CN115536125A - 一种太阳能驱动微生物电化学过程强化低温nh4+-n去除的方法 - Google Patents

一种太阳能驱动微生物电化学过程强化低温nh4+-n去除的方法 Download PDF

Info

Publication number
CN115536125A
CN115536125A CN202211069798.6A CN202211069798A CN115536125A CN 115536125 A CN115536125 A CN 115536125A CN 202211069798 A CN202211069798 A CN 202211069798A CN 115536125 A CN115536125 A CN 115536125A
Authority
CN
China
Prior art keywords
solar
removal
wetland
mec
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211069798.6A
Other languages
English (en)
Inventor
祝贵兵
刘春雷
于斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN202211069798.6A priority Critical patent/CN115536125A/zh
Publication of CN115536125A publication Critical patent/CN115536125A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明公布了一种太阳能驱动微生物电化学过程强化低温NH4 +‑N去除的方法,属于利用人工湿地去除氮污染物领域。在模拟自然条件下,采用太阳能电池板产生的电流刺激人工湿地中氮循环微生物的反应活性,强化低温条件下(<10℃)NH4 +‑N去除。同时,人工湿地依靠自产电流强化NH4 +‑N去除。应用耦合太阳能电池供电的人工湿地‑微生物电解池(CW‑MEC)和人工湿地‑微生物原电池(CW‑MFC)两种技术,成功强化低温条件NH4 +‑N去除,平均去除率和最大去除率分别达88.2±7.0%和100%(比传统人工湿地平均去除率高11.7±6.5%)。机理分析表明传统人工湿地主要将NH4 +‑N氧化为NO3 ‑N,太阳能供电的CW‑MEC技术可实现NH4 +‑N和NO3 ‑N同步去除。

