CN115475639A - 一种镁铝水滑石及其制备方法及一种硫化物脱硫的方法 - Google Patents

一种镁铝水滑石及其制备方法及一种硫化物脱硫的方法 Download PDF

Info

Publication number
CN115475639A
CN115475639A CN202110667144.2A CN202110667144A CN115475639A CN 115475639 A CN115475639 A CN 115475639A CN 202110667144 A CN202110667144 A CN 202110667144A CN 115475639 A CN115475639 A CN 115475639A
Authority
CN
China
Prior art keywords
magnesium
aluminum
source
hydrotalcite
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110667144.2A
Other languages
English (en)
Inventor
吴忠帅
米金星
刘岳峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202110667144.2A priority Critical patent/CN115475639A/zh
Publication of CN115475639A publication Critical patent/CN115475639A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8606Removing sulfur compounds only one sulfur compound other than sulfur oxides or hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种镁铝水滑石及其制备方法及一种硫化物脱硫的方法,所述制备方法包括以下步骤:将镁源、铝源、模板剂与沉淀剂机械混合后进行固化反应,得到所述镁铝水滑石。本方法利用机械化学合成方法,通过研磨来达到金属间的均匀分散,通过加入气相二氧化硅及其后续去除手段来促进织构参数改善并增加表面羟基的暴露程度;通过滴加微量沉淀剂促进水解,高温固化后得到镁铝水滑石。该方法简单易行,耗时短,制备过程中只需微量碱溶液,产率高。本发明所制备的镁铝水滑石呈现出破碎的六边形纳米片状结构,有利于羟基暴露,在温度为50℃时具有接近100%COS转化率及120℃时具有接近100%的H2S转化率,适用于中低温COS和H2S脱除应用研究。

Description

一种镁铝水滑石及其制备方法及一种硫化物脱硫的方法
技术领域
本发明涉及一种镁铝水滑石及其制备方法及一种硫化物脱硫的方法,属于无机材料制备及应用领域。
背景技术
随着全球对能源需求的快速增长和环境保护的日益严格,传统化石能源,如煤炭和石油资源的高效与清洁利用显得越来越重要。采用常规工艺处理这些化石能源不仅效率低,且处理排放后的工业尾气中含有硫化物 (主要为羰基硫(COS)和硫化氢(H2S))。这些排放的硫化物不仅污染大气环境,危害人类健康,还会腐蚀工业过程的下游设备和毒化催化剂。目前,工业上对尾气中的COS脱除主要采取加氢转化法、吸收法、光解法和水解法。尤其水解法(COS+H2O→CO2+H2S)以其温和的反应条件和高效的脱除效率在工业上被广泛应用。而针对尾气中的H2S,目前主要采用克劳斯工艺进行脱除。但受到热力学的限制,处理后尾气中依然残留有 3%-5%的H2S。针对该问题,采用H2S选择性催化氧化可实现H2S的完全转化,且生成单质硫。虽然针对COS水解和H2S氧化都有对应的催化剂,如常见的中低温COS水解催化剂K/γ-Al2O3和H2S氧化催化剂Fe2O3。但尚未有一种催化剂可同时实现对COS水解和H2S氧化的高效催化转化。
水滑石(Layered Double Hydrotalcites,简写LDHs)是一种具有层状结构的阴离子无机金属材料,也被称作层状复合金属氢氧化物或者阴离子黏土。其特殊的结构和物理化学性质,如碱性、微孔结构、吸附性能、催化性能等,在阻燃剂、催化剂、催化剂载体、污水处理剂、及石油工业等众多领域具有广泛的应用。此外,镁铝水滑石具有丰富的结构性碱中心(OH-),可有效吸附并活化酸性气体分子,展示出在脱硫领域的应用潜能。目前水滑石的制备方法主要有:共沉淀法、水热合成法、离子交换法等。其中共沉淀法和水热法是合成水滑石最常见的方法。但这两种方法都存在步骤复杂、产率低、不易调控等缺点。
发明内容
本发明克服以上不足之处,提出一种绿色简便的方法制备镁铝水滑石,以镁源和铝源为原料,通过引入气相二氧化硅模板剂来进行镁铝水滑石物化性质的改善,再添加少量的碱液促进结构搭建。该方法不仅可以得到结构完善,结晶度高的镁铝水滑石结构,且呈现出破碎的六边形纳米片,有利于活性组分的暴露。本发明为镁铝水滑石的简便绿色改性制备提供了参考,具有广阔深远的使用价值。基于优异的物化性质,所制备的镁铝水滑石不仅可高效催化COS水解,也能有效促进产生的H2S的催化转化,进一步,扩展了镁铝水滑石在硫化物脱除领域的应用。
根据本申请的一个方面,提供了一种镁铝水滑石的制备方法的方法,该方法包括以下步骤:将镁源、铝源、模板剂与沉淀剂机械混合后进行固化反应,得到所述镁铝水滑石,其中所述机械混合在玛瑙罐中进行,待机械混合后转移至干燥箱中进行固化反应,得到的初产物依次用氢氧化钠溶液和去离子水洗涤三次后直接干燥即得到用于硫化物催化转化的镁铝水滑石;所述固化反应是在水热釜聚四氟乙烯内衬中进行。
所述模板剂为气相二氧化硅。
可选地,所述镁铝水滑石比表面积为72~175m2/g,孔容为 0.154~0.347cm3/g,平均孔径为5.03~7.49nm。
优选地,所述镁铝水滑石比表面积为130~175m2/g;孔容为 0.261~0.347cm3/g,平均孔径为5.84~7.49nm。
可选地,所述镁源选自甲醇镁、乙醇镁、硝酸镁中的至少一种;
所述铝源选自异丙醇铝、硝酸铝中的至少一种;
所述镁源与铝源的摩尔比为1~5:1;
所述镁源的摩尔数以所含镁元素的摩尔数计;
所述铝源的摩尔数以所含铝元素的摩尔数计;
优选地,所述镁源与铝源的摩尔比为2~4:1;
所述气相二氧化硅粒径为20~60nm,比表面积为150~300m2/g;
所述镁源与气相二氧化硅的质量比为5~36;
优选地,所述镁源与气相二氧化硅的质量比为6~15;
可选地,所述沉淀剂选自碳酸钠溶液、碳酸氢钠和碳酸铵中的至少一种;
所述沉淀剂与镁源摩尔比为0.08~0.17,其中所述镁源的摩尔数以所含镁元素的摩尔数计;
优选地,所述沉淀剂与镁源摩尔比为0.10~0.15;
可选地,所述机械混合具体步骤包括:将镁源、铝源和气相二氧化硅混合进行第一次球磨后,加入所述沉淀剂进行第二次球磨;
所述第一次球磨时间为5~30min;
优选地,所述第一次球磨时间可独立选自5min、10min、15min、20min、 25min、30min;
所述第二次球磨时间为30~60min;
优选地,所述第二次球磨时间可独立选自30min、40min、50min、60min;
可选地,所述固化反应温度为90~150℃,时间为6~12h。
优选地,所述固化反应温度可独立选自90℃、100℃、110℃、120℃、 130℃、140℃、150℃;
优选地,所述固化时间可独立选自6h、7h、8h、9h、10h、11h、12h;
可选地,所述制备方法中还包括干燥;
所述干燥温度为80~120℃,干燥时间为12~24h;
优选地,所述干燥温度可独立选自80℃、90℃、100℃、110℃、120℃;
优选地,所述干燥时间可独立选自12h、14h、16h、18h、20h、22h、 24h。
本申请的另一个方面,涉及一种硫化物脱硫的方法,所述方法包括:将硫化物与催化剂接触反应,其中所述催化剂选自所述的制备方法制得的镁铝水滑石中的至少一种;
所述硫化物选自羰基硫、硫化氢中的至少一种。
可选地,所述反应的具体步骤包括:将含有羰基硫和惰性气体的原料气与所述催化剂接触,并通入水蒸气进行催化水解反应得到硫化氢和二氧化碳,其中惰性气体作为平衡气。
可选地,所述惰性气体选自氮气、氦气、氩气中的至少一种;
所述原料气中,羰基硫的含量为100~200mg/m3
反应过程中,原料气的质量空速为6000~14000mL/g·h;
优选地,所述羰基硫的含量可独立选自100mg/m3、150mg/m3、200 mg/m3
优选地,所述原料气的质量空速为8000~12000mL/g·h;
所述原料气体流速为20mL/min~50mL/min;
优选地,所述原料气体流速可独立选自20mL/min、30mL/min、 40mL/min、50mL/min;
所述水解反应的温度为30~170℃;
优选地,所述水解反应的温度可独立选自30℃、50℃、70℃、90℃、110℃、130℃、150℃、170℃;
升温速率为3℃/min;
所述原料气的温度为25℃~60℃。
优选地,所述原料气的温度可独立选自25℃、40℃、60℃;
可选地,所述反应的具体步骤包括:将含有硫化氢、氧气、惰性气体的原料气与所述催化剂接触反应得到硫单质和水,其中惰性气体为平衡气,以模拟实际工况下硫化物的浓度;
所述原料气中,氧气的浓度为2500ppm~5000ppm;
优选地,所述氧气的浓度可独立选自2500ppm、3000ppm、4000ppm、 5000ppm;
所述硫化氢的浓度为5000ppm~10000ppm;
优选地,所述硫化氢的浓度可独立选自5000ppm、8000ppm、10000ppm;
所述惰性气体选自氮气、氦气、氩气中的至少一种;
所述原料气流速为20mL/min~50mL/min。
优选地,所述原料气流速可独立选自20mL/min、30mL/min、40mL/min、 50mL/min;
所述反应过程中,原料气的质量空速为9000~18000mL/g·h;
优选地,反应过程中,原料气的质量空速为12000~16000mL/g·h;
所述反应温度为90℃~210℃,升温速率为3℃/min,
优选地,所述反应温度可独立选自90℃、150℃、210℃。
本申请能产生的有益效果包括:
1)本发明所制备的镁铝水滑石制备方法采用机械化学法合成,步骤简单,产率高,有利于大量制备。
2)本发明仅仅通过添加少量模板剂就可以实现镁铝水滑石物化性质的调节和改善。
3)本发明所制备的镁铝水滑石结构良好,结晶度高,呈现出破碎的六边形纳米片,有利于羟基活性组分的暴露。在温度为70℃中,COS转化率便可达到94.5%,温度为90℃以上,COS转化率便可达到100%;在温度为120℃时,H2S转化率接近100%;本发明所制备的镁铝水滑石适用于中低温COS和H2S脱除应用研究。
附图说明
图1为本发明实施例2~4制备的镁铝水滑石产物的XRD谱图;
图2为本发明对比例1和实施例4制备镁铝水滑石的SEM图像,其中图a、b、c为对比例1中催化剂E的SEM图像;图d、e、f为实施例4 中催化剂D的SEM图像;
图3为本发明实施例3所制备镁铝水滑石的热分解曲线;
图4为实施例1~4所制备镁铝水滑石的H2S选择性催化氧化结果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
分别称取乙醇镁3.36g,异丙醇铝2g和气相二氧化硅(粒径:30nm;表面积:180m2/g)0.1g,然后转移至玛瑙罐中球磨5min。待机械混合结束后再加入3mL碳酸氢钠溶液(1M)继续球磨30min。然后将混合后的物质置于水热釜聚四氟乙烯内衬中在90℃反应12h。待反应结束后冷却至室温得到初产物,将初产物分别用氢氧化钠(1M)和去离子水洗涤三次,然后将抽滤后的产物在烘箱中于120℃干燥16h,待自然冷却后便得到用于硫化物催化的镁铝水滑石,记为催化剂A。
实施例2
分别称取甲醇镁2.54g,硝酸铝3.67g和气相二氧化硅(粒径:60nm;表面积:150m2/g)0.2g,然后转移至玛瑙罐中球磨10min。待机械混合结束后再加入3mL碳酸钠溶液(1M)继续球磨40min。然后将混合后的物质置于水热釜聚四氟乙烯内衬中在120℃反应8h。待反应结束后冷却至室温得到初产物,将初产物分别用氢氧化钠(1M)和去离子水洗涤三次,然后将抽滤后的产物在烘箱中于90℃干燥24h,待自然冷却后便得到用于硫化物催化的镁铝水滑石,记为催化剂B。
实施例3
分别称取硝酸镁3.36g,异丙醇铝2g和气相二氧化硅(粒径:20nm;表面积:300m2/g)0.3g,然后转移至玛瑙罐中球磨20min。待机械混合结束后再加入5mL碳酸氢氨溶液(1M)继续球磨50min。然后将混合后的物质置于水热釜聚四氟乙烯内衬中在150℃反应9h。待反应结束后冷却至室温得到初产物,将初产物分别用氢氧化钠(1M)和去离子水洗涤三次,然后将抽滤后的产物在烘箱中于100℃干燥18h,待自然冷却后便得到用于硫化物催化的镁铝水滑石,记为催化剂C。
实施例4
分别称取甲醇镁2.54g,异丙醇铝2g和气相二氧化硅(粒径:50nm;表面积:200m2/g)0.5g,然后转移至玛瑙罐中球磨30min。待机械混合结束后再加入5mL碳酸氢钠溶液(1M)继续球磨60min。然后将混合后的物质置于水热釜聚四氟乙烯内衬中在110℃反应10h。待反应结束后冷却至室温得到初产物,将初产物分别用氢氧化钠(1M)和去离子水洗涤三次,然后将抽滤后的产物在烘箱中于80℃干燥24h,待自然冷却后便得到用于硫化物催化的镁铝水滑石,记为催化剂D。
对比例1
分别称取乙醇镁3.36g,异丙醇铝2g,然后转移至玛瑙罐中球磨10 min。待机械混合结束后,将混合后的物质加入3ml碳酸钠溶液(1M),然后置于水热釜聚四氟乙烯内衬中在120℃反应6h。待反应结束后冷却至室温得到初产物,然后将初产物在烘箱中于100℃干燥12h,待自然冷却后便得到用于硫化物催化转化的镁铝水滑石,记为催化剂E。
对比例2
购买国药集团生产的商业镁铝水滑石(CAS:11097-59-9,相对分子量: 531.9),使用前称取一定量的商业镁铝水滑石置于烘箱中在100℃干燥12 h,待自然冷却后便得到用于硫化物催化转化的镁铝水滑石,记为催化剂F。
测试例1
对实施例2~4得到的镁铝水滑石进行X射线衍射测试:
图1为实验例2-4所制备镁铝水滑石的XRD谱图,从图中可以看出,三个样品均出现明显的水滑石的(003),(006),(012),(015),(018),(110)和 (113)晶面特征衍射峰,说明成功合成出镁铝水滑石。从XRD的衍射峰型可以看出,气相二氧化硅的加入不影响镁铝水滑石的晶体结构,制备的镁铝水滑石仍然具有高的结晶度。
测试例2
对实施例4和对比例1得到的镁铝水滑石进行扫描电镜测试。
图2为对比例1和实施例4所制备镁铝水滑石的扫描电镜图,对比例 1为不添加气相二氧化硅的镁铝水滑石,从图2a、b、c图中可以看出在不添加气相二氧化硅的条件下,所制备的镁铝水滑石呈现出规则的多边形,且铺展均匀。实施例4为添加了气相二氧化硅的镁铝水滑石,从图2d、e、 f图可以看出,引入气相二氧化硅后所得镁铝水滑石的多边形形貌呈现出破损状,由均匀的多边形变为多种不规则的多边形,且纳米片层变薄。镁铝水滑石中暴露的羟基活性位点在多边形的边缘部位,纳米片的破碎导致出现更多的边缘部位,更有利于羟基活性位点的暴露。
测试例3
图3为实施例3所制备镁铝水滑石的热分解谱图(测试温区: 30-1000℃;氮气流量30mL/min)。如图3所示,催化剂C出现了三个阶段的热分解,为水滑石所特有的热分解特征曲线,也进一步表明该方法可成功制备出镁铝水滑石。其中第一个和第二个失重阶段分别为表面物理吸附水和层间水的脱除以及羟基和部分层间的
Figure BDA0003117288680000083
分解生成CO2,其中第二阶段的失重导致水滑石结构出现部分崩塌;第三个失重阶段发生在500℃以上,导致水滑石结构完全崩塌,从而形成复合氧化物。
测试例4
对实施例1~4和对比例1~2得到的镁铝水滑石进行COS催化水解的活性测试。
各实施例和对比例的催化剂应用于COS催化水解的活性测试条件:催化剂装填量为100mg,反应温度为30℃~170℃(每个温度点稳定1h),原料气中的COS浓度为110mg/m3,N2为平衡气,原料气流速为20mL/min (质量空速为12000mL/g·h),反应物中的水蒸气温度为40℃。
各实施例和对比例的催化剂应用于COS催化水解的稳定性测试在同一台装置进行,测试条件为:催化剂装填量为100mg,反应温度为110℃,原料气流速为20mL/min,反应过程中反应物经过水浴温度为40℃,长效稳定性测试时间为72h。实施例中催化剂的活性和稳定性结果均以COS 转化率表示,COS浓度利用在线色谱进行测试。
所述的催化剂使用于COS水解反应上,其性能评价公式如下:
Figure BDA0003117288680000081
其中:Cin:进口处羰基硫浓度;Cout:出口处羰基硫浓度。
测定结果如下表所示:
表1镁铝水滑石催化剂的活性和稳定性测试
Figure BDA0003117288680000082
Figure BDA0003117288680000091
实施例1~4中,不同气相二氧化硅用量改性制备的镁铝水滑石,其中催化剂A具有优异的COS转化率。其在70℃时COS的转化率便可达到 94.5%,且随着温度的进一步升高其COS转化率可达到100%且保持不变。随着气相二氧化硅用量增加得到的催化剂B、C和D的COS转化效率有了进一步增加。尤其催化剂D在50℃时COS的转化率便可接近100%,且随着温度的进一步升高其活性保持不变。与不加气相二氧化硅所制备的催化剂E和商业镁铝水滑石F相比,催化剂A~D在COS水解反应中均展示出更佳的催化性能,尤其在低温阶段。而且在稳定性测试过程中(110℃) 催化剂A~D也展示出了更稳定的催化效果。
测试例5
对实施例1~4和对比例1~2得到的镁铝水滑石进行H2S选择性催化氧化的活性测试。
各实施例和对比例的催化剂应用于H2S选择性催化氧化的活性测试条件:催化剂装填量为100mg,反应温度为90℃~210℃,原料气为5000ppm H2S,2500ppm O2,N2为平衡气的三组分气体,原料气流速为20mL/min (质量空速为12000mL/g·h)。
所述的催化剂使用于H2S选择性催化氧化反应上,其性能评价公式如下:
Figure BDA0003117288680000092
其中:(H2S)in:进口处硫化氢浓度;(H2S)out:出口处硫化氢浓度。
图4催化剂A~D的H2S选择性催化氧化结果。如图4所示,所述镁铝水滑石催化剂性能评价中,H2S转化率随温度变化的曲线图。从图中可以看出本发明所制备的催化剂的H2S转化率均呈现出较高的效率,其中最佳实施例D催化剂在90℃时,H2S的转化率便达到95%,随着温度的升高,H2S转化率在120℃时便接近100%并保持稳定。此外,催化剂A,B 和C也都保持了优异的转化效率。在高于150℃时均展示出100%的H2S 催化转化。
测试例6
对实施例1~4和对比例1~2所得到的催化剂进行织构参数表征。称取约0.1g过筛后40-60目的样品,在150℃对材料进行脱气处理,然后在-196℃液氮温度下测试以获得样品的低温N2-吸脱附等温线,采用 Brunauer-Emmett-Teller(BET)计算方法得到比表面积,采用 Barrett-Joyner-Halenda(BJH)计算方法得到孔径分布。
表2镁铝水滑石的织构参数
样品 比表面积(m<sup>2</sup>/g) 孔容(cm<sup>3</sup>/g) 平均孔径(nm)
A 72 0.154 5.03
B 124 0.256 7.49
C 142 0.269 6.52
D 175 0.347 5.98
E 32 0.039 5.03
F 7 0.01 5.43
由表2可知,随着气相二氧化硅含量的增加,所制备镁铝水滑石的织构参数呈现出上升的趋势,其中比表面积从72m2/g(实施例A)上升至175 m2/g(实施例D),孔容也出现同样的增长趋势,且该方法所制备得到的镁铝水滑石比表面积和孔容都明显优于未添加气相二氧化硅所得到的镁铝水滑石(32m2/g)和商业水滑石(7m2/g)。此外,所制备的镁铝水滑石的孔径也均介于介孔范围。在COS水解反应中,COS先与表面羟基反应生成中间产物,然后再进一步反应转化为H2S和CO2,羟基反应后所产生的空缺有利于反应中水的进一步吸附解离,从而促进反应的高效进行。因此大比表面积和破损的晶格有利于表面羟基的暴露,从而有利于COS水解反应的进行。同样地,所暴露的羟基和水分子也有利于H2S的捕获和氧化反应,因此催化剂D也展示出了最佳的H2S选择性氧化结果。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

1.一种镁铝水滑石的制备方法,其特征在于,所述制备方法包括以下步骤:将镁源、铝源、模板剂与沉淀剂机械混合后进行固化反应,得到所述镁铝水滑石;
所述模板剂为气相二氧化硅。
2.根据权利要求1所述的制备方法,其特征在于:
所述镁源选自甲醇镁、乙醇镁、硝酸镁中的至少一种;
所述铝源选自异丙醇铝、硝酸铝中的至少一种;
所述镁源与铝源的摩尔比为1~5:1;
所述镁源的摩尔数以所含镁元素的摩尔数计;
所述铝源的摩尔数以所含铝元素的摩尔数计;
所述气相二氧化硅粒径为20~60nm,比表面积为150~300m2/g;
所述镁源与气相二氧化硅的质量比为5~36;
所述沉淀剂选自碳酸钠、碳酸氢钠、碳酸铵中的至少一种;
所述沉淀剂与镁源摩尔比为0.08~0.17,其中所述镁源的摩尔数以所含镁元素的摩尔数计。
3.根据权利要求1所述的制备方法,其特征在于,所述机械混合具体步骤包括:将镁源、铝源和气相二氧化硅混合进行第一次球磨后,加入所述沉淀剂进行第二次球磨;
所述第一次球磨时间为5~30min;
所述第二次球磨时间为30~60min。
4.根据权利要求1所述的制备方法,其特征在于,
所述固化反应温度为90~150℃,时间为6~12h;
所述制备方法中还包括干燥;
所述干燥温度为80~120℃,干燥时间为12~24h。
5.一种权利要求1~4任一项所述制备方法制备得到的镁铝水滑石,其特征在于,
所述镁铝水滑石比表面积为72~175m2/g,孔容为0.154~0.347cm3/g,平均孔径为5.03~7.49nm。
6.一种硫化物脱硫的方法,其特征在于,将硫化物与催化剂接触反应,其中所述催化剂选自权利要求1~4任一项所述的制备方法制得的镁铝水滑石、权利要求5所述的镁铝水滑石中的至少一种;
所述硫化物选自羰基硫、硫化氢中的至少一种。
7.根据权利要求6所述的方法,其特征在于,
所述反应的具体步骤包括:将含有羰基硫和惰性气体的原料气与所述催化剂接触,并通入水蒸气进行催化水解反应得到硫化氢和二氧化碳。
8.根据权利要求7所述的方法,其特征在于,
所述原料气中,羰基硫的含量为100~200mg/m3
所述反应过程中,原料气的质量空速为6000~14000mL/g·h;
所述原料气体流速为20~50mL/min;
所述原料气的温度为25℃~60℃;
所述水解反应的温度为30~170℃;
所述惰性气体选自氮气、氦气、氩气中的至少一种。
9.根据权利要求6所述的方法,其特征在于,
所述反应的具体步骤包括:将含有硫化氢、氧气和惰性气体的原料气与所述催化剂接触反应得到硫单质和水。
10.根据权利要求9所述的方法,其特征在于,
所述原料气中,氧气的浓度为2500~5000ppm,硫化氢的浓度为5000~10000ppm;
所述原料气流速为20~50mL/min;
所述反应过程中,原料气的质量空速为9000~18000mL/g·h;
所述反应温度为90℃~210℃;
所述惰性气体选自氮气、氦气、氩气中的至少一种。
CN202110667144.2A 2021-06-16 2021-06-16 一种镁铝水滑石及其制备方法及一种硫化物脱硫的方法 Pending CN115475639A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110667144.2A CN115475639A (zh) 2021-06-16 2021-06-16 一种镁铝水滑石及其制备方法及一种硫化物脱硫的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110667144.2A CN115475639A (zh) 2021-06-16 2021-06-16 一种镁铝水滑石及其制备方法及一种硫化物脱硫的方法

Publications (1)

Publication Number Publication Date
CN115475639A true CN115475639A (zh) 2022-12-16

Family

ID=84419774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110667144.2A Pending CN115475639A (zh) 2021-06-16 2021-06-16 一种镁铝水滑石及其制备方法及一种硫化物脱硫的方法

Country Status (1)

Country Link
CN (1) CN115475639A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116282100A (zh) * 2023-04-04 2023-06-23 北京化工大学 一种富含表面缺陷的层状双金属氢氧化物羰基硫水解催化剂、制备方法及其用途
CN117282436A (zh) * 2023-11-23 2023-12-26 陕西驭腾化学控股发展有限公司 一种高炉煤气精脱硫水解催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733105A (zh) * 2009-11-27 2010-06-16 昆明理工大学 以二元类水滑石为前驱体制备的羰基硫水解催化剂及制备方法
CN110104667A (zh) * 2019-05-16 2019-08-09 福州大学 一种用于有机硫催化的镁铝水滑石及制备方法和应用
CN111282583A (zh) * 2020-02-19 2020-06-16 天津大学 一种掺氟水滑石材料负载金属基催化剂及制备方法及应用
CN111592021A (zh) * 2020-05-29 2020-08-28 山东长泽新材料科技有限公司 一种改性水滑石及其制备方法
US20210023536A1 (en) * 2018-10-23 2021-01-28 Beijing University of Chemical Techhnology Supported bimetallic core-shell structure catalyst and its preparation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733105A (zh) * 2009-11-27 2010-06-16 昆明理工大学 以二元类水滑石为前驱体制备的羰基硫水解催化剂及制备方法
US20210023536A1 (en) * 2018-10-23 2021-01-28 Beijing University of Chemical Techhnology Supported bimetallic core-shell structure catalyst and its preparation method
CN110104667A (zh) * 2019-05-16 2019-08-09 福州大学 一种用于有机硫催化的镁铝水滑石及制备方法和应用
CN111282583A (zh) * 2020-02-19 2020-06-16 天津大学 一种掺氟水滑石材料负载金属基催化剂及制备方法及应用
CN111592021A (zh) * 2020-05-29 2020-08-28 山东长泽新材料科技有限公司 一种改性水滑石及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUNJUN LI ET AL.: "Self-sacrificial templating synthesis of selfassembly 3D layered double hydroxide nanosheets using nano-SiO2 under facile conditions", 《THE ROYAL SOCIETY OF CHEMISTRY》, vol. 6, pages 97237 - 97240 *
JINXING MI ET AL.: "Mechanochemically synthesized MgAl layered double hydroxide nanosheets for efficient catalytic removal of carbonyl sulfide and H2S", 《CHEMCOMM》, vol. 55, pages 9375 - 9378 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116282100A (zh) * 2023-04-04 2023-06-23 北京化工大学 一种富含表面缺陷的层状双金属氢氧化物羰基硫水解催化剂、制备方法及其用途
CN117282436A (zh) * 2023-11-23 2023-12-26 陕西驭腾化学控股发展有限公司 一种高炉煤气精脱硫水解催化剂及其制备方法和应用
CN117282436B (zh) * 2023-11-23 2024-03-01 陕西驭腾化学控股发展有限公司 一种高炉煤气精脱硫水解催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Ai et al. Microwave-assisted green synthesis of MnO2 nanoplates with environmental catalytic activity
Mu et al. Oxygen vacancy defects engineering on Cu-doped Co3O4 for promoting effective COS hydrolysis
Pan et al. Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization
US10618813B2 (en) Carbon nitride modified with perylenetetracarboxylic dianhydride / graphene oxide aerogel composite material, preparation method and application thereof
CN110104667B (zh) 一种用于有机硫催化的镁铝水滑石及制备方法和应用
CN115475639A (zh) 一种镁铝水滑石及其制备方法及一种硫化物脱硫的方法
Chin et al. Preparation of TiO2 ultrafine nanopowder with large surface area and its photocatalytic activity for gaseous nitrogen oxides
Florent et al. Effects of surface heterogeneity of cobalt oxyhydroxide/graphite oxide composites on reactive adsorption of hydrogen sulfide
Azmi et al. Efficient 3-aminopropyltrimethoxysilane functionalised mesoporous ceria nanoparticles for CO2 capture
CN112619609B (zh) 一种协同脱除硫和汞的吸附剂及其制备方法和应用
Wang et al. In Situ Growth of Highly Active MgAl Layered Double Hydroxide on η-Al 2 O 3 for Catalytic Hydrolysis of Urea in Wastewater
Man et al. Effect of Ru/Cl ratio on the reaction of acetylene hydrochlorination
Liu et al. Preparation of a Bi2WO6 catalyst and its catalytic performance in an alpha alkylation reaction under visible light irradiation
Huang et al. Degradation of gaseous unsymmetrical dimethylhydrazine by vacuum ultraviolet coupled with MnO 2
Habimana et al. Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas
Li et al. The interplay between selective etching induced cation defects and active oxygen species for volatile organic compounds degradation
Yang et al. Tuning the fill percentage in the hydrothermal synthesis process to increase catalyst performance for ozone decomposition
Zhang et al. Decreasing Co 3 O 4 particle sizes by ammonia-etching and catalytic oxidation of propane
Song et al. Different degradation mechanisms of low-concentration ozone for MIL-100 (Fe) and MIL-100 (Mn) over wide humidity fluctuation
Meng et al. Modifying Y zeolite with chloropropyl for improving Cu load on Y zeolite as a super Cu/Y catalyst for toluene oxidation
Thamizhazhagan et al. Photocatalytic reduction of CO 2 into solar fuels using M-BTC metal organic frameworks for environmental protection and energy applications.
Fan et al. Synthesis of MgO nanostructures through simple hydrogen peroxide treatment for carbon capture
Morais et al. Scope for Spherical Bi 2 WO 6 Quazi-Perovskites in the Artificial Photosynthesis Reaction—The Effects of Surface Modification with Amine Groups
CN108514888B (zh) 一种多酸插层水滑石光催化材料的制备及光催化燃油深度脱硫体系
CN111804293A (zh) 一种多孔氧化铝负载过渡金属的制备方法及其在脱除cos中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination