之内,本实施例在此不做限制。
可以理解的是,所述待处理工业数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品全生命周期各个环节所产生的各类数据及相关技术和应用的总称。其以产品数据为核心,极大延展了传统工业数据范围,同时还包括工业大数据相关技术和应用。其主要来源可分为以下三类:第一类是生产经营相关业务数据。第二类是设备物联数据。第三类是外部数据。
需要说明的是,预设条件是指为了判断所述待处理工业数据是否满足接下来执行的操作而设定的条件。
在具体实施中,在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件是通过获取预设周期,在预设周期的时刻起点一直道时刻终点采集待处理工业数据,在获取到待处理工业数据之后根据预设条件对所述待处理工业数据进行判断。
进一步地,为了增加所述待处理工业数据判断的准确性,所述数据采集模块还用于获取预设周期规则,根据所述预设周期规则在目标接口采集待处理工业数据;将所述待处理工业数据存入预设存储空间中;在所述预设存储空间中根据预设阈值判断所述所述待处理工业数据是否有效。
需要说明的是,工业大数据除具有一般大数据的特征(数据量大、多样、快速和价值密度低)外,还具有时序性、强关联性、准确性、闭环性等特征。
(1)数据容量大 (Volume):数据的大小决定所考虑的数据的价值和潜在的信息;工业数据体量比较大,大量机器设备的高频数据和互联网数据持续涌入,大型工业企业的数据集将达到PB级甚至EB级别。
(2)多样 (Variety):指数据类型的多样性和来源广泛;工业数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等各个环节;并且结构复杂,既有结构化和半结构化的传感数据,也有非结构化数据。
(3)快速 (Velocity):指获得和处理数据的速度。工业数据处理速度需求多样,生产现场级要求时限时间分析达到毫秒级,管理与决策应用需要支持交互式或批量数据分析。
(4)价值密度低 (Value):工业大数据更强调用户价值驱动和数据本身的可用性,包括:提升创新能力和生产经营效率,及促进个性化定制、服务化转型等智能制造新模式变革。
(5)时序性 (Sequence):工业大数据具有较强的时序性,如订单、设备状态数据等。
(6)强关联性 (Strong-Relevance):一方面,产品生命周期同一阶段的数据具有强关联性,如产品零部件组成、工况、设备状态、维修情况、零部件补充采购等;另一方面,产品生命周期的研发设计、生产、服务等不同环节的数据之间需要进行关联。
(7)准确性 (Accuracy):主要指数据的真实性、完整性和可靠性,更加关注数据质量,以及处理、分析技术和方法的可靠性。对数据分析的置信度要求较高,仅依靠统计相关性分析不足以支撑故障诊断、预测预警等工业应用,需要将物理模型与数据模型结合,挖掘因果关系。
(8)闭环性 (Closed-loop):包括产品全生命周期横向过程中数据链条的封闭和关联,以及智能制造纵向数据采集和处理过程中,需要支撑状态感知、分析、反馈、控制等闭环场景下的动态持续调整和优化。由于以上特征,工业大数据作为大数据的一个应用行业,在具有广阔应用前景的同时,对于传统的数据管理技术与数据分析技术也提出了很大的挑战。
所述日志获取模块20,用于若所述待处理工业数据满足所述预设条件,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集。
需要说明的是,待处理工业设备信息即产生所述待处理工业数据对应的设备信息,所述待处理工业设备信息可以是在生产制造过程中的管理终端设备,也可以是生产车间中的组装机器,本实施例在此不做限制。
可以理解的是,所述工业设备日志集即工业设备对应的工作日志集合,在每一工作日志中,记录了对应设备的工作任务输出,同时包括工作时间、工作对象、具体工作方式等。
在具体实施中,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集是通过通过所述待处理工业数据获取对应的待处理工业设备信息,在工业设备信息中获取每一工业设备对应的工作日志以生成工作日志集合。
进一步地,为了在获取目标设备时排除不符合条件的相关设备,所述设备确认模块还用于获取关键事件规则标识,根据所述关键事件规则标识获取匹配条件;在所述工业设备日志集中根据所述匹配条件确定第二工业设备集合;在所述第二工业设备集合中获取所有工业设备对应的事件信息;根据所述关键事件规则标识和所述事件信息在所述第二工业设备集合中获取目标设备。
需要说明的是,所述关键事件规则标识是指工业设备的工作日志集中的数据携带的标识,在工作日志集进行处理关键事件时,相对应的工业数据就会被赋予关键事件规则标识。
可以理解的是,所述第二工业设备集合的范围比所述工业设备信息更小,是为了在所述工业设备信息中进一步缩小判定范围生成的集合。
需要说明的是,匹配条件是指对应的关键事件是否经过处理的条件。
可以理解的是,事件信息是指在工作日志集中具体的工作内容,通过获取工作日志集可以对应获取所有时间段内的事件信息内容。
需要说明的是,目标设备是指在本实施例中对应产生有效工业数据的工业设备,通过在所有设备信息中获取目标设备可以实现获取有效工业数据。
在具体实施中,获取关键事件规则标识,根据所述关键事件规则标识获取匹配条件;在所述工业设备日志集中根据所述匹配条件确定第二工业设备集合;在所述第二工业设备集合中获取所有工业设备对应的事件信息;根据所述关键事件规则标识和所述事件信息在所述第二工业设备集合中获取目标设备是通过获取关键事件规则标识以在其中获取对应的匹配条件,在所述工业设备日志集中将满足匹配条件的设备组成第二工业设备集合;在第二工业设备集合中将所有工业设备对应的事件信息进行获取。
进一步地,为了在确定工业设备日志集的过程中更加准确,所述日志获取模块还用于获取所述待处理工业数据中所有数据来源接口信息;根据所述数据来源接口信息确定对应的待匹配工业设备;根据所述待匹配工业设备确定工业设备信息;获取所述工业设备信息中的工业设备日志集。
所述设备确认模块30,用于获取关键事件规则标识,通过所述关键事件规则标识在所述工业设备日志集中对所述所有工业设备信息进行匹配,以获得目标设备。
所述数据获取模块40,用于根据所述目标设备对应的目标设备标识在所述待处理工业数据中进行匹配以获得有效工业数据。
进一步地,为了排除在获取有效工业数据的过程中出现的冗余数据,所述数据获取模块还用于获取所述待处理工业数据中的标识信息,建立所述标识信息与工业设备的关系映射表;获取预设冗余设备标识信息,并在所述关系映射表中删除所述冗余设备标识信息以更新关系映射表;在所述关系映射表中结合所述目标设备对应的目标设备标识进行匹配以获得有效工业数据。
本实施例在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件;若所述待处理工业数据满足所述预设条件,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集;获取关键事件规则标识,通过所述关键事件规则标识在所述工业设备日志集中对所述所有工业设备信息进行匹配,以获得目标设备;根据所述目标设备对应的目标设备标识在所述待处理工业数据中进行匹配以获得有效工业数据;在满足预设条件的情况下根据待处理工业数据获取待处理工业设备信息并确定工业设备日志集,通过关键事件规则标识在工业设备日志集中获取目标设备,根据目标设备以匹配有效工业数据,实现了在工业生产过程中有效提炼数据的技术效果。
参照图2,本发明工业互联网大数据平台提供一种数据处理方法,图2为本发明数据处理方法第一实施例的流程示意图,所述数据处理方法包括:
步骤S10:在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件。
在具体实施中,获取预设周期规则,根据所述预设周期规则在目标接口采集待处理工业数据;将所述待处理工业数据存入预设存储空间中;在所述预设存储空间中根据预设阈值判断所述所述待处理工业数据是否有效。
步骤S20:若所述待处理工业数据满足所述预设条件,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集。
在具体实施中,获取所述待处理工业数据中所有数据来源接口信息;根据所述数据来源接口信息确定对应的待匹配工业设备;根据所述待匹配工业设备确定工业设备信息;获取所述工业设备信息中的工业设备日志集。
步骤S30:获取关键事件规则标识,通过所述关键事件规则标识在所述工业设备日志集中对所述所有工业设备信息进行匹配,以获得目标设备。
步骤S40:根据所述目标设备对应的目标设备标识在所述待处理工业数据中进行匹配以获得有效工业数据。
在具体实施中,获取所述待处理工业数据中的标识信息,建立所述标识信息与工业设备的关系映射表;获取预设冗余设备标识信息,并在所述关系映射表中删除所述冗余设备标识信息以更新关系映射表;在所述关系映射表中结合所述目标设备对应的目标设备标识进行匹配以获得有效工业数据。
需要说明的是,所述预设冗余设备标识信息是指根据预设冗余设备信息获取的预设冗余设备标识,在制造生产中一些不需要对其数据进行分析的无关设备可以增添冗余设备标识,将其对应产生的数据标记为冗余数据进行忽略或者删除。
本实施例在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件;若所述待处理工业数据满足所述预设条件,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集;获取关键事件规则标识,通过所述关键事件规则标识在所述工业设备日志集中对所述所有工业设备信息进行匹配,以获得目标设备;根据所述目标设备对应的目标设备标识在所述待处理工业数据中进行匹配以获得有效工业数据;在满足预设条件的情况下根据待处理工业数据获取待处理工业设备信息并确定工业设备日志集,通过关键事件规则标识在工业设备日志集中获取目标设备,根据目标设备以匹配有效工业数据,实现了在工业生产过程中有效提炼数据的技术效果。
参考图3,图3为本发明数据处理方法第二实施例的流程示意图。
基于上述实施例,本实施例数据处理方法的所述步骤S30包括:
步骤S301:获取关键事件规则标识,根据所述关键事件规则标识获取匹配条件。
步骤S302:在所述工业设备日志集中根据匹配条件确定第二工业设备集合;
步骤S303:在所述第二工业设备集合中获取所有工业设备对应的事件信息;
步骤S304:根据所述关键事件规则标识和所述事件信息在所述第二工业设备集合中获取目标设备。
在具体实施中,所述根据所述关键事件规则标识和所述事件信息在所述第二工业设备集合中获取目标设备包括:获取所述关键事件规则标识对应的关键事件,确定关键事件对应的预设匹配属性集合;将所述事件信息在所述预设匹配属性集合中进行匹配;根据匹配结果确定目标设备。
在具体实施中,所述获取所述关键事件规则标识对应的关键事件,确定关键事件对应的预设匹配属性集合包括:获取所述关键事件规则标识对应的规则语法,对所述规则语法进行词法分析,根据词法分析结果将存在词法错误的规则语法删除,得到待处理规则语法;对所述待处理规则语法进行语法分析,根据语法分析结果将存在语法错误的规则语法删除得到目标语法规则;根据所述目标语法规则获取对应的关键事件,确定关键事件对应的预设匹配属性集合。
本实施例通过获取关键事件规则标识,根据所述关键事件规则标识获取匹配条件;在所述工业设备日志集中根据匹配条件确定第二工业设备集合;在所述第二工业设备集合中获取所有工业设备对应的事件信息;根据所述关键事件规则标识和所述事件信息在所述第二工业设备集合中获取目标设备;通过根据关键事件规则获取匹配条件,在工业设备日志集中根据匹配条件确定第二工业设备集合,并获取所有工业设备对应的事件信息;根据关键事件规则标识和事件信息在第二工业设备集合中获取目标设备实现了对目标设备精确获取的技术效果。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种工业互联网大数据平台,其特征在于,所述工业互联网大数据平台包括:数据采集模块、日志获取模块、设备确认模块以及数据获取模块;
所述数据采集模块,用于在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件;
所述日志获取模块,用于若所述待处理工业数据满足所述预设条件,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集;
所述设备确认模块,用于获取关键事件规则标识,通过所述关键事件规则标识在所述工业设备日志集中对所有工业设备信息进行匹配,以获得目标设备;
所述数据获取模块,用于根据所述目标设备对应的目标设备标识在所述待处理工业数据中进行匹配以获得有效工业数据。
2.如权利要求1所述的工业互联网大数据平台,其特征在于,所述数据采集模块还用于获取预设周期规则,根据所述预设周期规则在目标接口采集待处理工业数据;
将所述待处理工业数据存入预设存储空间中;
在所述预设存储空间中根据预设阈值判断所述待处理工业数据是否有效。
3.如权利要求1所述的工业互联网大数据平台,其特征在于,所述日志获取模块还用于获取所述待处理工业数据中所有数据来源接口信息;
根据所述数据来源接口信息确定对应的待匹配工业设备;
根据所述待匹配工业设备确定工业设备信息;
获取所述工业设备信息中的工业设备日志集。
4.如权利要求1所述的工业互联网大数据平台,其特征在于,所述设备确认模块还用于获取关键事件规则标识,根据所述关键事件规则标识获取匹配条件;
在所述工业设备日志集中根据所述匹配条件确定第二工业设备集合;
在所述第二工业设备集合中获取所有工业设备对应的事件信息;
根据所述关键事件规则标识和所述事件信息在所述第二工业设备集合中获取目标设备。
5.如权利要求4所述的工业互联网大数据平台,其特征在于,所述设备确认模块还用于获取所述关键事件规则标识对应的关键事件,确定所述关键事件对应的预设匹配属性集合;
将所述事件信息在所述预设匹配属性集合中进行匹配;
根据匹配结果确定目标设备。
6.如权利要求5所述的工业互联网大数据平台,其特征在于,所述设备确认模块,还用于获取所述关键事件规则标识对应的规则语法,对所述规则语法进行词法分析,根据词法分析结果将存在词法错误的规则语法删除,得到待处理规则语法;
对所述待处理规则语法进行语法分析,根据语法分析结果将存在语法错误的规则语法删除得到目标语法规则;
根据所述目标语法规则获取对应的关键事件,确定关键事件对应的预设匹配属性集合。
7.如权利要求1所述的工业互联网大数据平台,其特征在于,所述数据获取模块还用于获取所述待处理工业数据中的标识信息,监理所述标识信息与工业设备的关系映射表;
获取预设冗余设备标识信息,并在所述关系映射表中删除所述冗余设备标识信息以更新关系映射表;
在所述关系映射表中结合所述目标设备对应的目标设备标识进行匹配以获得有效工业数据。
8.一种数据处理方法,其特征在于,所述数据处理方法包括:
在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件;
若所述待处理工业数据满足所述预设条件,根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集;
获取关键事件规则标识,通过所述关键事件规则标识在所述工业设备日志集中对所有工业设备信息进行匹配,以获得目标设备;
根据所述目标设备对应的目标设备标识在所述待处理工业数据中进行匹配以获得有效工业数据。
9.如权利要求8所述的一种数据处理方法,其特征在于,所述在预设周期内采集待处理工业数据,判断所述待处理工业数据是否满足预设条件包括:
获取预设周期规则,根据所述预设周期规则在目标接口采集待处理工业数据;
将所述待处理工业数据存入预设存储空间中;
在所述预设存储空间中根据预设阈值判断所述待处理工业数据是否有效。
10.如权利要求8所述的一种数据处理方法,其特征在于,所述根据所述待处理工业数据获取待处理工业设备信息,并确定工业设备日志集包括:
获取所述待处理工业数据中所有数据来源接口信息;
根据所述数据来源接口信息确定对应的待匹配工业设备;
根据所述待匹配工业设备确定工业设备信息;
获取所述工业设备信息中的工业设备日志集。
CN202211486600.4A 2022-11-25 2022-11-25 工业互联网大数据平台及数据处理方法 Active CN115544319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211486600.4A CN115544319B (zh) 2022-11-25 2022-11-25 工业互联网大数据平台及数据处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211486600.4A CN115544319B (zh) 2022-11-25 2022-11-25 工业互联网大数据平台及数据处理方法

Publications (2)

Publication Number Publication Date
CN115544319A true CN115544319A (zh) 2022-12-30
CN115544319B CN115544319B (zh) 2023-03-14

Family

ID=84719993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211486600.4A Active CN115544319B (zh) 2022-11-25 2022-11-25 工业互联网大数据平台及数据处理方法

Country Status (1)

Country Link
CN (1) CN115544319B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117632937A (zh) * 2023-12-06 2024-03-01 北京开元泰达净化设备有限公司 一种工业互联网大数据平台及数据处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110276457A (zh) * 2019-05-30 2019-09-24 深圳华远云联数据科技有限公司 设备的全生命周期数据处理方法及系统
CN110489391A (zh) * 2019-07-25 2019-11-22 深圳壹账通智能科技有限公司 一种数据处理方法及相关设备
CN110881051A (zh) * 2019-12-24 2020-03-13 深信服科技股份有限公司 安全风险事件处理方法、装置、设备及存储介质
CN113051445A (zh) * 2019-12-27 2021-06-29 北京国双科技有限公司 工业生产数据处理方法、装置、计算机设备和存储介质
WO2021256577A1 (ko) * 2020-06-15 2021-12-23 주식회사시옷 멀티네트워크 디바이스의 보안 진단 방법
CN114691723A (zh) * 2022-03-29 2022-07-01 浙江西图盟数字科技有限公司 工业数据处理方法、装置、设备及介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110276457A (zh) * 2019-05-30 2019-09-24 深圳华远云联数据科技有限公司 设备的全生命周期数据处理方法及系统
CN110489391A (zh) * 2019-07-25 2019-11-22 深圳壹账通智能科技有限公司 一种数据处理方法及相关设备
CN110881051A (zh) * 2019-12-24 2020-03-13 深信服科技股份有限公司 安全风险事件处理方法、装置、设备及存储介质
CN113051445A (zh) * 2019-12-27 2021-06-29 北京国双科技有限公司 工业生产数据处理方法、装置、计算机设备和存储介质
WO2021256577A1 (ko) * 2020-06-15 2021-12-23 주식회사시옷 멀티네트워크 디바이스의 보안 진단 방법
CN114691723A (zh) * 2022-03-29 2022-07-01 浙江西图盟数字科技有限公司 工业数据处理方法、装置、设备及介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117632937A (zh) * 2023-12-06 2024-03-01 北京开元泰达净化设备有限公司 一种工业互联网大数据平台及数据处理方法
CN117632937B (zh) * 2023-12-06 2024-04-30 北京开元泰达净化设备有限公司 一种工业互联网大数据平台及数据处理方法

Also Published As

Publication number Publication date
CN115544319B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN108052394B (zh) 基于sql语句运行时间的资源分配的方法及计算机设备
CN102117306B (zh) Etl数据处理过程的监控方法及其系统
US8019756B2 (en) Computer apparatus, computer program and method, for calculating importance of electronic document on computer network, based on comments on electronic document included in another electronic document associated with former electronic document
US20060004528A1 (en) Apparatus and method for extracting similar source code
CN108509617A (zh) 知识库构建、基于知识库的智能问答方法及装置、存储介质、终端
CN104951428A (zh) 用户意图识别方法及装置
CN104081380A (zh) 对来自多个数据源的解决方案的识别和排序
CN111475694A (zh) 一种数据处理方法、装置、终端及存储介质
CN115544319B (zh) 工业互联网大数据平台及数据处理方法
KR20090046738A (ko) 제조 예측 서버
US20070233532A1 (en) Business process analysis apparatus
JP2019169044A (ja) ソフトウェアロボット定義情報生成システム、ソフトウェアロボット定義情報生成方法、及びプログラム
US20090119077A1 (en) Use of simulation to generate predictions pertaining to a manufacturing facility
CN111427784B (zh) 一种数据获取方法、装置、设备及存储介质
CN102737063A (zh) 一种日志信息的处理方法及系统
CN115237857A (zh) 日志处理方法、装置、计算机设备及存储介质
Zheng et al. Dynamic scheduling for large-scale flexible job shop based on noisy DDQN
CN110263121A (zh) 表格数据处理方法、装置、电子装置及计算机可读存储介质
CN116431481A (zh) 一种基于多代码情况下的代码参数校验方法及装置
Verhagen et al. Ontological modelling of the aerospace composite manufacturing domain
CN112068811B (zh) 一种面向制造业工程知识应用的软件构建方法
CN113051479A (zh) 文件处理、推荐信息生成方法、装置、设备及存储介质
CN113361811A (zh) 运行状态预测方法、系统、设备及计算机可读存储介质
US20070022132A1 (en) System and method for design using component categorization
CN113778541A (zh) 一种小程序生成方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240531

Address after: 230000, F4 # 601, Phase II, Innovation Industrial Park, No. 2800 Innovation Avenue, High tech Zone, Hefei Area, China (Anhui) Pilot Free Trade Zone, Hefei City, Anhui Province

Patentee after: Hefei Zheta Technology Co.,Ltd.

Country or region after: China

Patentee after: Shanghai Information Technology Co.,Ltd.

Address before: 3 / F, 665 Zhangjiang Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai

Patentee before: Shanghai Information Technology Co.,Ltd.

Country or region before: China