CN1155012A - Production of lactone gluconate by using black aspergillus to ferment glucose - Google Patents
Production of lactone gluconate by using black aspergillus to ferment glucose Download PDFInfo
- Publication number
- CN1155012A CN1155012A CN 96119169 CN96119169A CN1155012A CN 1155012 A CN1155012 A CN 1155012A CN 96119169 CN96119169 CN 96119169 CN 96119169 A CN96119169 A CN 96119169A CN 1155012 A CN1155012 A CN 1155012A
- Authority
- CN
- China
- Prior art keywords
- fermentation
- glucose
- gluconolactone
- seed
- sugar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 32
- 239000008103 glucose Substances 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- -1 lactone gluconate Chemical class 0.000 title claims description 4
- 241000228212 Aspergillus Species 0.000 title claims description 3
- 229940050410 gluconate Drugs 0.000 title claims description 3
- 238000000855 fermentation Methods 0.000 claims abstract description 35
- 230000004151 fermentation Effects 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 31
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 claims abstract description 26
- 235000012209 glucono delta-lactone Nutrition 0.000 claims abstract description 24
- 229960003681 gluconolactone Drugs 0.000 claims abstract description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 18
- 241000228245 Aspergillus niger Species 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 8
- 238000005342 ion exchange Methods 0.000 claims abstract description 8
- 239000011670 zinc gluconate Substances 0.000 claims abstract description 8
- 229960000306 zinc gluconate Drugs 0.000 claims abstract description 8
- WHMDKBIGKVEYHS-IYEMJOQQSA-L Zinc gluconate Chemical compound [Zn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O WHMDKBIGKVEYHS-IYEMJOQQSA-L 0.000 claims abstract description 7
- 235000011478 zinc gluconate Nutrition 0.000 claims abstract description 7
- 239000012452 mother liquor Substances 0.000 claims abstract description 6
- 239000006227 byproduct Substances 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims description 22
- 239000013078 crystal Substances 0.000 claims description 11
- 238000002425 crystallisation Methods 0.000 claims description 7
- 230000008025 crystallization Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000011218 seed culture Methods 0.000 claims description 5
- FRXSZNDVFUDTIR-UHFFFAOYSA-N 6-methoxy-1,2,3,4-tetrahydroquinoline Chemical compound N1CCCC2=CC(OC)=CC=C21 FRXSZNDVFUDTIR-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000001888 Peptone Substances 0.000 claims description 3
- 108010080698 Peptones Proteins 0.000 claims description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004202 carbamide Substances 0.000 claims description 3
- 235000019319 peptone Nutrition 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims description 2
- 239000001963 growth medium Substances 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 abstract description 8
- 238000005265 energy consumption Methods 0.000 abstract description 7
- 239000011787 zinc oxide Substances 0.000 abstract description 4
- 239000000047 product Substances 0.000 abstract description 2
- 238000001953 recrystallisation Methods 0.000 abstract 1
- 230000001502 supplementing effect Effects 0.000 abstract 1
- NEEHYRZPVYRGPP-IYEMJOQQSA-L calcium gluconate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O NEEHYRZPVYRGPP-IYEMJOQQSA-L 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 235000012204 lemonade/lime carbonate Nutrition 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- UNYNVICDCJHOPO-UHFFFAOYSA-N quabalactone III Natural products CC1OC(=O)C(O)=C1C UNYNVICDCJHOPO-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The present invention includes the following steps in turn: using aspergillus niger IFF12230 slant seed to ferment glucose under the condition of flow-addition of NaOH solution to control acidity; in later stage of fermentation, supplementing glucose to make high-concentration glucose fermentation; after fermentation, implementing such procedures of removing thallus, decolouring, ion exchange, concentration, crystallizing and drying to obtain edible grade gluconolactone product; first crystalline mother liquor is passed throughsuch processes of recrystallization and drying, the gluconolactone also can be obtained; adding zinc oxide in secondary crystalline mother liquor, also can produce by-product zinc gluconate. Total yield of the gluconolactone is about 60%, and the yield of zinc gluconate is above 0.1kg/kg gluconolactone. Said invented method features simple technological process, low energy consumption and high yield.
Description
The present invention relates to a kind of production method of glucolactone, particularly adopt fermentation of Aspergillus niger glucose to produce the method for Gluconolactone again through ion-exchange.
At present production method of glucolactone mainly contains three kinds: a kind of fermentation of Aspergillus niger glucose by lime carbonate as neutralizing agent, condensing crystal generates calglucon then, use sulfuric acid and its reaction with precipitated calcium again, through the anion-cation exchange resin removal of impurity, last condensing crystal drying obtains Gluconolactone, and this method is 62% (in calglucon) to the method yield of calglucon; The 2nd, glucose generates calglucon by the electrocatalysis method, lactonizes through sulfuric acid reaction and zwitterion exchange again, and last condensing crystal drying obtains Gluconolactone, and this method yield is 45% (with glucose meter); The 3rd, the method by immobilized cell generates Gluconolactone by one step of glucose, and this method yield is 50% (with glucose meter).
In above-mentioned three kinds of methods, first method is because calglucon solubleness less (4%), therefore glucose fermentation concentration can not be too high, at most can only 15%, otherwise fermented liquid has crystallization and separates out, glucose concn is too rare in the fermented liquid like this, can't be directly used in the production Gluconolactone, can only generate calglucon earlier, just produce Gluconolactone at last through sulfation regulating YIN and YANG ion exchange resinization again, owing to need through two kinds of resins exchange, the diluted multiple of solution big (about 5~6 times), energy consumption is big when concentrating at last, and this method calglucon and sulfuric acid reaction need to carry out under 100 ℃ of temperature, the energy consumption height is to the equipment requirements height; Second method needs numerous and diverse step of removing catalyzer, and its technical process is long, energy consumption is high, and yield is low; The third method still is in the laboratory study stage, also is not used for industrial production.
Deficiency at above-mentioned Gluconolactone production method, the present invention adopts fermentation of Aspergillus niger glucose, and mend sugared in the fermentation later stage to carry out high sugar-fermenting, again through malaga saccharic acid lactone in next life Zeo-karb transition, thereby reach the purpose that the Gluconolactone production process route is simple, energy consumption is low and yield is high.
For achieving the above object, the present invention adopts aspergillus niger strain IFFI2230, through seed culture, fermentation, remove thalline, decolouring, ion-exchange, concentrate, crystallization and drying and other steps, glucose fermentation after making the transition, ion-exchange is generated Gluconolactone, fermenting process stream adds NaOH solution with the control pH value, and fermentation later stage benefit sugar makes total reducing sugar reach 400~450g/L and proceeds fermentation again; Concrete fermentation condition is as follows: in the fermentation culture that contains 15% glucose, inserting the employing aspergillus niger IFFI2230 slant strains cultured seed liquid of 10% (W/W), is that 32 ℃, vapour-liquid ratio are 1.7~2.3m in temperature
3/ m
3.min. mixing speed is a ventilating fermentation 48~60 hours under 600~800rpm.pH2.0~6.5 conditions, fermenting process stream adds 50%NaOH solution with control fermented liquid pH value, when residual sugar is 15~80g/L, add glucose in the fermentation later stage and make total reducing sugar reach 400~450g/L, continue to ferment and when residual sugar is 2.0~2.9g/L, finish fermentation.
Consisting of of above-mentioned fermentation culture: 15% glucose, 0.037%KH
3PO
4, 0.055% urea, 0.015%MgSO
4, 0.1%CaCO
3
Seed culture fluid contains 5% glucose, 0.012%MgSO
4, 0.2%KCl, 0.015KH
2PO
4, 0.06%NH
4H
2PO
4, 0.2% peptone and 0.3% extractum carnis, culture condition is: add a few ring aspergillus niger IFFI2230 slant strains, cultivated 24 hours with the 250rpa shaking table under 30 ℃ of temperature.
Add glucose in the fermentation later stage, can disposablely add, also can add at twice, its total reducing sugar amount is at 400~450g/L, add fashionable at twice, for the first time the sugar that adds fully ferments when residual sugar is lower than 75g/L, adds sugar more for the second time, and the amount summation of twice adding reaches total reducing sugar 400~450g/L.
Add zinc oxide in the secondary crystal mother liquor of production Gluconolactone, also can produce the byproduct Zinc Gluconate.
The present invention utilizes the big characteristic of Sunmorl N 60S solubleness to adopt the fermentation later stage to add the technology of sugar, carry out the high concentration glucose fermentation, the exchange of fermented liquid direct ion can be converted into the target product Gluconolactone, improved plant factor, reduced and generated calisanin crystalline step in the existing technology, reduced the crystals dried step of once concentration, operational path is simple; Simultaneously because only through a cationic exchange, solution dilution multiple low (having only about 2.5 times), energy consumption is low, and production cost is little, the yield height, and also the secondary crystal mother liquor can be used for the byproduct of production high added value---Zinc Gluconate; The inventive method compares to existing manufacturing technique, and under the low prerequisite of shortened process, energy consumption, the method yield still is higher than existing technology substantially.
Following concrete steps of producing for the inventive method:
1. culture of seed liquid:
In the seed culture medium after the following sterilization of several rings addings of aspergillus niger IFFI2230 slant strains picking: 5% glucose, 0.012%MgSO
4, 0.02%KCl, 0.015%KH
2PO
4, 0.08%NH
4H
2PO
4, 0.2% peptone and 0.3% extractum carnis, cultivated 24 hours in 30 ℃, 250rpm shaking table, seed liquor;
2. fermentation:
Sterilized 15% glucose, the 0.03%KH of containing packs in 15 liters of mechanical agitating fermentation tanks
2PO
4, 0.055% urea, 0.015%MgSO
4, 0.1%CaCO
3Fermentation culture, inoculum size with 10% connect people's cultured seed liquid, at 32 ℃, vapour-liquid ratio 1.7~2.1m
3/ m
3.mia, mixing speed is to ventilate under 600~800rpm condition to stirring fermentation, in the fermenting process stream add 50%NaOH solution with control fermented liquid PH at 2.0~6.5, when the fermented liquid residual sugar is 15~80g/L, adding glucose to total reducing sugar is 400~450g/L, continue to ferment to residual sugar be 2.0~2.9g/L when maybe can't stream adding NaOH, finish fermentation.
3. remove thalline:
Put jar and remove thalline with the filter bag filtering fermentating liquid;
4. decolouring:
Adding 2% gac boils and decolours.Gac is removed in centrifugation again;
5. ion-exchange removes sodium ion:
Destainer: remove sodium ion through 732 Zeo-karbs (Φ 150 * 1000) exchange.
6. condensing crystal:
Exchange liquid is at 70 ℃ of following vacuum concentration to 80~90% (Gluconolactone meter), and proportion 1.4~1.5 is put into crystallizer tank and added 0.1~0.2% glucose sugar lactone as crystal seed, stirred crystallization under 48~54 ℃ of temperature;
7. washing is dry: after the whizzer centrifugation is put in the gained crystallization, add 10~40% (concentrated solution Gluconolactone meter) frozen water or a small amount of edible ethanol washing, promptly get Gluconolactone in 50 ℃ of oven dry then.
But Gluconolactone is produced in mother liquor reconcentration, crystallization.
8. the production of Zinc Gluconate:
Add ZnO stirring reaction under room temperature by theoretical amount in the secondary mother liquid and remove by filter unnecessary ZnO to neutral, the condensing crystal drying gets the byproduct Zinc Gluconate then.
Embodiment: by 5 enforcements of the present invention that above step and condition are implemented, its concrete implementation condition is listed as follows:
Embodiment | ????1 | ????2 | ????3 | ????4 | ????5 |
Vapour-liquid ratio (M 3/M 3·min) | ????2.05 | ????1.90 | ????1.75 | ????1.74 | ????1.92 |
Mixing speed (rpm) | ????800 | ????600 | ????800 | ????700 | ????800 |
Fermentation time (hr.) | ????48 | ????49 | ????50 | ????48 | ????60 |
Fermented liquid acidity (PH) | ????6.3 | ????6.2 | ????2.5 | ????4.5 | ????6.3 |
Residual sugar value (g/L) is mended sugar amount (g) for the first time when mending sugar | ????50 | ????25 | ????45 | ????37 | ????46 |
????2500 | ????1500 | ????2500 | ????2500 | ????1500 | |
Residual sugar value (g/L) is mended sugar amount (g) for the second time when mending sugar for the second time | ????17 | ????72 | |||
????1350 | ????1500 | ||||
Mend sugared secondary fermentation liquid total reducing sugar (g/L) | ????400 | ????435 | ????400 | ????400 | ????450 |
Tc (℃) | ????50 | ????52 | ????48 | ????52 | ????54 |
Wash crystallization is with frozen water amount (% Gluconolactone) | ????15 | ????30 | ????20 | ????40 | ????10 |
Gluconolactone total recovery (%) | ????64.4 | ????53 | ????57.2 | ????50.5 | ????58.8 |
Zinc Gluconate yield (g/Kg Gluconolactone) | ????0.15 | ????0.16 | ????0.17 | ????0.20 | ????0.12 |
Claims (5)
1, a kind of method of production of lactone gluconate by using black aspergillus to ferment glucose, through seed culture, fermentation remove thalline, decolouring, ion-exchange, concentrate, crystallization and drying and other steps, with glucose fermentation after ion-exchange generates Gluconolactone transition, it is characterized in that: adopt aspergillus niger IFFI2230 slant strains, in the fermentation culture that contains 15% glucose, insert the liquid of cultured seed of 10% (W/W), in temperature is 32 ℃, and vapour-liquid ratio is 1.7~2.1M
3/ M
3The min mixing speed is ventilating fermentation 48~60hr under 600~800rpm.pH2.0~6.5 conditions, fermenting process stream adds 50% NaOH solution control fermented liquid pH value, and in the fermentation later stage, when residual sugar is 15~80g/L, adding glucose, to make total reducing sugar be 400~450g/L, continues to ferment and finish fermentation when residual sugar is 2.0~2.9g/L.
2,, it is characterized in that the seed liquor of said seed liquor: at sterilized 5% glucose, the 0.012%MgSO of containing for cultivating by following condition by the described method of claim 1
4, 0.2%KCl, 0.015%KH
2PO
4, 0.06N
4H
2PO
4, 0.2% peptone and 0.3% extractum carnis seed culture medium in add aspergillus niger IFFI2230 slant strains after several rings activation, shaking table was cultivated 24 hours under 30 ℃, 250rpm condition.
3, by the described method of claim 1, it is characterized in that said fermented liquid is the fermented liquid of following composition: 15% glucose, 0.037%KH
2PO
4, 0.055% urea, 0.015%MgSO
4, 0.1%CaCO
3
4, by the described method of claim 1, it is characterized in that can adding ZnO in the secondary crystal mother liquor of said Gluconolactone, reaction can obtain the byproduct Zinc Gluconate through the condensing crystal drying.
5, by the described method of claim 1, it is characterized in that the said fermentation later stage adds glucose to total reducing sugar 400~450g/L, can once add, also can add at twice.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 96119169 CN1049455C (en) | 1996-10-10 | 1996-10-10 | Production of lactone gluconate by using black aspergillus to ferment glucose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 96119169 CN1049455C (en) | 1996-10-10 | 1996-10-10 | Production of lactone gluconate by using black aspergillus to ferment glucose |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1155012A true CN1155012A (en) | 1997-07-23 |
CN1049455C CN1049455C (en) | 2000-02-16 |
Family
ID=5125620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 96119169 Expired - Fee Related CN1049455C (en) | 1996-10-10 | 1996-10-10 | Production of lactone gluconate by using black aspergillus to ferment glucose |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1049455C (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1124349C (en) * | 1999-09-01 | 2003-10-15 | 中国科学院微生物研究所 | Process for preparing arabitol by transforming glucose with yeast cells |
CN100413973C (en) * | 2002-12-13 | 2008-08-27 | 上海爱普食品工业有限公司 | Method for producing gluconic acid lactone |
CN102489027A (en) * | 2011-12-12 | 2012-06-13 | 山东凯翔生物化工有限公司 | Energy-saving concentration method and device for glucono-delta-lactones |
CN104447653A (en) * | 2014-11-05 | 2015-03-25 | 朱忠良 | Production method of glucono-delta-lactone |
CN106148450A (en) * | 2015-03-27 | 2016-11-23 | 海南椰国食品有限公司 | A kind of high yield zinc-rich biological cellulose gel product |
-
1996
- 1996-10-10 CN CN 96119169 patent/CN1049455C/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1124349C (en) * | 1999-09-01 | 2003-10-15 | 中国科学院微生物研究所 | Process for preparing arabitol by transforming glucose with yeast cells |
CN100413973C (en) * | 2002-12-13 | 2008-08-27 | 上海爱普食品工业有限公司 | Method for producing gluconic acid lactone |
CN102489027A (en) * | 2011-12-12 | 2012-06-13 | 山东凯翔生物化工有限公司 | Energy-saving concentration method and device for glucono-delta-lactones |
CN102489027B (en) * | 2011-12-12 | 2014-06-04 | 山东凯翔生物化工有限公司 | Energy-saving concentration method and device for glucono-delta-lactones |
CN104447653A (en) * | 2014-11-05 | 2015-03-25 | 朱忠良 | Production method of glucono-delta-lactone |
CN106148450A (en) * | 2015-03-27 | 2016-11-23 | 海南椰国食品有限公司 | A kind of high yield zinc-rich biological cellulose gel product |
CN106148450B (en) * | 2015-03-27 | 2019-12-20 | 海南椰国食品有限公司 | High-yield zinc-rich biological cellulose gel product |
Also Published As
Publication number | Publication date |
---|---|
CN1049455C (en) | 2000-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0832276B1 (en) | Method of strong acid hydrolysis | |
US4828993A (en) | Process for the preparation of organic acids | |
CN102952831A (en) | Manufacturing process of purified lactic acid | |
CN101294169A (en) | Novel technique for extracting lactic acid with sodium salt fermentation electrodialysis | |
CN102321681A (en) | A kind of method and device for preparing gallic acid | |
CN1049455C (en) | Production of lactone gluconate by using black aspergillus to ferment glucose | |
CN1067376C (en) | Method for extracting glutamic acid from fermentation liquor | |
CN114988380A (en) | Method for producing food-grade monopotassium phosphate and co-producing high-purity gypsum by using feed-grade calcium hydrophosphate | |
CN103789362B (en) | A kind of premashing and simultaneous saccharification and fermentation produce the method for lactic acid | |
CN106083674B (en) | A kind of production method reducing carbonate in methionine saponification liquor | |
CN101693907A (en) | Method for using dried potato flour to prepare potassium citrate | |
CN107099563A (en) | It is a kind of the method that power technology prepares monosodium glutamate such as to utilize | |
JP2023537404A (en) | Simultaneous production system and method for erythritol and liquid sorbitol using cornstarch | |
CN110655547A (en) | Adenosine extraction method for reducing content of single related impurities | |
CN105483165A (en) | Preparation method of L-malic acid | |
CN1074242A (en) | The method that using solid distillers ' grains, yellow water by fermentation are produced lactic acid | |
CN101575621A (en) | High concentration fermentation process of 2-keto-D-gluconic acid mixed salt | |
CN108893510A (en) | A kind of compounding method of the fructose syrup made of plant amylum hydrolysis and isomerization | |
CN104789607A (en) | Method for preparing lactic acid and/or lactate through fermentation-separation coupling | |
US4036694A (en) | Process for beet sugar production | |
CN114031097A (en) | Separation and purification technology of potassium salt extract obtained by extracting potassium from corn soaking solution | |
CN110040698B (en) | Method for treating titanium dioxide waste acid by using magnesium sulfate | |
CN103014077B (en) | A kind of novel process of production of Propionic Acid by Fermentation Process calcium | |
CN111099988A (en) | Separation and extraction method of sodium gluconate mother liquor | |
US2883329A (en) | Process for producing citric acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20000216 Termination date: 20091110 |