CN115537054A - 一种力致荧光增强动态响应的高分子涂层及其制备方法与应用 - Google Patents

一种力致荧光增强动态响应的高分子涂层及其制备方法与应用 Download PDF

Info

Publication number
CN115537054A
CN115537054A CN202110737976.7A CN202110737976A CN115537054A CN 115537054 A CN115537054 A CN 115537054A CN 202110737976 A CN202110737976 A CN 202110737976A CN 115537054 A CN115537054 A CN 115537054A
Authority
CN
China
Prior art keywords
coating
polymer
nitro
dynamic response
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110737976.7A
Other languages
English (en)
Other versions
CN115537054B (zh
Inventor
屈小中
杨迪
任盈颖
栗继伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chinese Academy of Sciences
Original Assignee
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chinese Academy of Sciences filed Critical University of Chinese Academy of Sciences
Priority to CN202110737976.7A priority Critical patent/CN115537054B/zh
Publication of CN115537054A publication Critical patent/CN115537054A/zh
Application granted granted Critical
Publication of CN115537054B publication Critical patent/CN115537054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/32Compounds containing nitrogen bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Paints Or Removers (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种力致荧光增强动态响应的高分子涂层及其制备方法与应用。本发明高分子涂层,该高分子涂层包括如下质量比的组分制成:质量比为1:10~10000的硝基聚集诱导发光染料与所述高分子基体;高分子基体为高分子树脂。它的制备方法如下:将所述硝基聚集诱导发光染料与所述高分子树脂及溶剂混合,得到混合液;2)将所述混合液经如下方法涂至基底上,即得到所述力致荧光增强动态响应的高分子涂层;方法包括流延法、匀胶法、模板法、喷涂法、刷涂法和刮涂法中的至少一种。本发明将带硝基的染料与高分子基体复合实现高灵敏度且可逆的应力响应。

Description

一种力致荧光增强动态响应的高分子涂层及其制备方法与 应用
技术领域
本发明涉及一种力致荧光增强动态响应的高分子涂层及其制备方法与应用,属于应力响应涂层制备领域。
背景技术
与电子式传感器相比,光致发光压力敏感涂层实现了高空间分辨率的应力及应力分布检测,如氧浓度响应的压力敏感涂层,基于氧猝灭的光致发光原理即使通过光强或寿命实现压力的检测,但是在水下或其他无氧环境中,这一技术不再适用。在不借助中间介质(如氧和油)的情况下,常通过力致变色、力致发光或力致荧光增强等材料实现压力的传感测量。聚集诱导发光(AIE)材料在聚集态和固态下可以发出非常强的荧光,这种发光现象在固体光致发光材料的制备时有效解决了荧光材料的荧光猝灭问题,同时因为其具有力致变色或力致荧光增强效应,使其在应力响应领域中具有广泛的应用。
AIE染料常基于染料的构象或分子堆积方式的改变实现应力传感,目前研究比较多的大都采用将AIE染料粉末、晶体或是染料溶液直接制备的染料膜进行研磨、刮擦、粉碎等方式实现压力信号的输入,之后通过溶剂熏蒸、加热等方式实现材料发光性能恢复至压力信号输入之前的状态,这一方面导致了其较差的其灵敏度及检测限,另一方面采用的粉末等形式也限制了AIE染料在应力传感中的应用范围,而且染料常以力致变色的形式实现应力响应,相比于光强变化响应应力变化,其应力测量难度也相应增加。
此外,有研究将AIE染料引入高分子网络中,通过高分子网络调控AIE染料的发光性能,从而实现对应力的响应。这些体系采用传统策略,利用强分子间相互作用调控染料在固相中激发态的光物理过程,但需要较大的力诱导染料明显的形态或构象转换,其可逆性和重复性能较差。
发明内容
本发明的目的是提供一种力致荧光增强动态响应的高分子涂层及其制备方法与应用。
本发明将带硝基的AIE染料与高分子基体复合实现高灵敏度且可逆的应力响应,其传感以力致荧光增强的形式实现,与力致变色相比其压力测量更为简单。不需通过断键或破坏性变形,而是通过弹性变形实现动态可逆高灵敏度的机械力响应,其中硝基的主要作用机制是诱导激发态单线态向三线态的系间窜越(ISC),这一非辐射弛豫过程能够减弱或使荧光猝灭,提高应力传感的灵敏度,结合AIE以及ISC等原理,是将AIE染料与高分子材料复合实现力致荧光增强动态响应高分子涂层制备的技术。
本发明提供的一种力致荧光增强动态响应的高分子涂层,该高分子涂层包括如下质量比的组分制成:
质量比为1:10~10000的硝基聚集诱导发光染料与所述高分子基体;
所述高分子基体为高分子树脂。
本发明中,所述模量可调控的高分子基体的加入,能增大所述高分子涂层受力时的局部形变量。
本发明中,所述硝基聚集诱导发光染料与所述高分子基体的质量比具体可为1:105、1:200、1:275、1:333、1:600、1:100~200、1:100~400、1:105~600、1:100~1000或1:10~5000。
上述的高分子涂层中,所述硝基聚集诱导发光染料包括带有硝基的四苯乙烯及其衍生物、带有硝基的三苯胺及其衍生物、带有硝基的吩恶嗪及其衍生物、带有硝基的吩噻嗪及其衍生物和带有硝基的咔唑及其衍生物中的至少一种。
上述的高分子涂层中,所述硝基聚集诱导发光染料包括如下式Ⅰ、式Ⅱ、式Ⅲ、式Ⅳ和式Ⅴ所示的化合物中的至少一种;
Figure BDA0003140505500000021
式Ⅰ和式Ⅱ中,R1均表示-H、-NO2、烷基和带硝基的基团中的至少一种,且至少有一个R1表示-NO2或带硝基的基团;且式Ⅰ和式Ⅱ中R1为相同或不同;
式Ⅲ、式Ⅳ和式Ⅴ中,R2均表示带硝基的基团,且式Ⅲ、式Ⅳ和式Ⅴ中R2为相同或不同。
本发明中,所述硝基聚集诱导发光染料的具体结构式如下所示:
Figure BDA0003140505500000031
上述的高分子涂层中,所述带硝基的基团包括硝基苯。
上述的高分子涂层中,所述高分子树脂为热塑性或热固性的高分子树脂;
所述高分子树脂具体可包括有机硅树脂、环氧树脂、聚氨酯树脂、天然或合成橡胶和热塑性弹性体中的至少一种;优选可为室温硫化硅橡胶RTV、聚二甲基硅氧烷PDMS、热塑性聚氨酯(TPU)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)和环氧弹性体中的至少一种。
上述的高分子涂层中,所述的高分子涂层还包括加入填料制成;
所述填料与所述高分子基体的质量比可为1:5~1000,具体可为1:5、1:147、1:5~147、1:5~200、1:5~300、1:5~400、1:5~500、1:5~750或1:5~850;
所述填料选自有机硅微球、膨胀微球、二氧化钛颗粒、二氧化硅颗粒和纤维素粉末(可为任一种现有纤维素粉末,具体可包括氨基乙基纤维素粉末、微晶纤维素、甲基纤维素和羧酸纤维素中的至少一种)和发泡剂(可为任一种现有发泡剂,具体可包括聚氨酯发泡剂、环氧树脂发泡剂)中的至少一种;
所述填料的粒径为纳米或微米级别。
本发明中,所述有机硅树脂、环氧树脂、聚氨酯树脂、天然或合成橡胶均为本领域常规的材料。
本发明还提供了上述的力致荧光增强动态响应的高分子涂层的制备方法,包括如下步骤:1)将所述硝基聚集诱导发光染料与所述高分子树脂及溶剂混合,得到混合液;
2)将所述混合液经如下方法涂至基底上,即得到所述力致荧光增强动态响应的高分子涂层;
所述方法包括流延法、匀胶法、模板法、喷涂法、刷涂法和刮涂法中的至少一种。
上述的方法中,所述溶剂为氯仿、N,N-二甲基甲酰胺、二氯甲烷、二甲基亚砜和甲苯中的至少一种。
上述的方法中,步骤1)中还包括在所述混合液中加入所述填料,以改变涂层的模量,即能增大所述高分子涂层受力时的局部形变量。
上述的方法中,步骤2)中还可以包括对涂层的固化交联和/或发泡的步骤,以改变涂层的模量,即能增大所述高分子涂层受力时的局部形变量。
本发明进一步提供了所述的力致荧光增强动态响应的高分子涂层的用途,即应用于对涂层表面应力和/或机械力及其分布的动态检测中。
上述的应用中,所述检测为非接触式的光学曲线或图像检测。
上述的应用中,所述力致荧光增强动态响应的高分子涂层的力致荧光增强效应与温度有关,所述检测的温度可为20~300℃,具体可为60℃、80℃、60~80℃、60~200℃、40~80℃、50~150℃或40~200℃,能使力致荧光增强效果更加明显。
本发明中,所述力致荧光增强动态响应的高分子涂层可为平面结构也可为呈现规则或不规则的凹凸结构。
本发明中,所述力致荧光增强动态响应的高分子涂层的使用方式可以直接依附制备时的基底或自支撑膜的形式或将涂层转移至其他基体后使用。
本发明具有以下优点:
1、本发明的力致荧光增强动态响应的高分子涂层由带有硝基的AIE染料结合高分子网络制成,高分子的模量可以通过添加填料和/或涂层的图案化进行调节,带有硝基的AIE染料可以化学键和/或物理相互作用的形式分布于高分子树脂涂层和/或填料中。
2、为了提高压力传感中的灵敏度,通过硝基的引入诱导ISC过程从而调节AIE压力敏感材料在固态下的相关光物理过程,实现小的机械力刺激信号下染料的发光强度发生巨大变化。
3、为了实现压力传感的可逆性,借助高分子基体,通过高分子网络形变及恢复的过程实现AIE压力敏感染料在网络中聚集态的改变及恢复,从而使带硝基AIE压力敏感染料发光强度出现压力响应的可逆性变化。光强的变化可实现涂层对压力和压力分布的动态可逆检测。
4、涂层中添加的填料或者对涂层进行图案化处理,是为了改变模量,在应力下实现高分子网络局部受力不均导致高分子链发生相对位移的程度大从而增大了染料聚集情况改变的程度。实验结果表明,由于填料或涂层图案化的处理,力致荧光增强动态响应的高分子涂层具有较高的压力灵敏度及可逆性。
5、本发明的力致荧光增强动态响应的高分子涂层性能稳定,制备方法简单。
附图说明
图1表示本发明实施例1制备的力致荧光增强高分子涂层在365nm激发光下加压前后的荧光强度对比图。
图2表示本发明实施例2制备的力致荧光增强高分子涂层(TPE4N)以及参照涂层在365nm激发光下加压前后的荧光照片。
图3表示本发明实施例3制备的力致荧光增强高分子涂层在不同压力下的光强响应图。
图4表示本发明实施例4制备的力致荧光增强高分子涂层压力响应可逆性检测,在365nm激发光下多次加压撤压的过程中荧光强度的变化。
图5表示本发明实施例7制备的力致荧光增强高分子涂层在水压测试实验中的伪彩图。
图6表示本发明实施例3中制备的力致荧光增强高分子涂层的结构示意图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、
三(4-硝基苯基)苯基乙烯(TPE3N)根据文献(Yu T,Ou D,Yang Z,et al.The HOFstructures of nitrotetraphenylethene derivatives provide new insights intothe nature of aie and a way to design mechanoluminescent materials[J].Chemical Science,2017,8(2):1163-1168)制备得到。
将24mg TPE3N溶于1mL氯仿中,取6g聚二甲基硅氧烷(PDMS,美国道康宁184硅橡胶),加入0.6g 184硅橡胶固化剂(美国道康宁),搅拌均匀,将TPE3N的氯仿溶液加入至带有上述固化剂的PDMS中,其中TPE3N染料和高分子基体的质量比为1:275,搅拌均匀,置于真空干燥箱内抽真空除气泡,得到有机硅树脂混合液。将混合液倒至平面玻璃基底上,通过刮刀刮出一平整表面的涂层,60℃避光固化3h,通过游标卡尺多次测量取平均值,测得涂层平均厚度约为1mm(记为涂层一)。同时还采用刷涂法将涂层的混合液刷涂至玻璃基底上,并且采用刷涂法也能得到均匀分布的涂层,用游标卡尺测量涂层厚度,经过多次测量取平均值,发现涂层的平均厚度为0.6mm(记为涂层二);即得到力致荧光增强动态响应的高分子涂层(又称测试涂层)。
为了测试涂层的压力响应性,借助荧光光谱,测试涂层在施加压力前后的光强变化,其中施加的压力约为800Pa。为了增加涂层的力致荧光增强效果,选择的操作温度为60℃,即涂层在加压前后的温度保持60℃不变,对涂层一、二进行应力响应性检测。
图1的荧光光谱为涂层一的应力响应结果,由图1可知:力致荧光增强高分子涂层在受压时光强出现了增强,接近未受压状态时1.9倍,在撤掉所施加的压力后,光强又恢复至原来的强度。说明本发明力致荧光增强动态响应的高分子涂层能够通过光强响应压力的变化,而且这种响应具有很好的可逆性。
对涂层一、二分别测试发现具有应力响应效果后,对其进行了动态可逆性检测,借助压片装置,每次施加相同的压力(800Pa),之后撤掉压力,每操作一步进行一次光强检测,经过多次施压撤压检测,发现两涂层都是施加应力后光强增强,光强比都在1.5以上,撤掉压力后光强降低,刷涂和刮涂法制备的涂层光强比都在1.5以上,且撤掉压力后光强恢复至原值,都具有很好的力致荧光增强动态响应效果。
实施例2、
四(4-硝基苯基)苯基乙烯(TPE4N)根据文献(Yu T,Ou D,Yang Z,et al.The HOFstructures of nitrotetraphenylethene derivatives provide new insights intothe nature of aie and a way to design mechanoluminescent materials[J].Chemical Science,2017,8(2):1163-1168)制备得到,将24mg TPE4N溶于1mL氯仿中,取6g聚二甲基硅氧烷(PDMS,美国道康宁184硅橡胶),加入0.6g固化剂(美国道康宁)以及45mg发泡后的可膨胀微球发泡剂(Expancel 093DU 120小球),其中TPE3N染料和高分子基体的质量比为1:275,填料(即上述的发泡剂)和高分子基体的质量比为1:147,搅拌均匀,将TPE3N的氯仿溶液加入至带有固化剂和Expancel小球填料的PDMS中,搅拌均匀,置于真空干燥箱内抽真空除气泡,得到发泡处理的有机硅树脂混合液;之后将混合液倒至平面玻璃基底上,通过流延法制备一平整表面的涂层,60℃避光固化3h,通过游标卡尺多次测量取平均值,测得涂层平均厚度约为1.5mm。通过游标卡尺多次测量取平均值,测得涂层平均厚度约为1.5mm。其尺寸为4×4×0.15cm;即得到力致荧光增强动态响应的高分子涂层(又称实验涂层TPE4N)。同时采用相同的涂层制备方法,制备了一种参照涂层。
为了直观观察力致荧光增强涂层的机械力响应性,对实验涂层TPE4N及参照涂层进行对比试验,将实验涂层TPE4N及参照涂层分被裁剪为1.5×1.5cm大小,在涂层上方分别通过一圆柱体施加压力,利用高速相机捕捉涂层在不同压力下的光强变化,此实验的操作温度为50℃。
图2为在紫外LED的激发光下,分别拍摄了实验组涂层和参照组涂层在未加压时以及加压之后涂层荧光强度变化情况。发现本发明带有四(4-硝基苯基)苯基乙烯(TPE4N)实验组的涂层在加压后被按压区域存在明显的荧光增强,且未按压区域无荧光增强,而对照组涂层没有观察到荧光增强现象。
本发明实验涂层TPE4N也进行了动态压力响应性测试,采用渐变的压力对其施压,其光强随应力增加而增大。
实施例3、
将30mg三(4-硝苯基)胺溶于1mL DMF(N,N-二甲基甲酰胺)中,取10g室温硫化硅橡胶RTV,其中三(4-硝苯基)胺染料和高分子基体的质量比为1:333,搅拌均匀,倒置于内部含有毫米尺度金字塔型凹陷的模具内,铺平均匀后,静置除气泡,室温避光固化3h,之后从模具上小心抠下涂层,得到表面为毫米尺度凸起的仿金字塔型图案化涂层,其平均厚度在2mm左右;即得到力致荧光增强动态响应的高分子涂层(又称测试涂层),其外观形貌示意图如图6所示。
为了测试涂层对压力的响应趋势,对涂层逐份加大压力输入,即将压力进行归一化处理,第一次施压为一份,第二次加压为第一次的二倍,第三次为第一次的三倍,第四次为第一次的四倍,每加压一次测一次涂层的荧光强度,之后撤掉压力,再测一次荧光强度,整个过程中涂层的光强通过荧光光谱仪测试,样品片被裁剪成1×1cm大小,置于荧光光谱仪的样品支架上,样品片被裁剪成1×1cm大小,置于荧光光谱仪的样品支架上。以未施压时的光强为一,对光强进行归一化处理,将整个过程中光强对压力做曲线,发现随着压力的增加,光强逐渐增大,在实验区间内光强与压力接近线性关系,撤掉压力后涂层的光强可恢复至未加压时的状态,这说明了可以通过力致荧光增强高分子涂层的发光强度对机械力进行定量,而且这种响应具有可逆性,涂层可重复使用。
实施例4、
将40mg 9-(4-硝基苯)-9氢-咔唑溶于2mL二氯甲烷中,将环氧树脂和固化剂按1:0.8的质量比配胶,加入少量消泡剂及纳米二氧化钛粉末,搅拌均匀后加入9-(4-硝基苯)-9氢-咔唑的溶液,其中9-(4-硝基苯)-9氢-咔唑染料和高分子基体的质量比为1:105,填料纳米二氧化钛粉末和高分子基体的质量比为1:5,放置于真空箱中低压脱泡,然后喷涂于基底上,70℃固化3h,尺寸约为20×15×0.15cm,平均厚度在1.5mm左右;即得到力致荧光增强动态响应的高分子涂层(又称测试涂层)。
为了测试涂层的压力响应可逆效果,在实验温度60℃下,对涂层进行多次施压和撤压操作,保证每次所施加力相同(压力约为800Pa),测试光强的变化,以最初的光强为1(记为I0),之后每次测试的光强除以最初的光强,以光强比I/I0对测试序数作图,得一循环压力测试中光强的变化趋势图。
图4可以看出涂层具有很好的压力响应可逆性,可以重复使用。
实施例5、
带有硝基的吩恶嗪衍生物,10-(4-硝基苯)-10氢-吩噁嗪根据文献(MDDamaceanu,Constantin C P,Bejan AE,et al.Heteroatom-mediated performance ofdye-sensitized solar cells based on T-Shaped molecules[J].Dyes and Pigments,2019,166,15-31)制备得到。
将100mg 10-(4-硝基苯)-10氢-吩噁嗪分散于5mL DMSO(二甲基亚砜)中,加入至生胶顺丁橡胶(100),硫黄(1.5),促进剂NS(0.9),硬脂酸(2),芳烃油(1.5),防老剂RD(1)体系中,其中10-(4-硝基苯)-10氢-吩噁嗪和高分子基体的质量比为1:600,经过混炼、开炼、硫化步骤,得到一尺寸约为12×12×0.5cm的平均厚度约为5mm的自支撑应力敏感橡胶膜材料。同时采用相同的制备方法,制备了一参照涂层。
对涂层进行动态应力响应测试,将应力敏感膜材料置于60℃的加热板上,加热板为倾斜放置,一端被垫高,加热板与水平面间的夹角为7°,将一重量为30g的钢球从1cm处自由掉落至涂层上,相机从涂层背面捕捉激发光下涂层发光强度的变化,通过伪彩处理能够清晰地看到小球从开始接触涂层后在涂层上方滚落的整个过程。为了证明是力致荧光增强导致的,还对参照涂层进行了相同的操作,在参照涂层上并未看到力致荧光增强的现象,未能捕捉到小球的滚落轨迹。这项实验充分证明了该涂层具备力致荧光增强动态响应效果。
实施例6、
10-(4-硝基苯)-10氢-吩噻嗪根据文献(Biehl E R,Chiou H S,Kennard S,etal.The influence of substituents on spectral properties of radical-cationsand dications derived from certain phenothiazines[J].Journal of HeterocyclicChemistry,1975,12,397-399)制备得到。
将90mg 10-(4-硝基苯)-10氢-吩噻嗪溶于3mL甲苯中,先制备异氰酸预聚体,将复合多元醇与液体二异氰酸酯混合,加入辛酸亚烯、F11发泡剂、泡沫稳定剂以及硅油,加热,之后加入10-(4-硝基苯)-10氢-吩噻嗪的甲苯分散液,搅拌均匀,其中10-(4-硝基苯)-10氢-吩噻嗪与高分子基体聚氨酯树脂的质量比为1:200。浇铸到模具中,加热固化,固化脱模后硫化,得到一尺寸约为6×6×0.6cm的应力敏感聚氨酯发泡膜,其平均厚度约为0.6cm。
对涂层进行动态应力响应测试,将应力敏感聚氨酯发泡膜置于80℃的加热板上,加热板为倾斜放置,一端被垫高,加热板与水平面间的夹角为7°,将一重量为30g的钢球从聚氨酯发泡膜的高处的一端自由滚落,相机在涂层的上面进行拍照,激发光源同样置于涂层的上方,小球滚落后,其所经过的涂层位置荧光会立刻增强(响应时间约在2ms),经过高速相机进行捕捉,通过伪彩处理能够清晰地看到小球从涂层上方滚落的整个过程。这项实验充分证明了该涂层具备力致荧光增强动态响应效果。
实施例7、
将4g市售苯乙烯类热塑性弹性体(SBS)加入至二氯甲烷中,加热至40℃溶解,之后加入20mgTPE4N,染料与高分子基体SBS的质量比为1:200,搅拌均匀后,倒入模具内,之后冷却真空干燥,得到应力敏感的橡胶膜材料,其尺寸约为5×5×0.2cm。
为了测试本发明涂层对于水压的响应效果,将橡胶膜材料剪裁为5×2.5×0.2cm的尺寸,固定置于60℃透明加热板上,通过一个供水装置,喷射出104kPa压强的水柱,加热板背部放置一紫外光源以及一带有滤光片的高速相机,通过成像系统捕捉涂层在水流冲刷下涂层荧光变化情况,之后对照片进行伪彩处理,红色表示压力增大。
图5为水流冲刷下涂层的伪彩图像,通过伪彩图处理够清晰的看到涂层表面水流冲刷之处,并且压力的二维分布也清晰可见,说明本发明涂层体系能够有效实现对表面压力分布的测量。

Claims (10)

1.一种力致荧光增强动态响应的高分子涂层,其特征在于:该高分子涂层包括如下质量比的组分制成:
质量比为1:10~10000的硝基聚集诱导发光染料与所述高分子基体;
所述高分子基体为高分子树脂。
2.根据权利要求1所述的高分子涂层,其特征在于:所述硝基聚集诱导发光染料包括带有硝基的四苯乙烯及其衍生物、带有硝基的三苯胺及其衍生物、带有硝基的吩恶嗪及其衍生物、带有硝基的吩噻嗪及其衍生物和带有硝基的咔唑及其衍生物中的至少一种。
3.根据权利要求1或2所述的高分子涂层,其特征在于:所述硝基聚集诱导发光染料包括如下式Ⅰ、式Ⅱ、式Ⅲ、式Ⅳ和式Ⅴ所示的化合物中的至少一种;
Figure FDA0003140505490000011
式Ⅰ和式Ⅱ中,R1均表示-H、-NO2、烷基和带硝基的基团中的至少一种,且至少有一个R1表示-NO2或带硝基的基团;且式Ⅰ和式Ⅱ中R1为相同或不同;
式Ⅲ、式Ⅳ和式Ⅴ中,R2均表示带硝基的基团,且式Ⅲ、式Ⅳ和式Ⅴ中R2为相同或不同。
4.根据权利要求3所述的高分子涂层,其特征在于:所述带硝基的基团包括硝基苯基。
5.根据权利要求1-4中任一项所述的高分子涂层,其特征在于:所述高分子树脂为热塑性或热固性的高分子树脂;
所述高分子树脂具体包括有机硅树脂、环氧树脂、聚氨酯树脂、天然或合成橡胶和热塑性弹性体中的至少一种。
6.根据权利要求1-5中任一项所述的高分子涂层,其特征在于:所述的高分子涂层还包括加入填料制成;
所述填料与所述高分子基体的质量比为1:5~1000;
所述填料选自有机硅微球、膨胀微球、二氧化钛颗粒、二氧化硅颗粒和纤维素粉末和发泡剂中的至少一种;
所述填料的粒径为纳米或微米级别。
7.权利要求1-6中任一项所述的力致荧光增强动态响应的高分子涂层的制备方法,包括如下步骤:1)将所述硝基聚集诱导发光染料与所述高分子树脂及溶剂混合,得到混合液;
2)将所述混合液经如下方法涂至基底上,即得到所述力致荧光增强动态响应的高分子涂层;
所述方法包括流延法、匀胶法、模板法、喷涂法、刷涂法和刮涂法中的至少一种。
8.根据权利要求7所述的方法,其特征在于:所述溶剂为氯仿、N,N-二甲基甲酰胺、二氯甲烷、二甲基亚砜和甲苯中的至少一种;和/或
步骤1)中还包括在所述混合液中加入所述填料的步骤;和/或
步骤2)中还包括对涂层的固化交联和/或发泡的步骤;和/或
步骤2)中还包括在涂层表面或涂层内部构建图案化物理结构的步骤。
9.权利要求1-6中任一项所述的力致荧光增强动态响应的高分子涂层在对涂层表面应力和/或机械力及其分布的动态检测中的应用。
10.根据权利要求9所述的应用,其特征在于:所述检测为非接触式的光学曲线或图像检测;
所述检测的温度为20~300℃。
CN202110737976.7A 2021-06-30 2021-06-30 一种力致荧光增强动态响应的高分子涂层及其制备方法与应用 Active CN115537054B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110737976.7A CN115537054B (zh) 2021-06-30 2021-06-30 一种力致荧光增强动态响应的高分子涂层及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110737976.7A CN115537054B (zh) 2021-06-30 2021-06-30 一种力致荧光增强动态响应的高分子涂层及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN115537054A true CN115537054A (zh) 2022-12-30
CN115537054B CN115537054B (zh) 2023-09-22

Family

ID=84705714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110737976.7A Active CN115537054B (zh) 2021-06-30 2021-06-30 一种力致荧光增强动态响应的高分子涂层及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115537054B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003886A (zh) * 2013-02-25 2014-08-27 北京师范大学 多硝基取代四苯基乙烯化合物的制备及其应用
CN108680288A (zh) * 2018-03-27 2018-10-19 天津大学 一种利用有机力致发光材料检测机械部件的力学响应的方法
CN111925691A (zh) * 2017-11-02 2020-11-13 杭州显庆科技有限公司 一种力致发光陶瓷材料粉末颗粒油墨及其制备方法和应用
CN112666165A (zh) * 2020-12-14 2021-04-16 西北工业大学 一种飞行器构件表面损伤可视化检测方法
CN113008669A (zh) * 2021-01-22 2021-06-22 天津大学 一种动态监测裂纹尖端应力强度因子的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003886A (zh) * 2013-02-25 2014-08-27 北京师范大学 多硝基取代四苯基乙烯化合物的制备及其应用
CN111925691A (zh) * 2017-11-02 2020-11-13 杭州显庆科技有限公司 一种力致发光陶瓷材料粉末颗粒油墨及其制备方法和应用
CN108680288A (zh) * 2018-03-27 2018-10-19 天津大学 一种利用有机力致发光材料检测机械部件的力学响应的方法
CN112666165A (zh) * 2020-12-14 2021-04-16 西北工业大学 一种飞行器构件表面损伤可视化检测方法
CN113008669A (zh) * 2021-01-22 2021-06-22 天津大学 一种动态监测裂纹尖端应力强度因子的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘开: "硝基类新型聚集诱导发光体系的开发" *

Also Published As

Publication number Publication date
CN115537054B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
Crenshaw et al. Self-assessing photoluminescent polyurethanes
Kingsbury et al. Shear activation of mechanophore-crosslinked polymers
Kan et al. Anthracene dimer crosslinked polyurethanes as mechanoluminescent polymeric materials
Clough et al. Cephalopod‐Inspired High Dynamic Range Mechano‐Imaging in Polymeric Materials
Mao et al. Dual-responsive cellulose fabric based on reversible acidichromic and photoisomeric polymeric dye containing pendant azobenzene
Zhang et al. Micellar-incorporated hydrogels with highly tough, mechanoresponsive, and self-recovery properties for strain-induced color sensors
Toommee et al. High color stability and reversible thermochromism of polydiacetylene/zinc oxide nanocomposite in various organic solvents and polymer matrices
US20070112166A1 (en) Pressure sensitive material
Bedlek-Anslow et al. Micro-heterogeneous oxygen response in luminescence sensor films
CN101410425A (zh) 中空聚合物颗粒、着色中空聚合物颗粒以及它们的制备方法
Kamphan et al. Fine tuning the colorimetric response to thermal and chemical stimuli of polydiacetylene vesicles by using various alcohols as additives
Yang et al. Highly sensitive AIE-based mechanoresponsive luminescent polymer coatings for surface pressure imaging
CN115537054B (zh) 一种力致荧光增强动态响应的高分子涂层及其制备方法与应用
Feng et al. Fabrication of microcapsule-type composites with the capability of underwater self-healing and damage visualization
US20050288475A1 (en) Pressure and temperature sensitive material
Ji et al. Thermochromic behaviors of terminated waterborne thermochromic polyurethane with tailored molecular weight
Micheletti et al. Blending or Bonding? Mechanochromism of an Aggregachromic Mechanophore in a Thermoplastic Elastomer
Xu et al. Hybrid Phenol‐Rhodamine Dye Based Mechanochromic Double Network Hydrogels with Tunable Stress Sensitivity
CN103897574A (zh) 光致变色组合物涂层与光致变色组合物涂层制品及该制品的制备方法
Yang et al. Mechano-responsive fluorescent hyperbranched poly (amido amine) s
Zhang et al. A photochromic nylon webbing for ultra-violet light sensing
Oprea et al. Synthesis and characterization of photoactive polyurethane elastomers with 2, 3-dihydroxypyridine in the main chain
CN106996840B (zh) 一种基于超支化聚合物的力响应型荧光传感器及其制备方法
Lee et al. Shear-induced color transition of PDA (polydiacetylene) liposome in polymeric solutions
Samyn et al. Colorimetric sensing properties of catechol-functional polymerized vesicles in aqueous solution and at solid surfaces

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant