CN115434756A - 涡轮叶片双层壁冷却结构 - Google Patents

涡轮叶片双层壁冷却结构 Download PDF

Info

Publication number
CN115434756A
CN115434756A CN202110613537.5A CN202110613537A CN115434756A CN 115434756 A CN115434756 A CN 115434756A CN 202110613537 A CN202110613537 A CN 202110613537A CN 115434756 A CN115434756 A CN 115434756A
Authority
CN
China
Prior art keywords
cooling
wall
blade body
double
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110613537.5A
Other languages
English (en)
Inventor
张笑雷
李登
蔡康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Commercial Aircraft Engine Co Ltd
Original Assignee
AECC Commercial Aircraft Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Commercial Aircraft Engine Co Ltd filed Critical AECC Commercial Aircraft Engine Co Ltd
Priority to CN202110613537.5A priority Critical patent/CN115434756A/zh
Publication of CN115434756A publication Critical patent/CN115434756A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明公开了一种涡轮叶片双层壁冷却结构,包括叶片本体和多个外层壁,叶片本体沿着其延伸方向具有前端和后端,在叶片本体上自前端向后端的方向依次设置有前腔体和后腔体,前腔体和后腔体相互独立且不连通;外层壁由CMC材料编织而成,多个外层壁与前腔体对应的外壁面间隔设置,外层壁与叶片本体之间形成第一冷却通道,外层壁之间相互间隔设置,相邻的两个外层壁之间形成第一冷却缝隙,第一冷却通道与前腔体和第一冷却缝隙相连通。不需要在CMC材料制成的外层壁上加工气膜孔,靠内壁面的冲击冷却、内外壁面间的流动强化换热与劈缝气膜冷却;使用CMC材料能有效的利用其耐高温、低密度和高强度的特性,能有效降低冷却空气使用量与叶身重量。

Description

涡轮叶片双层壁冷却结构
技术领域
本发明涉及涡轮叶片冷却结构领域,特别涉及一种涡轮叶片双层壁冷却结构。
背景技术
航空发动机技术的发展和推重比的提高很大程度上依赖于透平燃气入口温度的提高。根据估算,涡轮前入口温度每提高55K,在发动机尺寸不变的条件下,发动机推力可提高10%。高温在带来更高燃气透平效率的同时,也带来一系列问题,如叶片热负荷升高、使用寿命降低等等。然而涡轮入口温度以每年平均提高25℃的速度增加,而金属耐温程度仅以每年约10℃的速度增加,可见材料的耐温程度的前进步伐远远跟不上涡轮发动机发展的需求。因此发展运用更加先进的冷却技术,同时采用耐高温、轻质、高比强、长寿命的新材料对发动机高温部件进行有效的冷却显得尤为关键。
韧碳化硅陶瓷基复合材料(CMC)作为一种新型战略性高温结构材料,具有耐高温、低密度、高比强、抗氧化、耐腐蚀、不发生灾难性破坏等特点。与传统涡轮叶片所选用的镍基高温合金材料相比,CMC复合材料可提高涡轮零件工作温度至少150~200℃,减重约1/3~2/3,简化甚至省却冷气系统,大幅度降低冷却气体用量,有效提升发动机效率,减少污染排放和降低油耗。燃料消耗每减少1%意味着航空公司每年可节省100多万美元。正是基于上述优势,CMC复合材料成为了先进商用航空发动机热端构件的理想选材方案,也是未来先进航空发动机热端构件设计和制造技术的发展方向。
双层壁冷却结构具有冷却通道数量多、尺寸小、换热面积大的特征。集合冲击-扰流-气膜的复合冷却技术能极大增强内部换热,从而大大提高涡轮前燃气进口温度,使涡轮叶片能在材料许用温度下工作,并减小热应力,因此该复合冷却技术也是将来冷却技术发展方向。由于高压涡轮叶片的精细复杂结构,使用CMC材料进行编织时,无法完美实现精细结构如尾缘结构与光滑气膜孔结构。而如果对CMC编织材料使用激光进行气膜孔加工,将会在材料表面形成粗糙的断裂纤维,对气流流出起到堵塞作用。
发明内容
本发明要解决的技术问题是为了克服现有技术中的涡轮叶片的双层壁冷却结构中采用CMC材料进行编织时,无法实现精细结构及气膜孔结构的缺陷,提供一种涡轮叶片双层壁冷却结构。
本发明是通过下述技术方案来解决上述技术问题:
一种涡轮叶片双层壁冷却结构,其特点在于,所述涡轮叶片双层壁冷却结构包括:
叶片本体,所述叶片本体沿着其延伸方向具有前端和后端,在所述叶片本体上自前端向后端的方向依次设置有前腔体和后腔体,所述前腔体和所述后腔体相互独立且不连通;
多个外层壁,所述外层壁的材料为CMC材料,多个所述外层壁与所述前腔体对应的外壁面间隔设置,所述外层壁与所述叶片本体之间形成第一冷却通道,所述外层壁之间相互间隔设置,所述外层壁与所述叶片本体之间通过隔板连接,所述隔板上设置有流通孔,相邻的两个所述外层壁之间形成第一冷却缝隙,所述第一冷却通道与所述前腔体和所述第一冷却缝隙相连通。
在本方案中,通过将CMC材料制成的外层壁与叶片本体上的前腔体对应的外壁面间隔设置,并形成第一冷却通道,以便对涡轮叶片进行冷却。采用这种结构,一方面,不需要在CMC材料制成的外层壁上加工气膜孔,靠内壁面的冲击冷却、内外壁面间的流动强化换热与劈缝气膜冷却;另一方面,使用CMC材料能有效的利用CMC材料耐高温、低密度和高强度的特性,采用上述结构形式及与CMC材料的结合,能有效降低冷却空气使用量与叶身重量。
较佳地,所述叶片本体通过单晶材料铸造成型。
在本方案中,通过采用单晶材料铸造成型的叶片本体结合CMC材料的外层壁,来提高涡轮叶片双层壁冷却结构的冷却性能。另外,叶片本体采用单晶材料铸造是考虑带内层壁的冲击孔与隔板上的流通孔无法采用外部加工的方法,而采用单晶铸造使用水溶性型芯的方法可以规避CMC材料无法对精细结构进行编织的特性。
较佳地,所述前腔体的侧壁上设置有多个相互间隔的第一冲击孔,所述第一冷却通道和所述腔体体之间通过所述第一冲击孔相连通。
在本方案中,通过以上结构形式,使得冷却空气从叶片下方进入前腔体内,一部分通过前缘内层壁上的第一冲击孔强化冷却CMC材料外层壁,之后从CMC边缘的处的第一冷却缝隙流出,并在叶身表面形成气膜。
较佳地,所述外层壁和所述叶片本体之间设置有用于支撑所述外层壁的隔板,所述隔板与所述外层壁和所述叶片本体连接。
在本方案中,通过隔板连接叶片本体和外层壁,而不是扰流柱,主要考虑防止CMC材料外层壁的受热变形与提高安装的稳固性。
较佳地,每一所述外层壁上设置有多个隔板,所述隔板将所述第一冷却通道分割成多个冷却空间,所述隔板上设置有流通孔,多个所述冷却空间通过所述流通孔相连通。
在本方案中,采用如上的结构形式,一方面,可增大冷却空气的流经路径,从而提高冷却效果;另一方面,可进一步提高CMC材料外层壁与叶片本体的连接强度,进而更有利于防止CMC材料外层壁的受热变形与提高安装的稳固性。
较佳地,所述叶片本体上的所述后腔体对应的侧壁为双层,两侧所述侧壁之间具有第二冷却通道,所述叶片本体的前端具有第三冷却通道,所述第二冷却通道与所述后腔体及所述第三冷却通道相连通,所述前端的端部具有第二冷却缝隙,所述第二冷却缝隙与所述第三冷却通道相连通。
在本方案中,冷却空气从叶片上方进入叶片后腔,从后腔流入压力面和吸力面上的第二冷却通道内,最后流入第三冷却通道并细第二冷却缝隙内流出,从而实现对叶片的冷却作用。
较佳地,所述第二冷却通道和所述第三冷却通道内设置有多个相互间隔的扰流柱。
在本方案中,在第二冷却通道和第三冷却通道内设置多个相互间隔的扰流柱,压力面侧冷却空气经过内外层壁间的扰流柱的扰动强化换热,有利于提高冷却效率。
较佳地,所述后腔体对应的内层壁上设置有多个相互间隔的第二冲击孔,所述后腔体对应的外层壁上设置有多个相互间隔的气膜孔。
在本方案中,冷却空气从叶片上方进入叶片的后腔,从后腔体的内层壁的第二冲击孔对后腔体的外层壁的内层进行冲击冷却,压力面侧冷却空气经过内、外层壁间的扰流柱的扰动强化换热,从气膜孔流出,在叶身表面形成气膜进行气膜冷却。吸力面侧的冷却空气经过内、外层壁间的扰流柱的扰动强化换热,流至叶片尾缘,通过尾缘的扰流柱的扰动强化换热后从气膜孔与尾缘的第二冷却缝隙流出。叶片的后腔体形成冲击-扰流-气膜-劈缝冷却的负荷冷却结构,有效提高了冷却效率。
较佳地,所述第三冷却通道的侧壁上设置有气膜孔。
在本方案中,通过以上结构形式,使得冷却空气在第三冷却通道对应的侧壁上形成气膜,从而进一步提高冷却效率。
较佳地,所述第一冷却缝隙的至少一个侧面为斜面。
在本方案中,通过以上结构形式,使得第一冷却缝隙之间形成劈缝结构形式,以提高冷却效率。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明的涡轮叶片双层壁冷却结构,通过将CMC材料制成的外层壁与叶片本体上的前腔体对应的外壁面间隔设置,并形成第一冷却通道,以便对涡轮叶片进行冷却。采用这种结构,一方面,不需要在CMC材料制成的外层壁上加工气膜孔,靠内壁面的冲击冷却、内外壁面间的流动强化换热与劈缝气膜冷却;另一方面,使用CMC材料能有效的利用CMC材料耐高温、低密度和高强度的特性,采用上述结构形式及与CMC材料的结合,能有效降低冷却空气使用量与叶身重量。
附图说明
图1为本发明较佳实施例的具有双层壁冷却结构的涡轮叶片的结构示意图。
图2为本发明较佳实施例的涡轮叶片从中间剖开后的立体结构示意图。
图3为本发明较佳实施例的涡轮叶片从中间剖开后的双层壁冷却结构的结构示意图。
图4为本发明较佳实施例的CMC材料外层壁的结构示意图。
附图标记说明:
前腔体1
后腔体2
第一冲击孔3
前缘CMC材料外层壁4
吸力面CMC材料外层壁5
压力面CMC材料外层壁6
隔板7
吸力面劈缝8
第一劈缝9
第二劈缝10
压力面劈缝11
第二冲击孔12
扰流柱13
气膜孔14
流通孔15
第二冷却缝隙16
具体实施方式
下面通过实施例的方式并结合附图来更清楚完整地说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
如图1至图4所示,本实施例提供一种涡轮叶片双层壁冷却结构,涡轮叶片双层壁冷却结构包括叶片本体和多个外层壁。其中,叶片本体沿着其延伸方向具有前端和后端,在叶片本体上自前端向后端的方向依次设置有前腔体1和后腔体2,前腔体1和后腔体2相互独立且不连通;外层壁由CMC材料编织而成,多个外层壁与前腔体1对应的外壁面间隔设置,外层壁与叶片本体之间形成第一冷却通道,外层壁之间相互间隔设置,相邻的两个外层壁之间形成第一冷却缝隙,第一冷却通道与前腔体1和第一冷却缝隙相连通。外层壁与叶片本体之间是通过隔板连接的,隔板将第一冷却通道分成多个窄通道,隔板上设置有流通孔,窄通道之间通过流通孔连通。
其中,叶片本体形成的壁厚均设置为1mm左右。通过将CMC材料制成的外层壁与叶片本体上的前腔体1对应的外壁面间隔设置,并形成第一冷却通道,以便对涡轮叶片进行冷却。采用这种结构,一方面,不需要在CMC材料制成的外层壁上加工气膜孔14,靠内壁面的冲击冷却、内外壁面间的流动强化换热与劈缝气膜冷却;另一方面,使用CMC材料能有效的利用CMC材料耐高温、低密度和高强度的特性,采用上述结构形式及与CMC材料的结合,能有效降低冷却空气使用量与叶身重量,提高冷气使用效率同时也提高了发动机的效率。在本实施例中,CMC材料制成的外层壁的弧度较小,能有效降低CMC材料的编织难度,从而提高成品率。第一冷却缝隙的至少一个侧面为斜面。使得第一冷却缝隙之间形成劈缝结构形式,以提高冷却效率。
在本实施例中,叶片本体通过单晶材料铸造成型。通过采用单晶材料铸造成型的叶片本体结合CMC材料的外层壁,来提高涡轮叶片双层壁冷却结构的冷却性能。另外,叶片本体采用单晶材料铸造是考虑到内层壁的冲击孔与隔板7上的流通孔无法采用外部加工的方法,而采用单晶铸造使用水溶性型芯的方法可以规避CMC材料无法对精细结构进行编织的特性。
进一步地,前腔体1的侧壁上设置有多个相互间隔的第一冲击孔3,第一冷却通道和前腔体之间通过第一冲击孔3相连通。通过以上结构形式,使得冷却空气从叶片下方进入前腔体1内,一部分通过前缘内层壁上的第一冲击孔3强化冷却前缘CMC材料外层壁4,之后从CMC边缘处的第一冷却缝隙流出,并在叶身表面形成气膜。在本实施例中,在前腔体1的前缘的内层壁上开设有两排第一冲击孔3,每排第一冲击孔3的数量根据叶片的尺寸来定;在前腔体1的吸力面对应的内层壁上设置有五排第一冲击孔3;在压力面对应的内层壁上设置有两排第一冲击孔3。
外层壁和叶片本体之间设置有用于支撑外层壁的隔板7,隔板7与外层壁和叶片本体连接。通过隔板7连接叶片本体和外层壁,而不是扰流柱13,主要考虑防止CMC材料外层壁的受热变形与提高安装的稳固性。在本实施例中,CMC材料的外层壁是通过上、下缘板及隔板7与叶片本体的前腔体1对应的内层壁相连接。每一外层壁上设置有多个隔板7,隔板7将第一冷却通道分割成多个冷却空间,隔板7上设置有流通孔,多个冷却空间通过流通孔相连通。采用如上的结构形式,一方面,可增大冷却空气的流经路径,从而提高冷却效果;另一方面,可进一步提高CMC材料外层壁与叶片本体的连接强度,进而更有利于防止CMC材料外层壁的受热变形与提高安装的稳固性。在本实施例中,叶片本体的前腔体1的前缘对应的前缘CMC材料外层壁4与内层壁之间通过上、下缘板进行连接;在前腔体1的吸力面对应的吸力面CMC材料外层壁5与内层壁之间通过三个隔板连接,三个隔板7将第一冷却通道分成四个窄的冷却空间,隔板7上设置的流通孔15将各个冷却空间进行连通;压力面对应的压力面CMC材料外层壁6与内层壁之间通过一个隔板7以及上、下缘板进行连接,一个隔板7将第一通道分成两个窄的冷却空间。
在本实施例中,第一冷却缝隙为劈缝,压力面CMC材料外层壁6与叶片本体之间的第一冷却缝隙为压力面劈缝11;前缘CMC材料外层壁4与压力面CMC材料外层壁6之间的第一冷却缝隙为第一劈缝9,前缘CMC材料外层壁4与吸力面CMC材料外层壁5之间的第一冷却缝隙为第二劈缝10;吸力面CMC材料外层壁5与叶片本体之间的第一冷却缝隙为吸力面劈缝8。
更进一步地,叶片本体上的后腔体2对应的侧壁为双层,两侧侧壁之间具有第二冷却通道,叶片本体的前端具有第三冷却通道,第二冷却通道与后腔体2及第三冷却通道相连通,前端的端部具有第二冷却缝隙16,第二冷却缝隙16与第三冷却通道相连通。冷却空气从叶片上方进入叶片后腔,从后腔流入压力面和吸力面上的第二冷却通道内,最后流入第三冷却通道并自第二冷却缝隙16内流出,从而实现对叶片的冷却作用。为了更进一步地提高冷却效率,在后腔体的外层壁的外表面覆盖有隔热涂层。
在本实施例中,第二冷却通道和第三冷却通道内设置有多个相互间隔的扰流柱13。在第二冷却通道和第三冷却通道内设置多个相互间隔的扰流柱13,压力面侧冷却空气经过内外层壁间的扰流柱13的扰动强化换热,有利于提高冷却效率。由于扰流柱13与第二冷却缝隙的尺寸狭长,考虑到使用CMC材料进行编织加工难度太大,因此,在本实施例中,只在叶片本体的前腔体1对应的内层壁的外部使用了CMC材料编织的外层壁。而在后腔体2对应的外层壁以及其他部分均采用铸造的方式来进行精细化加工。采用这种设置,既能提高叶片成品率,也能通过复合冷却结构来满足叶片的使用需求。第三冷却通道的侧壁上设置有气膜孔14,使得冷却空气在第三冷却通道对应的侧壁上形成气膜,从而进一步提高冷却效率。对于扰流柱13的数量不作限制,吸力面对应的内外层壁之间设置有四排扰流柱13,尾缘处设置有四排扰流柱13;压力面对应的内外层壁之间设置有三排扰流柱13。
进一步地,后腔体2对应的内层壁上设置有多个相互间隔的第二冲击孔12,后腔体2对应的外层壁上设置有多个相互间隔的气膜孔14。冷却空气从叶片上方进入叶片的后腔,从后腔体2的内层壁的第二冲击孔12对后腔体2的外层壁的内层进行冲击冷却,压力面侧冷却空气经过内、外层壁间的扰流柱13的扰动强化换热,从气膜孔14流出,在叶身表面形成气膜进行气膜冷却。吸力面侧的冷却空气经过内、外层壁间的扰流柱13的扰动强化换热,流至叶片尾缘,通过尾缘的扰流柱13的扰动强化换热后从气膜孔14与尾缘的第二冷却缝隙16流出。叶片的后腔体2形成冲击-扰流-气膜-劈缝冷却的复合冷却结构,有效提高了冷却效率,降低了冷气量的使用。其中,第三冷却通道及后腔体2的外层壁上的气膜孔14的形状不做限制,在本实施例中均采用圆孔。
本实施例提供的涡轮叶片双层壁冷却结构的冷却过程如下:
参照图2和图3予以理解,冷却空气从下方进气口进入叶片本体的前腔体1内,通过前腔体1的内层壁面的冲击孔,分成三股气流对CMC材料编织成的外层壁的内壁进行冲击冷却。其中,一股冷却空气通过前缘两排冲击孔对前缘CMC材料外层壁的外壁面进行冲击冷却,并从前缘CMC材料外层壁4的两侧形成的第一劈缝9和第二劈缝10流出,并在叶身形成气膜;另一股冷却空气通过吸力面上的五排第一冲击孔3进入吸力面对应的第一冷却通道内对吸力面CMC材料外层壁5进行冲击冷却,冷却空气从第一冲击孔3进入第一冷却通道冷却后,依次通过隔板7上的流通孔,最后从吸力面对应的吸力面劈缝8流出,并形成气膜冷却叶片的吸力面;最后一股冷却空气通过压力面上的第一冲击孔3对压力面CMC材料外壁面进行冲击冷却,冷却空气从第一冲击孔3进入压力面对应的第一冷却通道后,通过隔板7上的流通孔,最后从压力面对应的压力面劈缝11流出,形成气膜冷却叶片的压力面。
冷却空气从上方进气口进入叶片的后腔体2内,通过内层壁面的冲击孔分成两股气流对外层壁的内壁进行冲击冷却。其中,一股冷却空气通过吸力面上的第二冲击孔12冲击冷却叶片外层壁面的内侧,通过布置在内外层壁间的扰流柱13流至第三冷却通道内,通过叶片尾缘的扰流柱13后,一部分通过尾缘上的气膜孔14流出进行气膜冷却,一部分通过第二冷却缝隙16流入主流,对尾缘高温区进行冷却;另一股冷却空气通过压力面上的第二冲击孔12冲击冷却叶片外层壁面的内侧,通过布置在内外层壁间的扰流柱13对外壁面进行扰动强化换热,冷却空气之后通过压力面上的气膜孔14流入主流形成气膜,对叶片压力面高温区进行冷却,由于外层壁面较薄,故为了保障气膜孔14的长径比均采用圆孔设计。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (10)

1.一种涡轮叶片双层壁冷却结构,其特征在于,所述涡轮叶片双层壁冷却结构包括:
叶片本体,所述叶片本体沿着其延伸方向具有前端和后端,在所述叶片本体上自前端向后端的方向依次设置有前腔体和后腔体,所述前腔体和所述后腔体相互独立且不连通;
多个外层壁,所述外层壁的材料为CMC材料,多个所述外层壁与所述前腔体对应的外壁面间隔设置,所述外层壁与所述叶片本体之间形成第一冷却通道,所述外层壁之间相互间隔设置,相邻的两个所述外层壁之间形成第一冷却缝隙,所述第一冷却通道与所述前腔体和所述第一冷却缝隙相连通。
2.如权利要求1所述的涡轮叶片双层壁冷却结构,其特征在于,所述叶片本体通过单晶材料铸造成型。
3.如权利要求1所述的涡轮叶片双层壁冷却结构,其特征在于,所述前腔体的侧壁上设置有多个相互间隔的第一冲击孔,所述第一冷却通道和所述腔体体之间通过所述第一冲击孔相连通。
4.如权利要求1所述的涡轮叶片双层壁冷却结构,其特征在于,所述外层壁和所述叶片本体之间设置有用于支撑所述外层壁的隔板,所述隔板与所述外层壁和所述叶片本体连接。
5.如权利要求4所述的涡轮叶片双层壁冷却结构,其特征在于,每一所述外层壁上设置有多个隔板,所述隔板将所述第一冷却通道分割成多个冷却空间,所述隔板上设置有流通孔,多个所述冷却空间通过所述流通孔相连通。
6.如权利要求1所述的涡轮叶片双层壁冷却结构,其特征在于,所述叶片本体上的所述后腔体对应的侧壁为双层,双层所述侧壁之间围成第二冷却通道,所述叶片本体的前端具有第三冷却通道,所述第二冷却通道与所述后腔体及所述第三冷却通道相连通,所述前端的端部具有第二冷却缝隙,所述第二冷却缝隙与所述第三冷却通道相连通。
7.如权利要求6所述的涡轮叶片双层壁冷却结构,其特征在于,所述第二冷却通道和所述第三冷却通道内设置有多个相互间隔的扰流柱。
8.如权利要求6所述的涡轮叶片双层壁冷却结构,其特征在于,所述后腔体对应的内层壁上设置有多个相互间隔的第二冲击孔,所述后腔体对应的外层壁上设置有多个相互间隔的气膜孔。
9.如权利要求6所述的涡轮叶片双层壁冷却结构,其特征在于,所述第三冷却通道的侧壁上设置有气膜孔。
10.如权利要求1-9中任意一项所述的涡轮叶片双层壁冷却结构,其特征在于,所述第一冷却缝隙的至少一个侧面为斜面。
CN202110613537.5A 2021-06-02 2021-06-02 涡轮叶片双层壁冷却结构 Pending CN115434756A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110613537.5A CN115434756A (zh) 2021-06-02 2021-06-02 涡轮叶片双层壁冷却结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110613537.5A CN115434756A (zh) 2021-06-02 2021-06-02 涡轮叶片双层壁冷却结构

Publications (1)

Publication Number Publication Date
CN115434756A true CN115434756A (zh) 2022-12-06

Family

ID=84240356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110613537.5A Pending CN115434756A (zh) 2021-06-02 2021-06-02 涡轮叶片双层壁冷却结构

Country Status (1)

Country Link
CN (1) CN115434756A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117823234A (zh) * 2024-03-05 2024-04-05 西北工业大学 一种陶瓷纤维层叠的双空腔气冷涡轮工作叶片结构
CN117823234B (zh) * 2024-03-05 2024-05-28 西北工业大学 一种陶瓷纤维层叠的双空腔气冷涡轮工作叶片结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117823234A (zh) * 2024-03-05 2024-04-05 西北工业大学 一种陶瓷纤维层叠的双空腔气冷涡轮工作叶片结构
CN117823234B (zh) * 2024-03-05 2024-05-28 西北工业大学 一种陶瓷纤维层叠的双空腔气冷涡轮工作叶片结构

Similar Documents

Publication Publication Date Title
US7597536B1 (en) Turbine airfoil with de-coupled platform
US7621718B1 (en) Turbine vane with leading edge fillet region impingement cooling
US8162609B1 (en) Turbine airfoil formed as a single piece but with multiple materials
US8562295B1 (en) Three piece bonded thin wall cooled blade
US8807943B1 (en) Turbine blade with trailing edge cooling circuit
JP5161512B2 (ja) フィルム冷却式スロット付き壁およびその製作方法
US7661930B2 (en) Central cooling circuit for a moving blade of a turbomachine
JP4659188B2 (ja) 優先的に冷却される後縁圧力壁を備えるタービン動翼
US20040197191A1 (en) Method and apparatus for cooling an airfoil
US9039371B2 (en) Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements
US20050031450A1 (en) Microcircuit airfoil mainbody
JPS62271902A (ja) ガスタ−ビン冷却翼
US6553766B2 (en) Cooling structure of a combustor tail tube
US8641377B1 (en) Industrial turbine blade with platform cooling
CN113090335A (zh) 一种用于涡轮转子叶片的冲击加气膜双层壁冷却结构
CN111520760A (zh) 一种冲击/气膜双层壁复合冷却方式的燃烧室火焰筒壁面结构
CN113374536B (zh) 燃气涡轮导向叶片
JP7268135B2 (ja) 複合異形溝付きのガスフィルム冷却構造を有するタービンブレード及びその製造方法
CN110925791A (zh) 一种双层壁冲击/y型多斜孔壁复合冷却方式的燃烧室火焰筒壁面结构
CN113123832B (zh) 用于冲击扰流气膜复合冷却的双层壁人字形扰流柱结构
JPH04358701A (ja) ガスタービン冷却翼
CN115434756A (zh) 涡轮叶片双层壁冷却结构
CN114412645B (zh) 涡扇发动机燃烧室用带狭缝肋层板冷却结构及冷却方法
JP3642537B2 (ja) ガスタービン冷却翼
US9109451B1 (en) Turbine blade with micro sized near wall cooling channels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination