CN115505798A - A kind of spherical intermetallic compound particle reinforced aluminum matrix composite material and preparation method thereof - Google Patents
A kind of spherical intermetallic compound particle reinforced aluminum matrix composite material and preparation method thereof Download PDFInfo
- Publication number
- CN115505798A CN115505798A CN202210714692.0A CN202210714692A CN115505798A CN 115505798 A CN115505798 A CN 115505798A CN 202210714692 A CN202210714692 A CN 202210714692A CN 115505798 A CN115505798 A CN 115505798A
- Authority
- CN
- China
- Prior art keywords
- intermetallic compound
- spherical
- aluminum alloy
- particle
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 51
- 239000011159 matrix material Substances 0.000 title claims abstract description 34
- 229910000765 intermetallic Inorganic materials 0.000 title claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 239000002131 composite material Substances 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 46
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000003756 stirring Methods 0.000 claims abstract description 22
- 229910016570 AlCu Inorganic materials 0.000 claims abstract description 21
- 239000002002 slurry Substances 0.000 claims abstract description 16
- 230000002787 reinforcement Effects 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000005266 casting Methods 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 239000010949 copper Substances 0.000 claims abstract description 9
- 239000006185 dispersion Substances 0.000 claims abstract description 8
- 238000011065 in-situ storage Methods 0.000 claims abstract description 7
- 238000009792 diffusion process Methods 0.000 claims abstract description 6
- 230000007246 mechanism Effects 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 239000000155 melt Substances 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000003607 modifier Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 239000002893 slag Substances 0.000 claims description 4
- 210000002257 embryonic structure Anatomy 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 229910016343 Al2Cu Inorganic materials 0.000 claims description 2
- 229910016382 Al4Cu9 Inorganic materials 0.000 claims description 2
- 229910017143 AlSr Inorganic materials 0.000 claims description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 claims description 2
- 229910018565 CuAl Inorganic materials 0.000 claims description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 230000006866 deterioration Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 239000006104 solid solution Substances 0.000 claims description 2
- 238000010301 surface-oxidation reaction Methods 0.000 claims description 2
- 239000000843 powder Substances 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 abstract description 3
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000002923 metal particle Substances 0.000 abstract description 2
- 239000011156 metal matrix composite Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000252067 Megalops atlanticus Species 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000009716 squeeze casting Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
本发明涉及颗粒增强金属基复合材料技术领域,且公开了一种球形金属间化合物颗粒增强铝基复合材料及其制备方法。针对铸造法在铝合金熔体中导入陶瓷颗粒增强相困难,界面结合差的问题,本发明选择在铝合金基体熔体将温至低温度区间,并将一定尺寸的球形或类球形铜颗粒粉末,通过一至多个搅拌杆快速导入熔融态铝合金浆料内部,在短时间内分散均匀后快速铸出。高熔点的金属颗粒与低熔点铝合金基体润湿良好,并通过扩散机制原位自生形成了球形形态与结合界面良好的AlCu金属间化合物增强相。该方法制备的铝铜金属间化合物形状可控,且硬度较高,分散均匀,界面冶金结合紧密,因而在综合力学性能和耐热耐磨损性能等方面均有明显提升。
The invention relates to the technical field of particle reinforced metal matrix composite materials, and discloses a spherical intermetallic compound particle reinforced aluminum matrix composite material and a preparation method thereof. Aiming at the difficulty of introducing ceramic particle reinforcement phase into the aluminum alloy melt by casting method and the problem of poor interfacial bonding, the present invention chooses the aluminum alloy matrix melt to be warmed to a low temperature range, and powders spherical or quasi-spherical copper particles of a certain size , quickly introduce the molten aluminum alloy slurry into the interior of the molten aluminum alloy slurry through one or more stirring rods, and quickly cast out after being uniformly dispersed in a short period of time. The high-melting-point metal particles wet well with the low-melting-point aluminum alloy matrix, and the AlCu intermetallic compound reinforcement phase with a spherical shape and a good bonding interface is formed in situ through the diffusion mechanism. The shape of the aluminum-copper intermetallic compound prepared by the method is controllable, and the hardness is high, the dispersion is uniform, and the interface metallurgical bonding is tight, so the comprehensive mechanical properties and heat resistance and wear resistance are significantly improved.
Description
技术领域technical field
本发明涉及颗粒增强金属基复合材料技术领域,具体为一种球形金属间化合物颗粒增强铝基复合材料及其制备方法。The invention relates to the technical field of particle-reinforced metal-based composite materials, in particular to a spherical intermetallic compound particle-reinforced aluminum-based composite material and a preparation method thereof.
背景技术Background technique
颗粒增强铝基合金是应现代科学发展需求而涌现出的具有强大生命力的材料,它集低膨胀、高导热、高强轻质三大特性于一身,成为航空航天、汽车以及电子通信等领域亟待推广的高新材料。颗粒增强铝合金以其基体合金可选择范围宽、成本低、易于用传统工艺方法制备和加工、能实现批量和大规模生产、制备的材料表现出良好的尺寸稳定性和各向同性而备受瞩目。颗粒增强铝合金用于制造车辆发动机的汽缸体和缸盖等部件,在保留合金材质优点的同时,可进一步改善发动机部件的强度、耐磨性、耐热性和抗疲劳性能。例如,SiCp/Al复合材料活塞应用于摩托车及小型汽车的发动机。部分发达国家已经将颗粒增强铝基复合材料应用于军用战斗机的腹鳍,相比于传统的铝合金材料,它将材料的刚度提高了50%,并且使用寿命也从原来的400h 提高到6000h。另外,用精密铸造、挤压铸造和粉末冶金等方法制备的颗粒增强铝合金,可以减小由于应力释放而产生的变形,提高材料的尺寸稳定性,同时还具有高的比强度、阻尼和谐振频率,减小振动放大。Particle-reinforced aluminum-based alloy is a material with strong vitality that emerges in response to the needs of modern scientific development. It integrates three characteristics: low expansion, high thermal conductivity, high strength and light weight. high-tech materials. Particle-reinforced aluminum alloys are widely selected for their matrix alloys, low cost, easy to prepare and process by traditional methods, can realize batch and large-scale production, and the prepared materials show good dimensional stability and isotropy. attention. Particle-reinforced aluminum alloys are used to manufacture parts such as cylinder blocks and cylinder heads of vehicle engines. While retaining the advantages of alloy materials, they can further improve the strength, wear resistance, heat resistance and fatigue resistance of engine parts. For example, SiCp/Al composite pistons are used in motorcycle and small car engines. Some developed countries have applied particle-reinforced aluminum-based composite materials to the ventral fins of military fighter jets. Compared with traditional aluminum alloy materials, it increases the stiffness of the material by 50%, and the service life is also increased from the original 400h to 6000h. In addition, the particle reinforced aluminum alloy prepared by precision casting, squeeze casting and powder metallurgy can reduce the deformation caused by stress release, improve the dimensional stability of the material, and also have high specific strength, damping and resonance frequency, reducing vibration amplification.
目前用于颗粒增强铝基合金制备的主要方法包括粉末冶金、铸造法等,其中铸造法工艺流程简单,成本较低,适合批量生产,是该领域的重要研发方向。而现有的颗粒增强铝基合金所用的增强颗粒主要为陶瓷颗粒(Al2O3、 SiC等)为主,但陶瓷颗粒与金属熔体润湿性很差,界面结合不良。如何将其良好的引入熔体,并分散均匀化,是铸造法制备颗粒增强铝基合金的技术难点。At present, the main methods for the preparation of particle-reinforced aluminum-based alloys include powder metallurgy and casting methods. Among them, the casting method has a simple process, low cost, and is suitable for mass production. It is an important research and development direction in this field. The reinforcing particles used in the existing particle-reinforced aluminum-based alloys are mainly ceramic particles (Al2O3, SiC, etc.), but the wettability between the ceramic particles and the metal melt is very poor, and the interface bonding is poor. How to introduce it into the melt well and disperse it uniformly is a technical difficulty in preparing particle-reinforced aluminum-based alloys by casting.
发明内容Contents of the invention
针对背景技术中提出的现有球形金属间化合物颗粒增强铝基复合材料的制备方法在使用过程中存在的不足,本发明提供了一种球形金属间化合物颗粒增强铝基复合材料及其制备方法,具备增强颗粒在基体中分散均匀,两者结合良好的优点,解决了上述背景技术中提出的问题。In view of the shortcomings in the use of the existing spherical intermetallic compound particle-reinforced aluminum matrix composite materials proposed in the background technology, the present invention provides a spherical intermetallic compound particle-reinforced aluminum matrix composite material and a preparation method thereof. It has the advantages of uniform dispersion of reinforcing particles in the matrix and a good combination of the two, and solves the problems raised in the above-mentioned background technology.
本发明提供如下技术方案:一种球形金属间化合物颗粒增强铝基复合材料,其特征在于:其结构特点如下:The present invention provides the following technical solutions: a spherical intermetallic compound particle reinforced aluminum matrix composite material, characterized in that its structural features are as follows:
(1)金属基体为铝合金,凝固温度区间为20℃至50℃;(1) The metal matrix is aluminum alloy, and the solidification temperature range is 20°C to 50°C;
(2)金属基体中包含1%-30%的颗粒增强体,颗粒增强体直径尺寸在1至 100μm之间,且均匀分散于基体中;基于扩散时间长短,颗粒增强体从颗粒界面至核心,梯度分布着全部或部分AlCu金属间化合物层、CuAl固溶体、纯铜组织。(2) The metal matrix contains 1%-30% particle reinforcement, and the diameter of the particle reinforcement is between 1 and 100 μm, and is uniformly dispersed in the matrix; based on the diffusion time, the particle reinforcement is from the particle interface to the core, Gradient distribution of all or part of the AlCu intermetallic compound layer, CuAl solid solution, pure copper structure.
(3)颗粒增强体为原位自生。(3) The particle reinforcement is in situ autogenous.
优选的,所述金属基体为AlSi系的A356铸造铝合金。Preferably, the metal base is AlSi-based A356 cast aluminum alloy.
优选的,所述颗粒增强体形态为球形。Preferably, the shape of the particle reinforcement is spherical.
优选的,所述梯度AlCu金属间化合物层指靠近铝侧的Al2Cu,靠近铜侧的Al4Cu9,以及处于两者间的AlCu三层金属间化合物。Preferably, the gradient AlCu intermetallic compound layer refers to Al2Cu near the aluminum side, Al4Cu9 near the copper side, and AlCu three-layer intermetallic compound between them.
制备上述球形金属间化合物颗粒增强铝基复合材料的方法,包括以下步骤:The method for preparing the above-mentioned spherical intermetallic compound particle reinforced aluminum matrix composite material comprises the following steps:
步骤一、以铝合金为基体材料,将其在熔炉中升温至680-720℃保温熔化;Step 1. Using aluminum alloy as the base material, heat it up to 680-720°C in a furnace to keep it melted;
步骤二、铝合金基体材料熔化后,向熔炉中撒入除渣剂,并保温10-30 分钟;Step 2. After the aluminum alloy matrix material is melted, sprinkle the slag remover into the furnace and keep it warm for 10-30 minutes;
步骤三、将铝合金基体材料熔体表面的浮渣撇除,加入铝合金变质剂进行变质处理,变质剂为AlTiB或AlSr合金;Step 3, skimming off the scum on the surface of the aluminum alloy base material melt, adding an aluminum alloy modifier for modification treatment, the modifier being AlTiB or AlSr alloy;
步骤四、将变质处理后的铝合金基体材料熔体降温至580℃-630℃区间后保温,形成半固态浆料;Step 4, cooling the modified aluminum alloy matrix material melt to the range of 580°C-630°C and then keeping it warm to form a semi-solid slurry;
步骤五、使用螺旋搅拌杆深入步骤四的所形成的液面之下,控制杆底距离熔体底面5-10cm,搅拌速度200-800rpm,使液面形成涡旋;Step 5. Use the spiral stirring rod to go deep under the liquid surface formed in step 4, control the bottom of the rod to be 5-10cm away from the bottom surface of the melt, and stir at a speed of 200-800rpm to make the liquid surface form a vortex;
步骤六、在液面漩涡附近分批加入铜粉,加入时间在2-5分钟,铜粉加入完成后继续搅拌2-5分钟,静置形成浆料;Step 6. Add copper powder in batches near the vortex of the liquid surface, and the adding time is 2-5 minutes. After the copper powder is added, continue to stir for 2-5 minutes, and let it stand to form a slurry;
步骤七、将步骤六形成的浆料取出制胚,供后续半固体铸造成形或将浆料快速升温640-680℃后快速浇注成形。Step 7. Take out the slurry formed in step 6 to make embryos for subsequent semi-solid casting or rapid casting after rapid heating of the slurry to 640-680°C.
优选的,步骤五中,为加快铜粉与铝液间的快速充分混合,多个螺旋杆在坩埚熔体空间内横向和纵向截面上需均匀分布排列,不留或少留搅拌死角。Preferably, in step five, in order to speed up the rapid and thorough mixing between the copper powder and the molten aluminum, a plurality of screw rods should be evenly distributed and arranged in the transverse and longitudinal sections of the crucible melt space, leaving no or less dead spots for stirring.
优选的,步骤6中,加入的铜粉颗粒形态为球形,直径尺寸在1-100μm 之间。Preferably, in step 6, the shape of the added copper powder particles is spherical, and the diameter is between 1-100 μm.
优选的,步骤四至步骤六过程中,同步在熔体表面吹入惰性保护气体,降低熔体表面氧气含量,减少铝液及铜粉表面氧化及氧化物卷入熔体内部。Preferably, during steps 4 to 6, an inert protective gas is simultaneously blown on the surface of the melt to reduce the oxygen content on the surface of the melt, reduce the surface oxidation of the aluminum liquid and copper powder and the inclusion of oxides into the melt.
优选的,所述步骤六至步骤七过程中,铜粉的加入搅拌分散和静置时间应控制在10分钟以内;Preferably, in the process of step 6 to step 7, the addition of copper powder, stirring, dispersion and standing time should be controlled within 10 minutes;
优选的,所述步骤三至步骤七过程中,从加入变质剂至浇注成形过程时间应在1小时内,防止变质衰退。Preferably, in the process from step 3 to step 7, the time from adding the modificator to the casting process should be within 1 hour to prevent deterioration and decay.
本发明具备以下有益效果:The present invention has the following beneficial effects:
铜增强相颗粒在加入和分散过程为金属材质,与铝合金熔体间无润湿不良或困难现象,因此增强颗粒可加入比例上限较高。The copper reinforcement phase particles are made of metal during the addition and dispersion process, and there is no poor or difficult wetting with the aluminum alloy melt, so the upper limit of the ratio of reinforcement particles that can be added is relatively high.
1、本发明选择在铝合金基体熔体将温至低温度区间,并将一定尺寸的球形或类球形铜颗粒粉末,通过一至多个搅拌杆快速导入熔融态铝合金浆料内部,在短时间内分散均匀后快速铸出。高熔点的金属颗粒与低熔点铝合金基体润湿良好,并通过扩散机制原位自生形成了球形形态与结合界面良好的 AlCu金属间化合物增强相。该方法制备的铝铜金属间化合物形状可控,且硬度较高,分散均匀,界面冶金结合紧密,因而在综合力学性能和耐热耐磨损性能等方面均有明显提升。1. In the present invention, the aluminum alloy matrix melt is selected from the low temperature range, and the spherical or quasi-spherical copper particle powder of a certain size is quickly introduced into the molten aluminum alloy slurry through one or more stirring rods. Quickly cast out after uniform dispersion. The high-melting-point metal particles wet well with the low-melting-point aluminum alloy matrix, and in situ self-generated AlCu intermetallic compound reinforcement phase with a spherical shape and a good bonding interface through the diffusion mechanism. The shape of the aluminum-copper intermetallic compound prepared by the method is controllable, and the hardness is high, the dispersion is uniform, and the interface metallurgical bonding is tight, so the comprehensive mechanical properties and heat resistance and wear resistance are significantly improved.
2、本发明通过选择凝固温度低的铜颗粒加入铝合金基体熔体中,在铝合金尚处于熔融的液固温度区间时,在多搅拌杆和快速搅拌下铜颗粒在铝合金浆料中的分散速度快,且由于铜颗粒在高温区停留时间短的原因,使得铜颗粒能保持良好的初始形态而不融入铝基体中,而是在搅拌期间和后期冷却过程在扩散机制作用下原位自生形成部分乃至全部的AlCu金属化合物,提高了 AlCu金属化合物的含量,从而进一步提高复合材料的性能。2. In the present invention, copper particles with low solidification temperature are added to the aluminum alloy matrix melt. When the aluminum alloy is still in the molten liquid-solid temperature range, the copper particles in the aluminum alloy slurry under multi-stirring rods and rapid stirring The dispersion speed is fast, and due to the short residence time of the copper particles in the high temperature zone, the copper particles can maintain a good initial shape and not be integrated into the aluminum matrix, but are self-generated in situ by the diffusion mechanism during the stirring and post-cooling process Part or even all of the AlCu metal compound is formed to increase the content of the AlCu metal compound, thereby further improving the performance of the composite material.
附图说明Description of drawings
图1为30wt%球状AlCu颗粒增强A356铝合金组织低倍图;Figure 1 is a low-magnification view of the structure of A356 aluminum alloy reinforced with 30wt% spherical AlCu particles;
图2为30wt%球状AlCu颗粒增强A356铝合金组织高倍图;Figure 2 is a high-magnification view of the structure of A356 aluminum alloy reinforced with 30wt% spherical AlCu particles;
图3为30wt%球状AlCu颗粒增强A356铝合金能谱面扫分析图;Fig. 3 is 30wt% spherical AlCu particle reinforced A356 aluminum alloy energy spectrum surface scanning analysis diagram;
图4为30wt%球状AlCu颗粒增强A356铝合金与A356铝合金硬度对比;Figure 4 is a comparison of the hardness of 30wt% spherical AlCu particles reinforced A356 aluminum alloy and A356 aluminum alloy;
图5为10wt%球状AlCu颗粒增强A356铝合金组织低倍图;Figure 5 is a low-magnification view of the structure of A356 aluminum alloy reinforced with 10wt% spherical AlCu particles;
图6为10wt%球状AlCu颗粒增强A356铝合金与A356铝合金硬度对比。Fig. 6 is a hardness comparison between A356 aluminum alloy reinforced with 10wt% spherical AlCu particles and A356 aluminum alloy.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明实施例中所用A356铝合金化学成分如下表1所示:The chemical composition of the A356 aluminum alloy used in the examples of the present invention is shown in Table 1 below:
表1 A356铝合金化学成分(wt.%)Table 1 Chemical composition of A356 aluminum alloy (wt.%)
实施例一:Embodiment one:
一种原位自生的球形AlCu金属间化合物颗粒增强的A356铝合金,其AlCu 颗粒质量百分比为30%,颗粒直径均值为30μm,如图1、图2所示,颗粒球形度良好,能谱结果如图3所示,球形黑色区域成分为AlCu金属间化合物。维氏硬度结果如图4所示,较常规A356铝合金提升明显。An A356 aluminum alloy reinforced by in-situ spherical AlCu intermetallic compound particles, the mass percentage of AlCu particles is 30%, and the average particle diameter is 30 μm. As shown in Figure 1 and Figure 2, the particle sphericity is good, and the energy spectrum results As shown in Figure 3, the composition of the spherical black area is AlCu intermetallic compound. The Vickers hardness results are shown in Figure 4, which is significantly improved compared with the conventional A356 aluminum alloy.
制备工艺包括如下步骤:The preparation process comprises the following steps:
步骤一、以A356铝合金为基体材料,将其在熔炉中升温至720℃保温熔化;Step 1. Using A356 aluminum alloy as the base material, heat it up to 720°C in a furnace to keep it melted;
步骤二、熔化后撒入除渣剂保温15分钟;Step 2. Sprinkle the slag remover after melting and keep it warm for 15 minutes;
步骤三、熔体表面撇渣,加入AlTiB变质剂;Step 3, skimming the surface of the melt, adding AlTiB modifier;
步骤四、熔体降温至630℃后保温;Step 4, heat preservation after the melt is cooled to 630°C;
步骤五、降下呈品字分布的三个螺旋搅拌杆并深入液面,控制杆底距离坩埚底部5cm,搅拌速度800rpm;Step 5. Lower the three helical stirring rods in a character distribution and penetrate into the liquid surface, control the bottom of the rod to be 5cm away from the bottom of the crucible, and stir at a speed of 800rpm;
步骤六、在搅拌杆漩涡附近分批加入铜粉,加入时间控制在2分钟以内;加粉完成后继续搅拌2分钟,静置形成浆料;Step 6. Add copper powder in batches near the vortex of the stirring rod, and the adding time is controlled within 2 minutes; after the powder addition is completed, continue to stir for 2 minutes, and let it stand to form a slurry;
步骤七、将步骤六形成的浆料直接取出制胚,供后续半固体铸造成形。Step 7. The slurry formed in step 6 is directly taken out to make embryos for subsequent semi-solid casting.
实施例二、Embodiment two,
一种原位自生的球形AlCu金属间化合物颗粒增强的A356铝合金,与实施例一不同的是:其AlCu颗粒质量百分比为10%,颗粒直径的均值也为30μ m,如图5所示,颗粒球形度良好,维氏硬度结果图6所示,较常规A356铝合金提升明显。An in-situ self-generated A356 aluminum alloy reinforced with spherical AlCu intermetallic compound particles, the difference from Example 1 is that the mass percentage of AlCu particles is 10%, and the average particle diameter is also 30 μm, as shown in Figure 5. The sphericity of the particles is good, and the Vickers hardness results are shown in Figure 6, which is significantly improved compared with the conventional A356 aluminum alloy.
制备工艺包括如下步骤:The preparation process comprises the following steps:
步骤一、以A356铝合金为基体材料,将其在熔炉中升温至680℃保温熔化;Step 1. Using A356 aluminum alloy as the base material, heat it up to 680°C in a furnace to keep it melted;
步骤二、熔化后撒入除渣剂保温30分钟;Step 2. Sprinkle the slag remover after melting and keep it warm for 30 minutes;
步骤三、表面撇渣,加入AlSe变质剂;Step 3, surface skimming, adding AlSe modifier;
步骤四、降温至590℃后保温;Step 4, keep warm after cooling down to 590°C;
步骤五、降下单螺旋搅拌杆并深入液面,控制杆底距离坩埚底部5cm;搅拌速度200rpm;Step 5. Lower the single-helical stirring rod and penetrate into the liquid surface, and control the bottom of the rod to be 5cm away from the bottom of the crucible; the stirring speed is 200rpm;
步骤六、在搅拌杆漩涡附近分批加入铜粉,加入时间控制在5分钟以内;加粉完成后继续搅拌5分钟,静置形成浆料;Step 6. Add copper powder in batches near the vortex of the stirring rod, and the adding time is controlled within 5 minutes; after the powder addition is completed, continue to stir for 5 minutes, and let it stand to form a slurry;
步骤七、将浆料快速升温640-680℃后快速浇注成形。Step 7. Rapidly raise the temperature of the slurry to 640-680° C. and then rapidly cast it into shape.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. There is no such actual relationship or order between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications and substitutions can be made to these embodiments without departing from the principle and spirit of the present invention. and modifications, the scope of the invention is defined by the appended claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210714692.0A CN115505798B (en) | 2022-06-22 | 2022-06-22 | Spherical intermetallic compound particle reinforced aluminum-based composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210714692.0A CN115505798B (en) | 2022-06-22 | 2022-06-22 | Spherical intermetallic compound particle reinforced aluminum-based composite material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115505798A true CN115505798A (en) | 2022-12-23 |
CN115505798B CN115505798B (en) | 2023-07-28 |
Family
ID=84500753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210714692.0A Active CN115505798B (en) | 2022-06-22 | 2022-06-22 | Spherical intermetallic compound particle reinforced aluminum-based composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115505798B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119035510A (en) * | 2024-11-01 | 2024-11-29 | 广州众山紧固件有限公司 | Preparation method of heat dissipation plate |
CN119035510B (en) * | 2024-11-01 | 2025-02-18 | 广州众山紧固件有限公司 | Method for preparing heat dissipation plate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5449421A (en) * | 1988-03-09 | 1995-09-12 | Toyota Jidosha Kabushiki Kaisha | Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements |
US5523050A (en) * | 1990-11-27 | 1996-06-04 | Alcan International Limited | Method of preparing improved eutectic or hyper-eutectic alloys and composites based thereon |
CN102400001A (en) * | 2011-12-02 | 2012-04-04 | 九江学院 | A kind of preparation method of in-situ intermetallic compound particle reinforced aluminum matrix composite material |
CN102912159A (en) * | 2012-10-25 | 2013-02-06 | 北京航空航天大学 | Intermetallic compound ultrafine particle reinforced metal-based composite material and preparation method thereof |
CN108856725A (en) * | 2018-06-13 | 2018-11-23 | 东南大学 | A kind of preparation method and application of dispersion-strengthened Cu in situ composites |
-
2022
- 2022-06-22 CN CN202210714692.0A patent/CN115505798B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5449421A (en) * | 1988-03-09 | 1995-09-12 | Toyota Jidosha Kabushiki Kaisha | Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements |
US5523050A (en) * | 1990-11-27 | 1996-06-04 | Alcan International Limited | Method of preparing improved eutectic or hyper-eutectic alloys and composites based thereon |
CN102400001A (en) * | 2011-12-02 | 2012-04-04 | 九江学院 | A kind of preparation method of in-situ intermetallic compound particle reinforced aluminum matrix composite material |
CN102912159A (en) * | 2012-10-25 | 2013-02-06 | 北京航空航天大学 | Intermetallic compound ultrafine particle reinforced metal-based composite material and preparation method thereof |
CN108856725A (en) * | 2018-06-13 | 2018-11-23 | 东南大学 | A kind of preparation method and application of dispersion-strengthened Cu in situ composites |
Non-Patent Citations (1)
Title |
---|
刘江等: "搅拌铸造法反应合成金属间化合物增强铝基复合材料", 《铸造》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119035510A (en) * | 2024-11-01 | 2024-11-29 | 广州众山紧固件有限公司 | Preparation method of heat dissipation plate |
CN119035510B (en) * | 2024-11-01 | 2025-02-18 | 广州众山紧固件有限公司 | Method for preparing heat dissipation plate |
Also Published As
Publication number | Publication date |
---|---|
CN115505798B (en) | 2023-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
El-Mahallawi et al. | Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic Alloys | |
CN102834535B (en) | Casting aluminum-copper alloy | |
CN101514409B (en) | Preparation Method of In-Situ Mg2Si Particle Reinforced Metal Matrix Composites | |
CN1030259A (en) | Al alloy composite | |
CN109022948A (en) | SiC particulate reinforced aluminum matrix composites with high temperature abrasion resistance and preparation method thereof | |
CN108085549A (en) | A kind of method that ultrasonic wave auxiliary mechanical agitation prepares new magnesium-based composite material | |
CN106435299A (en) | A kind of SiC particle reinforced aluminum matrix composite material and preparation method thereof | |
CN117026003B (en) | A stir-casting preparation method for aluminum-based composite materials based on composite modification and refinement | |
CN101876018A (en) | High-strength cast aluminum-silicon alloy for piston and preparation method thereof | |
Zhao et al. | Microstructure and mechanical properties of rheo-diecasted A390 alloy | |
CN114672686A (en) | Preparation method of additional nano-particle reinforced cast aluminum-lithium alloy | |
CN103981391A (en) | Aluminum-base composite material reinforced by both magnesium borate crystal whisker and silicon carbide particles and preparation method thereof | |
Khalkho et al. | Evaluation of microstructure and mechanical properties of TiO2 reinforced aluminium composites developed through multi-step stir casting | |
Abdelgnei et al. | The effect of the rheocast process on the microstructure and mechanical properties of Al-5.7 Si-2Cu-0.3 Mg alloy | |
Nafisi et al. | Semi-solid metal processing routes: an overview | |
CN115505798B (en) | Spherical intermetallic compound particle reinforced aluminum-based composite material and preparation method thereof | |
Sunitha et al. | Investigation of mechanical properties of SiC particle reinforced Aluminium A356/LM25 alloy composite | |
CN114277277B (en) | AlN/Al particle reinforced magnesium-aluminum rare earth based composite material and preparation method thereof | |
Chen et al. | Squeeze casting of SiCp/Al-alloy composites with various contents of reinforcements | |
Xu et al. | Effect of heat treatment on the microstructure and properties of in-situ Mg2Si reinforced hypereutectic Al-18% Si matrix composites | |
CN115572883A (en) | Preparation method of SiCp reinforced aluminum-based composite material for stirring casting | |
Zhang et al. | Efficient fabrication of semisolid nondendritic Al alloy slurry with high quality | |
Purohit et al. | Development of Al-Al2O3 nanocomposites by stir casting followed by hot forging and heat treatment and testing of their properties | |
WO2011032435A1 (en) | Chromium-rare earth co-doped high-strength heat-proof aluminum alloy material modified by carbon and producing method thereof | |
CN112662919A (en) | Al-Si-Cu-Mg-Ni alloy material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |