CN115538163B - 一种纤维神经电极及其制备方法 - Google Patents

一种纤维神经电极及其制备方法 Download PDF

Info

Publication number
CN115538163B
CN115538163B CN202211230147.0A CN202211230147A CN115538163B CN 115538163 B CN115538163 B CN 115538163B CN 202211230147 A CN202211230147 A CN 202211230147A CN 115538163 B CN115538163 B CN 115538163B
Authority
CN
China
Prior art keywords
fiber
electrode
conductive
nerve electrode
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211230147.0A
Other languages
English (en)
Other versions
CN115538163A (zh
Inventor
彭慧胜
孙雪梅
唐成强
刘梓薇
李雯君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202211230147.0A priority Critical patent/CN115538163B/zh
Publication of CN115538163A publication Critical patent/CN115538163A/zh
Application granted granted Critical
Publication of CN115538163B publication Critical patent/CN115538163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/27Conductive fabrics or textiles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/388Nerve conduction study, e.g. detecting action potential of peripheral nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Abstract

本发明属于神经电极领域,具体为一种纤维神经电极及其制备方法。本发明通过湿法纺丝将导电高分子制备成为纳米级纤维网络,并将人工液体基质填充于纳米纤维网络形成导电高分子纤维电极,通过调节液体基质的溶度参数得到模量为50‑1000kPa的纤维神经电极。制备步骤包括纺丝液的制备、湿法纺丝形成初级纤维电极、初级纤维电极再浸润、纤维电极绝缘处理。本发明制备的纤维神经电极具有优异的力学性能和电学性能,其可以在麻醉至剧烈运动状态下稳定记录神经信号。

Description

一种纤维神经电极及其制备方法
技术领域
本发明属于神经电极领域,具体涉及一种适用于麻醉至剧烈运动的纤维神经电极及其制备方法。
背景技术
随着对大脑不断深入研究,研究人员认为,了解人类认知的神经基础是神经科学的普遍目标,其对于脑部疾病的诊疗和干预有重要意义。
植入式神经电极是检测大脑电生理信号的重要手段。为此,研究者们开发了一系列神经电极,包括金属、硅基、聚合物和碳材料等,为可靠地解释与分析大脑功能提供了诸多可能性。然而,目前已开发的神经电极材料的模量处于吉帕级别,与模量为千帕级别的脑组织之间存在机械不匹配,无法建立稳定的电极/组织界面,在植入后容易引起严重的免疫反应,并在长期的自由活动过程中丢失信号记录。目前,尚未开发出能在剧烈运动下稳定记录的神经电极。因此,制备出与脑组织模量匹配、具有优秀电化学性能的神经电极,实现在麻醉至剧烈运动情况下长期稳定记录电生理信号是亟待解决的技术性难题。
发明内容
本发明所要解决的技术问题在于,针对当前神经电极与脑组织之间模量不匹配、无法在剧烈运动下稳定工作的问题,提供一种低模量(kPa级别)、低阻抗(<1000kΩ·μm2)和高电导(>100S/cm)的纤维神经电极及其制备方法,其可在麻醉至剧烈运动情况下实现电生理信号稳定监测。
本本发明所要解决的技术问题采用以下的技术方案来实现:
一种适用于麻醉至剧烈运动的纤维神经电极及其制备方法,以导电高分子构建纳米级纤维网络,使用生物安全性液体基质填充网络,形成模量为50-1000kPa的纤维神经电极。具体步骤如下:
(1)制备低浓度、分散稳定的导电高分子分散液,然后将导电高分子分散液加热浓缩至固体含量为2-15%,加入小分子调节剂,调节导电高分子的链端舒展性。使用过滤器去掉杂质和气泡,再进一步使用真空烘箱除气泡。
(2)通过湿法纺丝技术对步骤(1)制备的导电高分子分散液进行连续化纺丝,然后使用去离子水清洗掉残留的凝固浴成分,晾干后得到具有纳米网络的初级纤维。
(3)将不同根初级纤维进行加捻,得到不同直径的导电纤维。
(4)将步骤(3)制备的导电纤维浸泡于生物相容性的液体基质中,使液体基质填充到导电纤维的纳米网络中,得到低模量、低阻抗和高电导率的柔性纤维电极。
(5)使用易挥发溶剂配置氟橡胶溶液,对步骤(4)制备的纤维电极进行绝缘处理,得到纤维神经电极。溶剂选用有机系,并且与步骤(4)使用的液体基质不相溶。
进一步地,所述步骤(1)中导电高分子为聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)聚合物。所述溶解导电高分子的溶剂为水,质量分数为85-98%。
进一步地,所述步骤(1)中小分子调节剂为二甲亚砜,浓度为2-5%。
进一步地,所述步骤(2)中凝固浴为异丙醇和二甲亚砜,所述体积比为9:1。
进一步地,所述步骤(4)中液体基质为水和甘油混合液,水和甘油混合液比例1:20-20:1。改变水和甘油的摩尔比例,可以获得模量从几十千帕到几兆帕的纤维电极。
进一步地,所述步骤(4)中纤维电极在液体基质中浸泡时间为1-4小时。导电纤维模量可以通过改变液体基质和纳米纤维网络中所用高分子的溶度参数之差来调控。
进一步地,所述步骤(5)中溶解氟橡胶的溶剂为4-甲基-2-戊酮,所述氟橡胶溶液的质量分数为10-20%。
进一步地,所述步骤(5)中纤维电极进行绝缘过程为:将导电纤维置于四氟乙烯支架上,浸没于氟橡胶溶液中,然后缓慢匀速拉出,控制纤维表面不产生挂珠现象。
进一步地,将一根或多根融合的导电纤维和氟橡胶绝缘层可以组成任意通道数的纤维神经电极。
本发明制备的纤维神经电极可以在电声理中应用,包括刺激和记录,将其运用于动物体内,在麻醉至剧烈运动情况下可以实现稳定电信号记录。
本发明有益效果是:
(1)本发明制备的纤维神经电极模量在50-1000kPa范围内可调,模量和特征阻抗均处于领先水平。在循环拉伸10000次后电化学阻抗保持稳定,在37摄氏度液体环境保存5个月电化学性能保持稳定。
(2)在剧烈运动时纤维神经电极保持高质量的电生理信号记录,实现长达5个月多通道电信号稳定记录。
附图说明
图1为湿法纺丝流程示意图;
图2为纤维神经电极内纳米纤维网络图;
图3为涂覆绝缘层后的纤维电极图;
图4为实施例1纤维神经电极循环拉伸10000次后电化学阻抗的曲线图;
图5为实施例1纤维神经电极在37摄氏度液体环境保存5个月电化学性能曲线图。
具体实施方式
下面结合实施例和附图对本发明的具体实施方式做进一步的详细描述。以下实施例和附图用于说明本发明,但不用来限制本发明的范围。
实施例1纤维状神经电极的制备
(1)纺丝悬浮液的制备。将4克聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)水溶液(分散液)放入玻璃瓶中,放置于50摄氏度热台上加热蒸发水分,每隔5分钟摇晃玻璃瓶一次直至溶液浓缩为固含量2%。在浓缩溶液中加入2%的二甲亚砜,放置于磁力搅拌台上搅拌1小时,用0.45微米的水系过滤器过滤搅拌后的溶液,过滤后在室温下使用真空烘箱除去气泡得到纺丝悬浮液。
(2)湿法纺丝制备初级导电纤维。将450毫升异丙醇与50毫升二甲亚砜混合制备凝固浴。将0.5克纺丝悬浮液吸入1毫升注射器中,注射器针头连接硅胶软管,硅胶软管另一头连接16G点胶针,点胶针针头没入凝固浴液面。1毫升注射器固定于注射泵上,以100微升/分钟的流量进行湿法纺丝。湿法纺丝得到的纤维转移至去离子水中浸泡1小时后,以一定张力搭接在架子上室温下晾干4小时,得到初级电极。
(3)初级导电纤维填充液体基质。60克去离子水和18克甘油混合,经磁力搅拌12小时,得到满足不同模量需求的的液体基质。将一根初级电极浸泡于液体基质1小时后取出,在室温下晾干4小时后得到一根模量约为1000kPa的纤维状神经电极。
(4)纤维电极绝缘处理,制备纤维神经电极。将5克氟橡胶溶解于45克4-甲基-2-戊酮溶剂中,在50摄氏度下搅拌12小时,得到质量分数为10%的透明粘性溶液,将一根神经电极浸入粘性溶液中匀速拉拔而出,在通风橱内晾干12小时,得到外围包覆氟橡胶绝缘层的纤维电极。
(4)电极可用于外周神经及肠道神经等的在体长期检测。
实施例2多根融合的纤维状神经电极的制备
(1)纺丝悬浮液的制备。将10克聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)水溶液(分散液)放入玻璃瓶中,放置于90摄氏度热台上加热蒸发水分,每隔10分钟摇晃玻璃瓶一次直至溶液浓缩为固含量15%。在浓缩溶液中加入5%的二甲亚砜,放置于磁力搅拌台上搅拌5小时,用0.45微米的水系过滤器过滤搅拌后的溶液,过滤后在室温下使用真空烘箱除去气泡得到纺丝悬浮液。
(2)湿法纺丝制备初级导电纤维。将450毫升异丙醇与50毫升二甲亚砜混合制备凝固浴。将1克纺丝悬浮液吸入1毫升注射器中,注射器针头连接硅胶软管,硅胶软管另一头连接32G点胶针,点胶针针头没入凝固浴液面。1毫升注射器固定于注射泵上,以600微升/分钟的流量进行湿法纺丝。湿法纺丝得到的纤维转移至去离子水中浸泡5小时后,以一定张力搭接在架子上室温下晾干10小时,得到初级电极。
(3)初级导电纤维填充液体基质。80克去离子水和83克甘油混合,经磁力搅拌12小时,得到满足不同模量需求的的液体基质。将多根初级电极加捻后浸泡于渗透溶液中,4小时后取出,在室温下晾干10小时后得到多根融合为一根模量约为300kPa的整体的纤维状神经电极。
(4)纤维电极绝缘处理,制备纤维神经电极。将20克氟橡胶溶解于80克4-甲基-2-戊酮溶剂中,在80摄氏度下搅拌12小时,得到质量分数为20%的透明粘性溶液,将一根神经电极浸入粘性溶液中匀速拉拔而出,在通风橱内晾干12小时,得到外围包覆氟橡胶绝缘层的纤维电极。
实施例3多通道纤维状神经电极的制备:
(1)纺丝悬浮液的制备。将7克聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)水溶液(分散液)放入玻璃瓶中,放置于90摄氏度热台上加热蒸发水分,每隔10分钟摇晃玻璃瓶一次直至溶液浓缩为固含量8%。在浓缩溶液中加入5%的二甲亚砜,放置于磁力搅拌台上搅拌3小时,用0.45微米的水系过滤器过滤搅拌后的溶液,过滤后在室温下使用真空烘箱除去气泡得到纺丝悬浮液。
(2)湿法纺丝制备初级导电纤维。将450毫升异丙醇与50毫升二甲亚砜混合制备凝固浴。将1克纺丝悬浮液吸入1毫升注射器中,注射器针头连接硅胶软管,硅胶软管另一头连接23G点胶针,点胶针针头没入凝固浴液面。1毫升注射器固定于注射泵上,以300微升/分钟的流量进行湿法纺丝。湿法纺丝得到的纤维转移至去离子水中浸泡3小时后,以一定张力搭接在架子上室温下晾干7小时,得到初级电极。
(3)初级导电纤维填充液体基质。40克去离子水和80克甘油混合,经磁力搅拌12小时,得到满足不同模量需求的的液体基质。在室温下晾干7小时得到模量约为50KPa的纤维电极。
(4)纤维电极绝缘处理,制备纤维神经电极。将9克氟橡胶溶解于51克4-甲基-2-戊酮溶剂中,在60摄氏度下搅拌12小时,得到质量分数为15%的透明粘性溶液,将一根神经电极浸入粘性溶液中匀速拉拔而出,在通风橱内晾干12小时,得到外围包覆氟橡胶绝缘层的纤维电极。
(5)将多根(4)中所述电极加捻或者平行排列在一起,组成多通道神经电极,用刚性探针辅助植入体内。
(6)在小鼠脑内植入后,使用牙科水泥固定。在恢复一段时间后进行在体测试,除了能在麻醉、头部固定和自由活动时稳定记录神经信号,例如单神经元的跟踪,还能实现在剧烈运动时同样稳定追踪单神经元信号。对照组(刚性电极如金属丝电极)不能在剧烈运动时实现稳定记录。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种纤维神经电极的制备方法,其特征在于,所述纤维神经电极具体制备方法如下:
(1)制备分散稳定的导电高分子分散液,然后将导电高分子分散液加热浓缩至固体含量为2-15%,加入小分子调节剂,调节导电高分子的链端舒展性;
步骤(1)中所述导电高分子分散液由导电高分子和溶剂混合而成,所述导电高分子分散液中导电高分子质量分数为80-96%;其中导电高分子为聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)聚合物,溶剂为水;
步骤(1)中所述小分子调节剂为二甲亚砜,浓度为 2-5%;
(2)通过湿法纺丝技术对步骤(1)制备的导电高分子分散液进行连续化纺丝,然后清洗掉残留的凝固浴成分,干燥后得到具有纳米网络的初级纤维;
(3)将不同根初级纤维进行加捻,得到不同直径的导电纤维;
(4)将步骤(3)制备的导电纤维浸泡于生物相容性的液体基质中,使液体基质填充到导电纤维的纳米网络中,得到柔性纤维电极;
步骤(4)中所述液体基质为水和甘油混合液,水和甘油混合液比例为1:20-20:1;
(5)使用易挥发溶剂配置氟橡胶溶液,对步骤(4)制备的柔性纤维电极进行绝缘处理,得到纤维神经电极;
步骤(5)中溶解氟橡胶的溶剂为4-甲基-2-戊酮,所述氟橡胶溶液中氟橡胶的质量分数为10-20%;
步骤(5)中所述纤维电极进行绝缘的过程为:将导电纤维置于四氟乙烯支架上,浸没于氟橡胶溶液中,然后缓慢匀速拉出,控制纤维表面不产生挂珠现象。
2.根据权利要求1所述纤维神经电极的制备方法,其特征在于,步骤(2)中所述凝固浴为异丙醇和二甲亚砜,体积比为9:1。
3.根据权利要求1所述纤维神经电极的制备方法,其特征在于,步骤(4)中纤维电极在液体基质中浸泡时间为1-4小时。
4.如权利要求1所述的制备方法得到的纤维神经电极,经过组装形成任意通道数的纤维神经电极。
5.如权利要求4所述的纤维神经电极,其特征在于,所述纤维神经电极在电声理中的应用,包括刺激和记录。
6.如权利要求5所述的纤维神经电极,其特征在于,所述纤维神经电极适用于在麻醉至剧烈运动状态下动物体内电生理信号监测。
CN202211230147.0A 2022-10-08 2022-10-08 一种纤维神经电极及其制备方法 Active CN115538163B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211230147.0A CN115538163B (zh) 2022-10-08 2022-10-08 一种纤维神经电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211230147.0A CN115538163B (zh) 2022-10-08 2022-10-08 一种纤维神经电极及其制备方法

Publications (2)

Publication Number Publication Date
CN115538163A CN115538163A (zh) 2022-12-30
CN115538163B true CN115538163B (zh) 2024-01-09

Family

ID=84734052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211230147.0A Active CN115538163B (zh) 2022-10-08 2022-10-08 一种纤维神经电极及其制备方法

Country Status (1)

Country Link
CN (1) CN115538163B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397402A (zh) * 2013-07-23 2013-11-20 青岛大学 一种掺杂离子液体导电纳米纤维的制备方法
CN106968023A (zh) * 2017-05-05 2017-07-21 郑州大学 具有皮芯结构的导电高分子复合纤维及其制备方法
CN110742597A (zh) * 2019-10-23 2020-02-04 哈尔滨工业大学 一种制备tpu/pdms三维多孔神经电极的方法
CN113100773A (zh) * 2021-04-12 2021-07-13 中国科学院深圳先进技术研究院 一种直接在皮肤上纺丝制备纤维膜干电极的方法
CN113710309A (zh) * 2019-03-06 2021-11-26 月神创新公司 柔性电极及其制造方法
CN115624336A (zh) * 2022-09-27 2023-01-20 复旦大学 一种核磁兼容的神经电刺激-电记录系统及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179534B2 (en) * 2003-01-31 2007-02-20 Princeton University Conductive-polymer electronic switch

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397402A (zh) * 2013-07-23 2013-11-20 青岛大学 一种掺杂离子液体导电纳米纤维的制备方法
CN106968023A (zh) * 2017-05-05 2017-07-21 郑州大学 具有皮芯结构的导电高分子复合纤维及其制备方法
CN113710309A (zh) * 2019-03-06 2021-11-26 月神创新公司 柔性电极及其制造方法
CN110742597A (zh) * 2019-10-23 2020-02-04 哈尔滨工业大学 一种制备tpu/pdms三维多孔神经电极的方法
CN113100773A (zh) * 2021-04-12 2021-07-13 中国科学院深圳先进技术研究院 一种直接在皮肤上纺丝制备纤维膜干电极的方法
CN115624336A (zh) * 2022-09-27 2023-01-20 复旦大学 一种核磁兼容的神经电刺激-电记录系统及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PEDOT:PSS对电极的制备及其光电性能研究;焦琳;张欣茜;刘晨;王艺蒙;初增泽;;山东化工(第05期);14-16 *
焦琳 ; 张欣茜 ; 刘晨 ; 王艺蒙 ; 初增泽 ; .PEDOT:PSS对电极的制备及其光电性能研究.山东化工.2020,(第05期),14-16. *

Also Published As

Publication number Publication date
CN115538163A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
Zhang et al. Multifunctional fibers to shape future biomedical devices
Wu et al. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction
Harris et al. Organic electrodes and communications with excitable cells
Yan et al. Aligned nanofibers from polypyrrole/graphene as electrodes for regeneration of optic nerve via electrical stimulation
Ghasemi-Mobarakeh et al. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering
Lu et al. Poly (vinyl alcohol)/poly (acrylic acid) hydrogel coatings for improving electrode–neural tissue interface
CN106913910A (zh) 一种丝素蛋白/石墨烯复合纳米纤维支架材料的制备方法
Llerena Zambrano et al. Soft electronics based on stretchable and conductive nanocomposites for biomedical applications
Higgins et al. Organic bioelectronics: using highly conjugated polymers to interface with biomolecules, cells, and tissues in the human body
Xia et al. Intrinsically Electron Conductive, Antibacterial, and Anti‐swelling Hydrogels as Implantable Sensors for Bioelectronics
CN104383606B (zh) 一种高强度高弹性血管支架及其制备方法
CN103079462A (zh) 植入式微元件电极
CN103572408A (zh) 核-壳结构的电活性复合纤维及组织工程支架制备方法
CN115252914B (zh) 一种网络互穿药物控释超滑涂层导管
CN115538163B (zh) 一种纤维神经电极及其制备方法
Gu et al. Long-term flexible penetrating neural interfaces: materials, structures, and implantation
Zhang et al. Electrospun piezoelectric scaffold with external mechanical stimulation for promoting regeneration of peripheral nerve injury
Song et al. Recent advances in 1D nanomaterial‐based bioelectronics for healthcare applications
Bierman‐Duquette et al. Engineering tissues of the central nervous system: Interfacing conductive biomaterials with neural stem/progenitor cells
CN110742597B (zh) 一种制备tpu/pdms三维多孔神经电极的方法
Spearman et al. Integration of flexible polyimide arrays into soft extracellular matrix-based hydrogel materials for a tissue-engineered electronic nerve interface (TEENI)
WO2009125196A1 (en) Neural circuits and stereotactic apparatus
CN109568803B (zh) 一种柔性光纤植入体及光电极阵列
CN115624336A (zh) 一种核磁兼容的神经电刺激-电记录系统及其制备方法
Yan et al. Conducting polymer-hydrogel interpenetrating networks for improving the electrode–neural interface

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant