CN115433570B - 一种近红外荧光-磁性锰量子点探针及其合成方法与应用 - Google Patents

一种近红外荧光-磁性锰量子点探针及其合成方法与应用 Download PDF

Info

Publication number
CN115433570B
CN115433570B CN202211179137.9A CN202211179137A CN115433570B CN 115433570 B CN115433570 B CN 115433570B CN 202211179137 A CN202211179137 A CN 202211179137A CN 115433570 B CN115433570 B CN 115433570B
Authority
CN
China
Prior art keywords
quantum dot
manganese
solution
detection
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211179137.9A
Other languages
English (en)
Other versions
CN115433570A (zh
Inventor
张菲
盛美思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN202211179137.9A priority Critical patent/CN115433570B/zh
Publication of CN115433570A publication Critical patent/CN115433570A/zh
Application granted granted Critical
Publication of CN115433570B publication Critical patent/CN115433570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种近红外荧光‑磁性锰量子点探针及其合成方法与应用,属于化学合成和环境分析检测技术领域。该锰量子点探针为一种新物质,在未经掺杂或修饰的前提下,即可同时具备近红外荧光发射性能和优良的顺磁性能。此外,该量子点具有约1.3nm的超小粒径,以及水溶性好、分散性高、毒性低等优点,在生物分析与环境分析等领域具有广阔的应用前景。该量子点通过简便的室温水相合成方法制备,合成步骤简单、反应时间短,制备原料廉价易得。基于Cr3+对该量子点荧光强度的特征性增强作用,可实现对水环境中Cr3+污染物的高灵敏分析检测。

Description

一种近红外荧光-磁性锰量子点探针及其合成方法与应用
本发明得到天津市自然科学基金青年项目(No.17JCQNJC05800),国家环境保护恶臭污染控制重点实验室开放基金(20210501)的支持。
技术领域
本发明属于化学合成和环境分析检测技术领域,涉及一种具有近红外荧光发射能力的磁性锰量子点及其简单、绿色、快速的合成方法与环境分析检测应用。
背景技术
半导体量子点(Quantum Dots,QDs)是上世纪90年代以来发展最为迅猛的荧光纳米材料,具有粒径尺寸小、量子产率高、化学及光稳定性好、抗光漂白性强、发射波长随粒径尺寸可调等优点,已被广泛应用于分析检测、荧光传感、生物识别、生物成像、环境监测、发光与新能源材料等领域,是发展各种光学探针及传感器件的理想平台。传统的量子点是一类三维尺寸均在纳米尺度的半导体纳米晶,一般是由II-VI族或III-V族元素组成的“二元”化合物,例如CdS、CdSe、CdTe、ZnS、ZnSe、InP、GaAs等。近年来,为了进一步优化调节量子点光、磁、电等理化特性,以掺杂量子点和合金量子点为代表的三元甚至多元量子点应运而生。比较有代表性的三元量子点有锰掺杂硫化锌量子点(Mn:ZnS QDs)、铜掺杂硫化镉量子点(Cu:CdS QDs)和钆掺杂碲化镉量子点(Gd:CdTe QDs)等掺杂型量子点,掺杂元素的引入不仅能够改善量子点中受激电子回复至基态的路径,调控量子点发射波长和荧光量子产率等光学性质,还能为量子点带来磁性等其它理化性质。尽管掺杂型量子点相较于传统的二元半导体量子点而言具有更为优异的性能,但掺杂元素占量子点整体的比重较少,掺杂元素同主体元素的含量比例非常悬殊,不利于对量子点性能的调控。
为了解决掺杂量子点性能调控不便的问题,增大半导体量子点光学性能的调控空间,人们逐渐开发出了以硫化镉锌(ZnxCdySz)、铜铟硫(CuInS2)、铜锌锡硫(CuZnSnS3)为代表的合金量子点。合金量子点可以被看作为掺杂元素含量被放大的掺杂量子点,其发光中心由两种及以上金属元素构成,且每种金属元素的含量比例并不一定非常悬殊。相较于掺杂量子点而言,合金量子点所含金属元素比例具有更大的调控空间,使其能够获得更为优异的荧光性质。无论是传统的“二元”半导体量子点还是掺杂量子点、合金量子点等“多元”量子点均普遍使用Cu、Cd、In等重金属离子作为制备原料。重金属离子具有极强的生物毒性,能积聚于水体、土壤、农作物之中并通过食物链侵入并累积于人体,造成持久的环境与健康损害。重金属离子原料的使用降低了量子点的安全性,限制了它们的应用范围。
为了提高量子点材料的生物安全性和环境友好性,以碳量子点(Carbon Dots,CDs)、硅量子点(Silicon Dots,SDs)等为代表的“一元”量子点因用而生。碳量子点和硅量子点均为非金属量子点,不含重金属离子,相较于传统的半导体量子点而言,其无毒无害,不会对生物体和生态环境造成损害,是安全、绿色、环保的高性能荧光检测探针,已被广泛应用于生物成像、荧光传感和分析检测等领域。囿于制备技术与工艺的影响,当前国内外应用较为成熟的“一元”量子点仅有碳量子点和硅量子点两种,均为以非金属原料制得的非金属量子点。虽然该类量子点在安全性方面相较于传统半导体量子点具有巨大的优势,但因其结构中缺少金属元素而在荧光效率和电性能方面明显逊色于半导体量子点。因此,发展安全、稳定、高性能的“一元”金属量子点是当前本领域亟需解决的一个技术难题。
为了解决上述问题,拓展“一元”量子点的种类与功能,本发明提供了一种近红外荧光-磁性锰量子点多功能分析检测探针及其合成方法。该锰量子点具有超小的粒径,并在未经任何掺杂或修饰的前提下,即可同时具备近红外荧光发射性能和优良的顺磁性能。此外,该量子点还具有水溶性好、分散性高、毒性低等优点,在生物分析与环境分析等领域具有广阔的应用前景。该量子点通过简便的室温水相合成方法制备,合成步骤简单、反应时间短,制备原料廉价易得。基于Cr3+对该量子点荧光强度的特征性增强作用,可实现对水环境中Cr3+污染物的高灵敏分析检测。
发明内容
本发明的目的在于克服现有技术的不足,提供一种近红外荧光-磁性锰量子点多功能分析检测探针及其合成方法,在生命分析和环境分析等方面具有很好的应用前景。
为实现上述目的,本发明公开了一种近红外荧光-磁性锰量子点多功能分析检测探针,其特征在于:
(1)该锰量子点为“一元金属量子点”,其发光中心仅含有一种元素即Mn元素,其它元素来自于稳定剂并不参与发光,该量子点中各元素的摩尔比为Mn∶O∶N∶S=1∶22∶11∶9;
(2)该锰量子点具有平均1.3nm的超小粒径,且同时具有近红外荧光发射性能和顺磁性能,其最大激发波长位于510nm,最大发射波长位于698nm,其磁滞回线为一过坐标原点的直线;
(3)该锰量子点的荧光强度可被三价铬离子Cr3+特异性增强。
本发明进一步公开了所述近红外荧光-磁性锰量子点多功能分析检测探针的合成方法,按如下的步骤进行:
(1)须选择具有二硫键的L-胱氨酸作为稳定剂;
(2)将0.4mmol L-胱氨酸溶于7.875mL高纯水中,而后加入0.875mL浓度为1M的NaOH溶液,充分搅拌至L-胱氨酸溶解完全;
(3)取上述混合溶液8mL于烧杯中,加入11.4mL高纯水、0.6mL浓度为0.1M的MnCl2溶液,充分搅拌15分钟,至混合溶液变为灰白色;
(4)称取0.8mmol抗坏血酸加入上述灰白色溶液中,于室温下充分搅拌32分钟,至溶液变为乳白色,即可得到L-胱氨酸稳定的近红外荧光-磁性锰量子点。
本发明更进一步公开了近红外荧光-磁性锰量子点多功能分析检测探针在环境分析方面的应用;所述环境分析是指该荧光-磁性锰量子点作为“荧光turn-on”型检测探针对环境污染物Cr3+离子的分析检测应用,其详细的描述如下:
(1)Cr3+离子可特异性地增强该锰量子点的吸光效率,使锰量子点的荧光强度随样品中目标物Cr3+离子浓度的升高而增强,从而使实现对目标物Cr3+离子的高灵敏检测;
(2)该检测的具体步骤为:将合成好的锰量子点溶液经离心纯化、真空干燥、定量回溶等步骤制得浓度为1600μg/mL的探针溶液;取0.4mL该探针溶液加入3.4mL高纯水稀释,将其分别与0.2mL高纯水和不同浓度的Cr3+样品溶液混合制得空白对照体系和检测体系,充分反应15min后测定各检测体系与空白对照体系之间荧光强度的差值,并以该差值为纵坐标,Cr3+样品溶液浓度为横坐标绘制标准曲线。
(3)该检测的结果是:线性范围为0.5-10μM,检出限为5.69nM。
本发明公开的近红外荧光-磁性锰量子点多功能分析检测探针及其合成方法与现有技术相比所具有的有益效果在于:
(1)本发明所公开的锰量子点具有稳定的化学与光学性质,合成材料粒径小,不含Cu、Cd、In等有害金属,生物毒性低,安全性好,不会造成环境污染;
(2)本发明所公开的锰量子点同时具有荧光性能和顺磁性能,这是碳量子点、硅量子点等传统“一元”量子点及半导体量子点所不具备的特性,且其荧光发射峰形好、发光强度高,发光位置在698nm,位于近红外光区,优于多数碳量子点和硅量子点,可有效避免样品自体荧光和杂散光的干扰,提高分析检测的灵敏度和准确度;
(3)本发明所公开的锰量子点的合成方法简单、快速,不需要加热、功能化等复杂的过程,不易受到温度等环境因素干扰,产品保存方法简单,性能稳定。
(4)本发明采用荧光“turn-on”型探针进行目标物检测,有利于提高检测灵敏度。
附图说明
图1为锰量子点的透射电镜(TEM)图,说明锰量子点粒径尺寸均一、粒径较小;
图2为锰量子点的粒径分布情况图,表明其平均粒径为1.3nm;
图3为锰量子点的X射线粉末衍射(XRD)图样,说明其具有与半导体量子点类似的晶体衍射结构;
图4为锰量子点的X射线光电子能谱(XPS)宽谱图,说明其主要元素组成,并根据各元素峰强度计算所含元素比例;
图5为锰量子点和加入了目标物Cr3+的锰量子点的荧光发射光谱图,表明锰量子点的最大发射波长为698nm,且其荧光强度可被Cr3+明显增强;
图6为目标物Cr3+、锰量子点和加入了Cr3+的锰量子点的紫外-可见吸收光谱图,表明Cr3+可提高锰量子点对激发光的吸收效率,进而增强其荧光强度,阐明锰量子点探针对Cr3+的检测机理;
图7为锰量子点探针对目标物Cr3+荧光检测线性图,表明该锰量子点探针可成功应用于对环境污染物Cr3+的高灵敏荧光检测,其在环境分析方面具有良好的应用前景。
具体实施方式
下面通过具体的实施方案叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。所用试剂均为分析纯,所用试剂及生产厂家如下:氯化锰、氯化铬、抗坏血酸,天津市科密欧化学试剂有限公司;氢氧化钠,天津光复精细化工研究所。
实施例1
该锰量子点探针的制备,按照如下步骤进行:
(1)须选择具有二硫键的L-胱氨酸作为稳定剂;
(2)将0.4mmol L-胱氨酸溶于7.875mL高纯水中,而后加入0.875mL浓度为1M的NaOH溶液,充分搅拌至L-胱氨酸溶解完全;
(3)取上述混合溶液8mL于烧杯中,加入11.4mL高纯水、0.6mL浓度为0.1M的MnCl2溶液,充分搅拌15分钟,至混合溶液变为灰白色;
(4)称取0.8mmol抗坏血酸加入上述灰白色溶液中,于室温下充分搅拌32分钟,至溶液变为乳白色,即可得到L-胱氨酸稳定的近红外荧光-磁性锰量子点。
实施例2
(1)锰量子点的制备方法参照实施例1;
(2)锰量子点的形貌与结构表征:
将制备好的铁纳米簇分散到高纯水中,均匀滴涂于专用铜网上,晾干,制得观测样品,利用场发射透射电子显微镜(TEM)观测铁纳米簇的形貌。如图1所示,该铁纳米簇形貌近似球形且分散均匀,粒径较小且分布均一。以该TEM图像为依据统计锰量子点的平均粒径结果如图2所示,该锰量子点的平均粒径约为1.3nm。而后对离心、烘干后的锰量子点样品进行X射线粉末衍射(XRD)表征,其衍射图样如图3所示,并在其中观察到了与半导体量子点相似的衍射峰,说明我们所制备的产物同量子点具有相似的晶体结构,证明其为锰量子点而非由锰金属原子堆积而成的锰纳米簇。
实施例3
(1)锰量子点的制备方法参照实施例1;
(2)锰量子点的元素组成表征:
将制备好的锰量子点纯化干燥后进行X射线光电子能谱(XPS)表征,得到其XPS宽谱如图4所示。实验结果表明,该锰量子点由S、C、N、O、Mn等元素构成,由XPS实验数据可计算出各元素之摩尔比为Mn∶O∶N∶S=1∶22∶11∶9。其中,O、N、S三种元素的摩尔比约为2∶1∶1,与稳定剂胱氨酸(化学式为C6H12N2O4S2)的元素组成一致,说明该锰量子点产品中的O、N、S等元素完全来自于稳定剂胱氨酸而非来自还原剂抗坏血酸。通过该锰量子点产品中Mn元素同O、N、S三种元素的摩尔比可以确定Mn与胱氨酸的摩尔比约为1∶5,这一比例与传统“二元”半导体量子点中发光中心同稳定剂之间的摩尔比大致相当。该结果表明该锰量子点产品为一种的“一元”量子点而非金属荧光纳米簇,因为金属荧光纳米簇的结构是在一个有机物模板分子上堆积1个至100个金属原子,其中金属原子的数量应多于模板分子。
实施例4
(1)锰量子点的制备方法参照实施例1;
(2)锰量子点的饱和磁强度曲线测定:
将制备好的锰量子点干燥、称量,测定其饱和磁强度并绘制相关曲线,如图5所示,该锰量子点的磁强度曲线是一条通过坐标原点的直线,表明该锰量子点具有非常典型的顺磁性质,说明该锰量子点已被成功合成且具有良好的磁性质。
实施例5
(1)锰量子点的制备方法参照实施例1;
(2)锰量子点的荧光光谱和吸收光谱的测定:
将制备好的锰量子点(Mn QDs)分散到高纯水中,利用荧光分光光度计在510nm激发光下对该锰量子点的荧光发射光谱进行测定。如图6曲线a所示,该锰量子点的荧光发射波长为698nm,位于近红外光区,且其荧光发射峰型良好,说明该锰量子点探针具有良好的近红外荧光发射能力。在该锰量子点样品中加入1mL浓度为10μM的目标物Cr3+溶液后,再次以荧光分光光度计测定检测体系的荧光发射光谱,结果如图6曲线b所示,该锰量子点探针的荧光强度发生了明显的升高,说明该锰量子点探针对Cr3+有荧光信号响应,可作为一种荧光“turn-on”型检测探针用于环境污染物Cr3+的荧光分析检测。
实施例6
(1)锰量子点的制备方法参照实施例1;
(2)锰量子点的紫外-可见吸收光谱的测定:
将制备好的锰量子点分散到高纯水中,利用紫外-可见分光光度计在200-800nm波长范围内对Cr3+、锰量子点以及加入了Cr3+的锰量子点这三种样品进行了紫外-可见吸收光谱的测定,结果如图7所示。该实验结果表明,锰量子点探针在225-300nm波长范围内有一强吸收峰而目标物Cr3+在该波长范围内无明显吸收,但将目标物Cr3+加入到锰量子点探针溶液中后,锰量子点的吸光度明显升高。根据吸光度具有加和性的原理,因为目标物Cr3+在此波段无吸收,所以锰量子点吸光度的升高并非来自于Cr3+本身。这说明目标物Cr3+同锰量子点探针发生了相互作用,可以提高锰量子点对激发光的吸收效率,进而增大锰量子点的荧光强度。这是本发明中利用锰量子点探针对Cr3+开展高灵敏荧光检测的检测机理。
实施例7
(1)锰量子点的制备方法参照实施例1;
(2)锰量子点探针在环境分析方面的应用:
将合成好的锰量子点溶液经离心纯化、真空干燥、定量回溶等步骤制得浓度为1600μg/mL的探针溶液;取0.4mL该探针溶液加入3.4mL高纯水稀释,将其分别与0.2mL高纯水和不同浓度的Cr3+样品溶液混合制得空白对照体系和检测浓度分别为0.5,1.5,2.5,5.5,6.5,7.5,8.5,10μM的检测体系,充分反应15min后测定各检测体系与空白对照体系之间荧光强度的差值,并以该差值为纵坐标,Cr3+样品溶液浓度为横坐标绘制标准曲线;实验结果表明,该锰量子点探针对Cr3+具有良好的高灵敏检测能力,检测线性方程为y=14.65044x+15.00726,其中y代表检测体系与空白体系的荧光强度差值F-F0,x代表被测样品中目标物Cr3+的浓度,其线性相关系数R2=0.9987;该检测的线性范围为0.5-10μM,检出限为5.69nM。

Claims (2)

1.一种近红外荧光-磁性锰量子点探针,其特征在于:
(1)该锰量子点为“一元金属量子点”,其发光中心仅含有一种元素,即Mn元素,该量子点中各元素的摩尔比为Mn∶O∶N∶S=1∶22∶11∶9;
(2)该锰量子点具有平均1.3nm的超小粒径,且同时具有近红外荧光发射性能和顺磁性能,其最大激发波长位于510nm,最大发射波长位于698nm,其磁滞回线为一过坐标原点的直线;
(3)该锰量子点的荧光强度可被三价铬离子Cr3+特异性增强;
(4)该锰量子点按如下步骤合成:
1)须选择具有二硫键的L-胱氨酸作为稳定剂;
2)将0.4mmol L-胱氨酸溶于7.875mL高纯水中,而后加入0.875mL浓度为1M的NaOH溶液,充分搅拌至L-胱氨酸溶解完全;
3)取上述混合溶液8mL于烧杯中,加入11.4mL高纯水、0.6mL浓度为0.1M的MnCl2溶液,充分搅拌15分钟,至混合溶液变为灰白色;
4)称取0.8mmol抗坏血酸加入上述灰白色溶液中,于室温下充分搅拌32分钟,至溶液变为乳白色,即可得到L-胱氨酸稳定的近红外荧光-磁性锰量子点。
2.权利要求1所述近红外荧光-磁性锰量子点探针的在环境分析方面的应用:
(1)该荧光-磁性锰量子点作为“荧光turn-on”型检测探针对环境污染物Cr3+离子的分析检测应用,Cr3+离子可特异性地增强该锰量子点的吸光效率,使锰量子点的荧光强度随样品中目标物Cr3+离子浓度的升高而增强,从而使实现对目标物Cr3+离子的高灵敏检测;
(2)该检测的具体步骤为:将合成好的锰量子点溶液经离心纯化、真空干燥、定量回溶制得浓度为1600μg/mL的探针溶液;取0.4mL该探针溶液加入3.4mL高纯水稀释,将其分别与0.2mL高纯水和不同浓度的Cr3+样品溶液混合制得空白对照体系和检测体系,充分反应15min后测定各检测体系与空白对照体系之间荧光强度的差值,并以该差值为纵坐标,Cr3+样品溶液浓度为横坐标绘制标准曲线,该检测的线性范围为0.5-10μM,检出限为5.69nM。
CN202211179137.9A 2022-09-27 2022-09-27 一种近红外荧光-磁性锰量子点探针及其合成方法与应用 Active CN115433570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211179137.9A CN115433570B (zh) 2022-09-27 2022-09-27 一种近红外荧光-磁性锰量子点探针及其合成方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211179137.9A CN115433570B (zh) 2022-09-27 2022-09-27 一种近红外荧光-磁性锰量子点探针及其合成方法与应用

Publications (2)

Publication Number Publication Date
CN115433570A CN115433570A (zh) 2022-12-06
CN115433570B true CN115433570B (zh) 2023-09-15

Family

ID=84248376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211179137.9A Active CN115433570B (zh) 2022-09-27 2022-09-27 一种近红外荧光-磁性锰量子点探针及其合成方法与应用

Country Status (1)

Country Link
CN (1) CN115433570B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112052A (zh) * 2015-08-19 2015-12-02 徐州医学院 一种荧光-磁共振双模态碳量子点的制备方法
CN105838363A (zh) * 2016-04-21 2016-08-10 大连理工大学 一种基于氨基酸和铁离子合成碳量子点的方法
CN106893585A (zh) * 2017-02-16 2017-06-27 四川省人民医院 一种具有高荧光量子产率的金属锰掺杂碳量子点及其制备方法和应用
CN109111919A (zh) * 2018-09-30 2019-01-01 湖北大学 一种完全水溶性产物的锰离子掺杂碳量子点的制备方法
CN109468130A (zh) * 2018-12-27 2019-03-15 武汉工程大学 一种金属掺杂的荧光碳量子点的制备方法
CN110194952A (zh) * 2019-05-15 2019-09-03 湖北大学 一种锰离子掺杂的橙黄色发光碳量子点的合成方法
CN113340860A (zh) * 2021-05-11 2021-09-03 五邑大学 用于检测Fe3+的锰掺杂碳点、Mn-CDs溶液、试纸及其制备方法、检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112052A (zh) * 2015-08-19 2015-12-02 徐州医学院 一种荧光-磁共振双模态碳量子点的制备方法
CN105838363A (zh) * 2016-04-21 2016-08-10 大连理工大学 一种基于氨基酸和铁离子合成碳量子点的方法
CN106893585A (zh) * 2017-02-16 2017-06-27 四川省人民医院 一种具有高荧光量子产率的金属锰掺杂碳量子点及其制备方法和应用
CN109111919A (zh) * 2018-09-30 2019-01-01 湖北大学 一种完全水溶性产物的锰离子掺杂碳量子点的制备方法
CN109468130A (zh) * 2018-12-27 2019-03-15 武汉工程大学 一种金属掺杂的荧光碳量子点的制备方法
CN110194952A (zh) * 2019-05-15 2019-09-03 湖北大学 一种锰离子掺杂的橙黄色发光碳量子点的合成方法
CN113340860A (zh) * 2021-05-11 2021-09-03 五邑大学 用于检测Fe3+的锰掺杂碳点、Mn-CDs溶液、试纸及其制备方法、检测方法

Also Published As

Publication number Publication date
CN115433570A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
Wang et al. A novel sulfur quantum dot for the detection of cobalt ions and norfloxacin as a fluorescent “switch”
Rajabi et al. Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe
Chen et al. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution
Li et al. Europium functionalized ratiometric fluorescent transducer silicon nanoparticles based on FRET for the highly sensitive detection of tetracycline
Liang et al. Functionalized CdSe quantum dots as selective silver ion chemodosimeter
Zhang et al. Synthesis of positively charged CdTe quantum dots and detection for uric acid
Gao et al. A fluorescent probe based on N-doped carbon dots for highly sensitive detection of Hg 2+ in aqueous solutions
Ye et al. Preparation of europium complex-conjugated carbon dots for ratiometric fluorescence detection of copper (II) ions
Gao et al. A fluorometric and colorimetric dual-mode sensor based on nitrogen and iron co-doped graphene quantum dots for detection of ferric ions in biological fluids and cellular imaging
Zhang et al. Fluorescent method for the determination of sulfide anion with ZnS: Mn quantum dots
Zhao et al. Synthesis of highly luminescent POSS-coated CdTe quantum dots and their application in trace Cu 2+ detection
CN110954519B (zh) 一种Ag/Cu合金纳米簇的制备方法及其在Ag+检测中的应用
Adinarayana et al. Facile green synthesis of silicon nanoparticles from Equisetum arvense for fluorescence based detection of Fe (III) ions
Chen et al. Ultrasensitive mercury (II) ion detection by europium (III)-doped cadmium sulfide composite nanoparticles
Dong et al. Polymerizing dopamine onto Q-graphene scaffolds towards the fluorescent nanocomposites with high aqueous stability and enhanced fluorescence for the fluorescence analysis and imaging of copper ions
Lin et al. Aqueous synthesis of Ag+ doped CdS quantum dots and its application in H 2 O 2 sensing
Qin et al. Water-soluble silica-coated ZnS: Mn nanoparticles as fluorescent sensors for the detection of ultratrace copper (II) ions in seawater
Chen et al. Selective detection of Fe 2+ by combination of CePO 4: Tb 3+ nanocrystal–H 2 O 2 hybrid system with synchronous fluorescence scan technique
Liu et al. Carbon quantum dots derived from the extracellular polymeric substance of anaerobic ammonium oxidation granular sludge for detection of trace Mn (vii) and Cr (vi)
Song et al. Highly sensitive and selective detection of phosphate using novel highly photoluminescent water-soluble Mn-doped ZnTe/ZnSe quantum dots
He et al. Carbon dots–MnO 2 nanocomposites for As (III) detection in groundwater with high sensitivity and selectivity
Xue et al. Preparation of AgInS2 quantum dots and their application for Pb2+ detection based on fluorescence quenching effect
Li et al. Silver ion-doped CdTe quantum dots as fluorescent probe for Hg 2+ detection
CN113960002A (zh) 一种铅离子的检测方法
Gan et al. Mercaptopropionic acid-capped Mn-doped ZnS quantum dots as a probe for selective room-temperature phosphorescence detection of Pb 2+ in water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared