CN115490253B - 一种氢氧化铝微球的制备方法 - Google Patents

一种氢氧化铝微球的制备方法 Download PDF

Info

Publication number
CN115490253B
CN115490253B CN202211221738.1A CN202211221738A CN115490253B CN 115490253 B CN115490253 B CN 115490253B CN 202211221738 A CN202211221738 A CN 202211221738A CN 115490253 B CN115490253 B CN 115490253B
Authority
CN
China
Prior art keywords
aluminum hydroxide
sodium aluminate
preparation
microspheres
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211221738.1A
Other languages
English (en)
Other versions
CN115490253A (zh
Inventor
张华�
李蛟
耿建国
彭珍琪
贺嘉慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Sifuer Technology Development Co.,Ltd.
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN202211221738.1A priority Critical patent/CN115490253B/zh
Publication of CN115490253A publication Critical patent/CN115490253A/zh
Application granted granted Critical
Publication of CN115490253B publication Critical patent/CN115490253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明属于氢氧化铝粉体生产技术领域,具体涉及微米级球形氢氧化铝的制备方法,采用工业级铝酸钠母液为铝源,加入尿素作为沉降剂,通过水热法控制温度分解制得微米尺寸级别球形氢氧化铝。原料成本低,设备投资少,工艺简单,绿色环保,便于产业化。

Description

一种氢氧化铝微球的制备方法
技术领域
本发明属于氢氧化铝粉体生产技术领域,具体涉及以工业级铝酸钠母液为铝源,加入尿素作为沉降剂,通过水热法控制温度分解的方法制得微米尺寸级别球形氢氧化铝。
背景技术
氢氧化铝粉体作为无机非金属填料,与塑料、橡胶、环氧树脂等多种聚合物有良好的阻燃匹配性,氢氧化铝受热200℃后开始分解,吸热脱水过程延缓了聚合物的燃烧,相当于一个散热器,减缓燃烧速度,同时放出的水蒸气稀释了聚合物分解所产生的各种可燃气体,使起火更加困难;同时还能在聚合物表面形成氧化铝及碳化产物构成的保护层,进一步抑制燃烧并通过吸附烟灰颗粒降低烟密度。这些得天独厚的材料特性,成就了氢氧化铝阻燃、消烟功能,让其成为世界用量最大的阻燃剂之一。相同粒径条件下,球形氢氧化铝具有比表面积小,颗粒分散性好,相同添加份数下氢氧化铝/有机基体聚合物混合粘度低,加工性能好,聚合物成品伸长率高的优点。目前,氢氧化铝的形貌控制是一项硬核技术需求,因为氢氧化铝的形貌会影响产品的填充性能和应用性能,不同的应用领域对产品的形貌有不同要求,大多数行业填充阻燃用的氢氧化铝需要表面光滑、球形度高的产品以提高有机聚合物中的添加量、均一分散性。
根据文献检索,常见的氢氧化铝粉体的生产方法包括种分法、碳分法、水热法、模板法、喷雾干燥法、沉淀法、微乳液法等诸多方法。其中,种分法和沉淀法工艺最简单,但由于氢氧化铝自发结晶的取向问题无法得到均相长大的颗粒,通常为片状结构,且粒径尺度分布范围大。碳分法通过向铝酸钠溶液中通入二氧化碳的方法生成氢氧化铝颗粒,该方法得到的氢氧化铝颗粒尺度分布均匀,填充流动性比种分法和沉淀法得到的产品好,但至今没有使用该方法制得微球的报道。模板法和微乳液法均可以制备氢氧化铝微球,但其辅助试剂多,分离困难,设备复杂,生产成本极高,目前仅限实验室小规模科研用。喷雾干燥法是通过水或其他溶剂,使溶质均匀分散至溶液体系之中或形成凝胶,将分散好的溶液通过压力泵注入到喷雾机中,喷嘴吸取前驱体溶液,然后将浆料通过高压力挤压到另外的腔室内,在重力和表面张力的作用下,溶液会形成一个个圆球状的微型水滴。由于液滴较小,在高温下水分快速蒸发,溶质脱水后形成球形颗粒。此方法优点是步骤简单,不使用其他试剂,成本较低,适用于大规模生产。缺点是生成颗粒球形形貌较差,且容易产生团聚现象。
中国专利文件 CN108341422公开的“棒状β-氢氧化铝及其制备方法和应用”,该方法制备的氢氧化铝聚集体呈类球形态,但粒径达到30μm,不符合目前高端领域应用的要求。中国专利文件CN111807392公开的“一种亚微米级超细氢氧化铝的制备方法及其制品和应用”通过控制铝酸钠的浓度、温度和添加阻隔剂得到亚微米级超细氢氧化铝。该专利使用的阻隔剂为氢氧化铝微粉或氢氧化铝成品浆液,在严格控制分解条件的情况下可以得到非定向生长的亚微米级别的氢氧化铝,但其颗粒的微观形貌仍然是不规则的颗粒,扫描电镜图片显示其仍然具有片状解理的特征。
发明内容
本发明针对现有技术存在的上述不足,提出以工业铝酸钠母液为铝源,以尿素为沉降剂,通过水热反应的方法制备氢氧化铝微球的方法。
本发明所述的氢氧化铝微球的制备方法包括以下步骤:
(1)通过加水稀释的方法把工业铝酸钠的浓度调整到1mol/L;
(2)按照尿素与铝离子的摩尔配比为3:1的比例加入尿素,充分溶解;
(3)在水热釜中,在120±5℃下水热反应3~5小时;
(4)自然冷却后,过滤清洗,80℃下烘干2小时得到氢氧化铝微球;
(5)将过滤后的溶液回收,加入工业铝酸钠母液,调整其浓度为1mol/L;
(6)重复步骤(2)至步骤(5),循环生产。
本发明所采用的主要原料为工业铝酸钠母液,调节其浓度为1mol/L,以3:1比例的尿素为沉降剂在水热釜中于120±5℃下水热反应3~5小时,冷却后经过滤烘干得到粒径2-4μm的氢氧化铝微球。
作为铝源的铝酸钠母液是通过氢氧化钠浓溶液溶解铝土矿过滤得到的,母液中铝酸钠的浓度约为4mol/L,不属于管制化学品,廉价易得。反应后的溶液经过滤后可以重复利用,在节省原料的同时对环境非常友好,整套工艺接近零排放。
本发明的有益效果是:
1、以工业铝酸钠为主要铝源,廉价易得且可以回收利用,对环境友好;
2、生产工艺简单,设备投入少,制得的氢氧化铝微球粒径均匀光滑。
附图说明
图1为本方法制备的氢氧化铝微球的扫描电镜形貌图(标尺50μm);
图2为本方法制备的氢氧化铝微球的扫描电镜形貌图(标尺10μm);
图3为本方法制备的氢氧化铝微球的X射线衍射谱图。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例
本发明所述的微米尺度球状氢氧化铝的制备方法,步骤如下:
(1)铝酸钠母液的处理:
工业铝酸钠母液通常由氢氧化钠浓溶液浸泡铝土等矿物,将其中的勃姆石、一水铝石、拜耳石、三水铝石、三羟铝石和诺三水铝石等成分中的铝转化为铝酸钠进入溶液,经过过滤即得到铝酸钠母液。该母液可以从市场上直接购买取得,但由于不同来源和批次的原因,其浓度有较大的差异,需要根据其实际浓度加水进行稀释,得到1mol/L的铝酸钠溶液;
(2)按照尿素与铝离子的摩尔配比为3:1的比例加入尿素,充分溶解:
在步骤(1)中制得的1mol/L的铝酸钠溶液中加入尿素,使尿素浓度达到3mol/L左右,可以适当加热加快其溶解速度,但最高溶解温度不得超过40℃;
(3)将上述溶液转移至水热反应釜中,控制120℃左右水热反应3-5小时;
(4)让水热反应釜自然冷却,将其中的物质进行过滤,滤液保留,滤饼用纯净水清洗3遍后在80℃下烘干2小时得到氢氧化铝微球;
(5)测量滤液中的铝含量,加入浓铝酸钠工业母液,将该滤液的铝酸钠浓度重新调整回1mol/L,重复步骤(2)至步骤(5)循环生产;
实施例中未明确给出具体数值的参数见表1;
表1实施例参数
Figure 342190DEST_PATH_IMAGE001
性能测试分析:
1.形貌分析:
通过场发射扫描电子显微镜(型号Apreos)对本方法制备的氢氧化铝颗粒进行微观形貌观察,结果显示其主要为粒径2-4μm的球形颗粒,表面光滑(见说明书附图1、2);
2.X射线衍射分析:
使用WJGS-009 X-射线衍射仪(D8 ADVANCE)对本方法制备的氢氧化铝颗粒进行了晶格结构分析,结果显示其结构主要为AlOOH成分的勃姆石。在14.5°、28.2°、38.3°、48.9°和64.0°处的五个最强峰属于勃姆石的(020)、(120)、(031)、(051)和(231)晶面,这些峰与标准PDF卡片对应信息一致,衍射峰强度一般,有较高的背景衍射,表明本方法制得的氢氧化铝无定形成分较多,非单一结晶形式,有利于受热后热分解,发挥其阻燃效果;
3.其它性能指标(见表2):
表2 本方法得到的氢氧化铝微球于普通氢氧化铝粉体的指标对比。
Figure 931434DEST_PATH_IMAGE002
根据发明内容进行工艺参数的调整,均可实现氢氧化铝微球的制备,且表现出与上述实施例基本一致的性能。以上对本发明作了示例性的描述,需要说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改,以及本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (1)

1.一种微米尺度球状氢氧化铝的制备方法,其特征在于,包括以下步骤:
(1)通过加水稀释的方法把工业铝酸钠的浓度调整到1mol/L;
(2)按照尿素与铝离子的摩尔配比为3:1的比例加入尿素,充分溶解;
(3)在水热釜中,在120±5℃下水热反应3~5小时;
(4)自然冷却后,过滤清洗,80℃下烘干2小时得到氢氧化铝微球,所得氢氧化铝微球粒径均匀光滑;
(5)将过滤后的溶液回收,加入工业铝酸钠母液,调整其浓度为1mol/L;
(6)重复步骤(2)至步骤(5),循环生产。
CN202211221738.1A 2022-10-08 2022-10-08 一种氢氧化铝微球的制备方法 Active CN115490253B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211221738.1A CN115490253B (zh) 2022-10-08 2022-10-08 一种氢氧化铝微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211221738.1A CN115490253B (zh) 2022-10-08 2022-10-08 一种氢氧化铝微球的制备方法

Publications (2)

Publication Number Publication Date
CN115490253A CN115490253A (zh) 2022-12-20
CN115490253B true CN115490253B (zh) 2023-06-20

Family

ID=84472754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211221738.1A Active CN115490253B (zh) 2022-10-08 2022-10-08 一种氢氧化铝微球的制备方法

Country Status (1)

Country Link
CN (1) CN115490253B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2449474A1 (fr) * 1979-02-26 1980-09-19 Rhone Poulenc Ind Billes d'alumine a double porosite, leur procede de preparation et leurs applications comme supports de catalyseurs
FR2534899A1 (fr) * 1982-10-20 1984-04-27 Pechiney Aluminium Procede d'obtention de trihydroxyde d'a luminium de diametre median inferieur a 4 microns regle a la demande
CN103011215B (zh) * 2012-12-10 2014-11-26 中国科学院合肥物质科学研究院 一种勃姆石微纳结构球及其制备方法
CN106830024B (zh) * 2017-02-16 2018-06-12 曲阜师范大学 一种赤泥为原料制备活性勃姆石及氧化铝多孔微球的水热-热转化方法

Also Published As

Publication number Publication date
CN115490253A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
CN110357135B (zh) 一种高纯锂电池隔膜用特种氧化铝的制备方法
Sun et al. Synthesis of Nanocrystalline α‐Al2O3 Powders from Nanometric Ammonium Aluminum Carbonate Hydroxide
DE102006011965A1 (de) Verfahren zur Herstellung feiner Alpha-Aluminiumoxidteilchen
CN108751239A (zh) 细胞磨水磨法晶种制备超白超细氢氧化铝方法
CN111362698A (zh) 一种新型各向同性核级石墨材料及其制备方法
CN106927494B (zh) 一种利用磷石膏直接制备改性碳酸钙的方法
CN112408439B (zh) 以氢氧化镁粗粉为原料制备阻燃剂用超细氢氧化镁的方法
JP2009227485A (ja) ベーマイト微粒子、アルミナ微粒子及びそれらの製造方法
CN115072757A (zh) 一种微细棒状文石型碳酸钙及其制备方法
WO2002094715A1 (fr) Hydroxyde d'aluminium modifie ultrafin et sa preparation
CN115490253B (zh) 一种氢氧化铝微球的制备方法
CN109179471B (zh) 一种具有抗沉降性轻质碳酸钙的制备方法
CN114436305A (zh) 一种板状勃姆石厚度控制方法
KR20130070092A (ko) 산화 이트륨 분말의 제조방법 및 이에 의해 제조된 산화 이트륨 분말
CN103496727A (zh) 一种微晶α-Al2O3 聚集体的制备方法
CN112875735B (zh) 一种高结晶强度超细氢氧化铝的生产方法
US20220305475A1 (en) Method for preparing silicate/carbon composite from attapulgite, and use of silicate/carbon composite
CN103449490A (zh) 多孔氧化铝微纳米球及其制备方法
CN115784282B (zh) 一种勃姆石的制备方法
CN110563036A (zh) 一种富含氧空位的氧化铋纳米材料及其制备方法
CN110451544A (zh) 一种球形纳米碳酸锶的制备方法
CN110078104A (zh) 一种勃姆石纳米粉的制备方法
CN115650270B (zh) 一种微米尺寸球状氢氧化铝的制备方法
CN102976369B (zh) 低品位菱镁矿制备超细氢氧化镁和碱式硫酸镁晶须的方法
CN112110732A (zh) 一种利用可溶性碳源来制备氮化铝粉体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240117

Address after: No. 2 Qixing Road, Zhonglou Community, Economic Development Zone, Zichuan District, Zibo City, Shandong Province, 255100

Patentee after: Shandong Sifuer Technology Development Co.,Ltd.

Address before: 255086 room 313, block A, Gao Chuang garden, hi tech Development Zone, Zibo, Shandong.

Patentee before: Shandong University of Technology

TR01 Transfer of patent right