Description

一种太阳能驱动微生物电化学过程强化低温NH4+-N去除的 方法
技术领域:
本发明属于利用人工湿地去除氮污染物领域,特别涉及低温条件(<10℃)下利用外加电压强化微生物电化学过程去除水中NH4 +-N的研究
研究背景:
作为一种经济高效、可持续的新型水处理技术,针对人工湿地-微生物电化学系统(CW-MES)的研究日益广泛。微生物电化学过程在激发微生物活性的同时可以通过电化学氧化还原过程去除NH4 +-N,同时产出能源物质,比如氢气甲烷等。CW-MES主要包括人工湿地-微生物燃料电池(CW-MFC)和人工湿地-微生物电解池(CW-MEC)两种技术。CW-MFC在2012年被首次应用于有机废水处理,结果证明CW-MFC可以在高效去除有机物的同时产出电能。CW-MFC逐渐被应用到污水脱氮当中,NH4 +和NO2 -都可以用作阳极电子供体,O2和NO3 -则作为阴极电子受体参与反应。在以有机物作为电子供体的CW-MFC中,阳极需要保持厌氧条件,而当NH4 +作为电子供体参与电化学过程时,阳极需要氧气的存在,方便氨氧化微生物发挥作用。除了在阳极作为电子供体被氧化,NH4 +还可以在好氧阴极区直接通过同步硝化-反硝化过程去除。在常温条件下,CW-MFC成功地强化了水中NH4 +-N的去除。在20±2℃,多阳极CW-MFC的NH4 +-N去除率可达到97.3%,应用多阴极CW-MFC可以把NH4 +-N去除率从44.63±2.07%提高到81.10±2.07%。Hartl等也发现闭路CW-MFC的NH4 +-N去除率相比于CCW提高了22%。针对低温条件下应用CW-MFC技术强化NH4 +-N去除的研究较少,但是Doherty等认为CW与MFC的组合工艺将有利于寒冷地区的污水处理。
CW-MEC是在CW-MFC基础上的进一步电化学强化,依靠外部电能输入,电子传递被进一步加快,同时由于更高电势差的存在使得氧化还原反应更易发生。已有研究证明CW-MEC擅长室温条件下NH4 +-N去除。Gao等在一个用生物炭改良的水平表面流人工湿地-微生物电解池反应器中,用0.02mA/cm2的电流密度实现了92.46%的NH4 +-N去除。潮汐流人工湿地-微生物电解池在进水NH4 +-N浓度为60mg/L时,去除率可达80%。然而,低温条件下应用CW-MEC强化NH4 +-N去除的研究鲜有报道,额外的电能损耗阻碍了CW-MEC的研究和应用。尽管在电解的过程中会产生一些能源物质(比如H2和CH4),但是MEC的经济有效性一直饱受争议。因此应用CW-MEC强化低温条件下的NH4 +-N去除需要首先解决其能耗问题。太阳能电池板的出现为CW-MEC的研究和应用带来了新思路,但是据我们所知,尚无关于应用太阳能电池板供电的CW-MEC技术强化低温条件下的NH4 +-N去除的报道。
发明内容:
为实现低温条件下利用人工湿地处理微污染水体的效率,本发明提供一种太阳能驱动的CW-MFC耦合CW-MEC强化低温条件下水中的NH4 +-N高效去除方法。该方法实现了低温条件下平均88.2±7.0%和最高100%的氨氮去除效率,为有效地控制水中NH4 +-N的浓度提供了新思路。所述方法在模拟自然条件下(自然光照,自然水体,天然填料(土和沙)),通过CW-MFC(无光照)和CW-MEC(有效光照)联合作为太阳能驱动方式提供外加电压。所述CW-MFC和CW-MEC的载体椰壳活性炭-不锈钢网复合电极,电极通过四根导线从四面连接,提高了电子传递效率,实现了低温NH4 +-N高效去除。
附图说明:
图1为反应装置示意图
图a:1-4号反应器分别为CCW(Conventional Constructed Wetland):传统人工湿地,OSCW(Open-circuit Surface Electrode Constructed Wetland):开路表层电极人工湿地,CSCW(Close-circuit Surface Electrode Constructed Wetland):闭路表层电极人工湿地,CMCW(Close-circuit Middle Electrode Constructed Wetland):闭路中层电极人工湿地。
图b:反应器实物图
图c:反应器俯视图
图d:活性炭-不锈钢网电极
图e:太阳能电池板
具体实施方式:
1)反应器设置:一个高0.8m,直径0.4m,厚度8mm的有机玻璃柱体被同样材料和厚度的隔板分隔为四个大小一致的空间,填充为四个不同的人工湿地实验组。如图2.1所示,四个人工湿地反应器分别为:CCW(Conventional Constructed Wetland):传统人工湿地,OSCW(Open-circuit Surface Electrode Constructed Wetland):开路表层电极人工湿地,CSCW(Close-circuit Surface Electrode Constructed Wetland):闭路表层电极人工湿地,CMCW(Close-circuit Middle Electrode Constructed Wetland):闭路中层电极人工湿地。
2)反应器填充:如图1所示:反应器内部填充砾石、混合土和电极,厚度为5cm的砾石(直径3cm左右)承托层填充在反应器底部,其上填充电极和混合土(来自白洋淀湿地的芦苇田土和细砂土混合物,沙:土=3:1),包括承托层在内的填充高度为0.55m。CCW承托层以上的填充空间都为混合土,OSCW承托层以上为阳极,阴极置于土层以下5cm处,其余空间填充混合土,CSCW填充设置与OSCW一致,并且用导线连接阴阳两极,构成闭合回路,并设置电阻(1000Ω),方便监测输出电压。电流根据欧姆定律(式1)计算,电流密度为电流与电极投影面积的商(式2)。CMCW阴极置于承托层之上,阳极置于中部出水口之上(在CW-MEC阶段底部电极被用作阳极),其余空间填充混合土,阴阳极之间也通过导线连接,并接入电阻(1000Ω)。单个人工湿地反应器的填充容积为17.27L,有效容积(含水容积)约为4.5L。
I=U/R(1)Current density=I/A(2)
I-电流
U-输出电压
R-电阻(1000Ω)
A-电极投影面积(0.00314m2)
3)反应器启动:反应器启动阶段约为两个月,逐步富集筛选微生物(以河流水为基础添加stage1:COD=200mg/L,NH4 +-N=50mg/L,NO2 --N=50mg/L;stage2:NH4 +-N=50mg/L),之后采用试验用水(以河流水为基础添加NH4 +-N=15mg/L)运行反应器。
4)反应器运行:利用太阳能电池板供电,额定电压0.5V,额定功率2W,将电极阴阳极与太阳能电池板正负极对应连接,连续运行监测。
5)实验采用活性炭-不锈钢网复合电极,通过40目的不锈钢网包裹0.6mm左右的颗粒活性炭构成活性炭-不锈钢网复合电极,并用四根导线连接电极的底面和三个侧面,提高电子收集率。

Claims (5)

1.在传统人工湿地的基础上铺设电极,通过导线接入电阻和太阳能电池板,利用太阳能驱动微生物电化学过程强化低温条件下NH4 +-N去除。
2.权利要求1中提及的电极为活性炭-不锈钢网复合电极,颗粒状活性炭用于富集微生物,不锈钢网用于电子收集,促进电子传递。
3.采用混合土填料,湿地土与细沙比例为1:3,电极间距为15cm和25cm,外接电阻1000Ω,采用连续升流运行方式。
4.反应器启动阶段约为两个月,逐步富集筛选微生物(以河流水为基础添加阶段1:COD=200mg/L,NH4 +-N=50mg/L,NO2 --N=50mg/L;阶段2:NH4 +-N=50mg/L),之后采用试验用水(以河流水为基础添加NH4 +-N=15mg/L)利用NH4 +-N作为微生物电化学氧化的底物。
5.太阳能供电的人工湿地-微生物电解池(CW-MEC)技术耦合了人工湿地-微生物燃料池(CW-MFC,夜间)和CW-MEC(白天)。太阳能供电的CW-MEC在电极间距为25cm,白天电流密度4.76±1.14mA-2,夜间电流密度为5.77±1.36mA-2时成功强化5-8℃的NH4 +-N去除,平均去除效率约(比传统人工湿地强化11.7±6.5%),最高NH4 +-N去除率可达100%。
CN202211069798.6A 2022-09-02 2022-09-02 一种太阳能驱动微生物电化学过程强化低温nh4+-n去除的方法 Pending CN115536125A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211069798.6A CN115536125A (zh) 2022-09-02 2022-09-02 一种太阳能驱动微生物电化学过程强化低温nh4+-n去除的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211069798.6A CN115536125A (zh) 2022-09-02 2022-09-02 一种太阳能驱动微生物电化学过程强化低温nh4+-n去除的方法

Publications (1)

Publication Number Publication Date
CN115536125A true CN115536125A (zh) 2022-12-30

Family

ID=84725067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211069798.6A Pending CN115536125A (zh) 2022-09-02 2022-09-02 一种太阳能驱动微生物电化学过程强化低温nh4+-n去除的方法

Country Status (1)

Country Link
CN (1) CN115536125A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263279A (zh) * 2011-07-06 2011-11-30 武汉理工大学 一种人工湿地水生植物电极的微生物燃料电池装置
CN110395805A (zh) * 2019-07-30 2019-11-01 盐城工学院 一种强化水平潜流湿地微生物电化学装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263279A (zh) * 2011-07-06 2011-11-30 武汉理工大学 一种人工湿地水生植物电极的微生物燃料电池装置
CN110395805A (zh) * 2019-07-30 2019-11-01 盐城工学院 一种强化水平潜流湿地微生物电化学装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIN YU等: "Applying constructed wetland-microbial electrochemical system to enhance NH4+ removal at low temperature", SCIENCE OF THE TOTAL ENVIRONMENT, vol. 724, 17 March 2020 (2020-03-17), pages 1 - 11 *

Similar Documents

Publication Publication Date Title
Liang et al. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment
Kadier et al. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production
Fang et al. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions
CN103922487B (zh) 一种实现污水处理和二氧化碳还原制甲醇的方法
CN103145240B (zh) 高浓度有机废水厌氧生物处理同步产电方法及装置
CN106630177B (zh) 一种利用微生物电解池处理焦化废水并产氢的方法及装置
CN112573667B (zh) 一种基于藻菌共生电化学体系的污水处理装置及其方法
CN109680291B (zh) 增强生物电化学的产氢方法及生物电化学产氢系统
CN109638327B (zh) 一种用单室厌氧氨氧化污泥-微生物燃料电池装置进行脱氮产电的工艺
Qin et al. Passive separation of recovered ammonia from catholyte for reduced energy consumption in microbial electrolysis cells
CN102674529A (zh) 一种微生物燃料电池与微藻培养相结合处理有机废水的方法及其专用装置
CN103073114A (zh) 一种低处理成本的废水脱色方法
CN102110835A (zh) 可用于aao污水处理工艺中强化脱氮的微生物燃料电池装置
US20230287462A1 (en) A process to treat a carbon dioxide comprising gas
CN103668305A (zh) 一种内置多电极体系的导流板式微生物电解池及其使用方法
CN105967455A (zh) 一种垃圾渗滤液自供电脱硝的装置及其方法
CN104762635A (zh) 电辅助将乙醇转化为乙酸的同时产甲烷的方法与装置
CN211411617U (zh) 一种电化学改进的生物过滤塔净化装置
CN202164174U (zh) 一种同时实现污水生态处理与微生物燃料电池产电的结构
CN109680289B (zh) 耦合式生物电化学产氢及提纯装置、系统和产氢方法
CN114574329A (zh) 基于沼气循环式发酵的沼气降碳耦合沼液减污装置及方法
CN109867353A (zh) 一种电增强零价铁厌氧水处理装置与方法
CN115536125A (zh) 一种太阳能驱动微生物电化学过程强化低温nh4+-n去除的方法
CN103864201A (zh) 一种利用源分离尿液微生物电解制取氢气的方法
CN203781882U (zh) 一种用于垃圾渗滤液氧化絮凝复合床装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination