CN115430447A - Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用 - Google Patents

Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN115430447A
CN115430447A CN202211005630.9A CN202211005630A CN115430447A CN 115430447 A CN115430447 A CN 115430447A CN 202211005630 A CN202211005630 A CN 202211005630A CN 115430447 A CN115430447 A CN 115430447A
Authority
CN
China
Prior art keywords
nitride
iii
group
molecular beam
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211005630.9A
Other languages
English (en)
Other versions
CN115430447B (zh
Inventor
周宝文
王新强
李东珂
盛博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Shanghai Jiaotong University
Original Assignee
Peking University
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, Shanghai Jiaotong University filed Critical Peking University
Priority to CN202211005630.9A priority Critical patent/CN115430447B/zh
Publication of CN115430447A publication Critical patent/CN115430447A/zh
Application granted granted Critical
Publication of CN115430447B publication Critical patent/CN115430447B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及甲烷蒸汽重整技术领域,尤其涉及一种Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用,制备方法包括:以硅晶片为衬底,通过分子束外延法生长,制得III族氮化物/Si半导体复合结构;通过光沉积法在III族氮化物/Si半导体复合结构表面负载Rh纳米颗粒,制得Rh纳米颗粒修饰的III族氮化物/Si集成光催化剂体系。本发明利用分子束外延法,通过调控生长参数,制得不同的III族金属氮化物/Si半导体复合结构,为甲烷和水分子的活化提供大量的活性位点和独特的催化特性。制备的Rh纳米颗粒/III族氮化物/Si集成光催化剂体系应用于甲烷蒸汽重整,可以直接利用太阳光高效稳定地生产合成气,具有条件温和、反应物原子利用率高、碳排放低、可循环使用的优点。

Description

Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用
【技术领域】
本发明涉及甲烷蒸汽重整技术领域,尤其涉及一种Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用。
【背景技术】
合成气是现代化学工业的重要原料,通过费托合成生产大量的燃料和化学品,极大地推动了人类文明的进步。近年来,能源危机和气候变化成为了全球关注的主要问题。传统的合成气生产一般源自化石能源的热催化过程。相对于煤炭和石油,天然气是一种低碳高氢的化石能源,地壳含量丰富,是生产合成气的理想原料之一。然而,传统的甲烷蒸汽重整反应条件苛刻,一般需要极端高温高压环境(一般>700oC,0.9~1.5 MPa),能耗高、碳足迹重。从可持续发展的角度来考虑,亟需开发绿色低碳的甲烷重整生产合成气的技术。相较于热催化反应,光催化技术作为一种高效、安全的环境友好型技术,能够直接利用太阳光作为反应的动力,在催化甲烷蒸汽重整领域具有巨大的潜力。然而,迄今为止,由于缺乏高效的半导体材料和催化剂,以往报道的光催化甲烷蒸汽重整技术存在产物活性低、产物以氢气为主等问题。因此,开发变革性的太阳能材料和助催化剂,并将两者以合理的构型定向集成,实现绿色高效的甲烷蒸汽重整,生产H2/CO比例可调的合成气对于新一代化工炼化生产燃料和化学品至关重要。
III族氮化物作为第三代半导体的代表,具有卓越的结构、光子学、电子学和表界面性能。例如,相对于传统半导体如金属氧化物、金属硫化物、g-C3N4,特别是研究最多而仅能吸收紫外光(占太阳光比例<5%)的TiO2半导体,III族氮化物能带间隙能够在6.2eV到0.65eV的范围内通过改变掺杂的种类和浓度灵活调节,几乎可以覆盖整个太阳能光谱。与硅基底的有效集成,可以进一步优化III族氮化物的太阳能利用能力。同时,III族氮化物具有出色的可调谐的电子性质。此外,通过使用不同的生长方式,可以生长具有规整的不同形貌的III族氮化物结构(包括量子点、纳米线和薄膜),为甲烷和水分子的活化提供了大量的活性位点和独特的催化特性。值得注意的是,III族氮化物/Si已经可以在电子电气工大规模成熟地生长制备,而且可以长期稳定运行。因此,它有望作为一个变革性的半导体平台,负载设计合理的催化剂用于太阳能光催化领域。
现有技术的光催化剂,存在太阳光吸收低、光生载流子复合剧烈、以及CH4/H2O分子活化有限等关键问题,无法实现高效稳定的光催化CH4蒸汽重整生产合成气。
【发明内容】
本发明的目的在于提供一种Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用,本发明以硅晶片为衬底,凭借分子束外延法(MBE)在硅晶片表面垂直生长规整的III族氮化物、通过在生长过程中掺入不同含量的金属铟,可起到调控能带间隙、电子行为和表界面性质的作用;通过光沉积在III族氮化物/Si上负载Rh纳米颗粒(Rh NPs),为催化反应提供大量的活性位点,实现绿色高效光催化甲烷蒸汽重整生产H2/CO比例可调的合成气。
为实现上述目的,本发明采用了如下技术方案:
一种Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法,其特征在于:具体步骤包括,
步骤1,以硅晶片为衬底,通过分子束外延法生长,制得III族氮化物/Si半导体复合结构;
步骤2,通过光沉积在III族氮化物/Si半导体复合结构表面负载Rh纳米颗粒,制得Rh纳米颗粒修饰的III族氮化物/Si集成光催化剂体系。
作为本发明的进一步改进,所述分子束外延法的具体步骤包括以硅晶片为衬底,经预处理去除有机污染物和氧化硅后,利用正向等离子体,通过调控生长参数,制得不同的III族氮化物/Si半导体复合结构。
作为本发明的进一步改进,所述分子束外延法的生长参数包括1×10-10 Torr ~1×10-8 Torr的Ga束等效压力(BEP)和200~500W的正向等离子体功率。
作为本发明的进一步改进,所述分子束外延法中,底部III族氮化物层原位生长后用作掺杂III族氮化物纳米线阵列(NWs)的模板,五段掺杂的III族氮化物周期性地生长在底层III族氮化物纳米线模板上。
作为本发明的进一步改进,所述分子束外延法中,在III族氮化物段之间生长有掺杂III族氮化物间隔层。
作为本发明的进一步改进,所述分子束外延法中的生长参数还包括衬底温度为650℃~750℃,周期性生长时间为30min~50min。
作为本发明的进一步改进,所述光沉积法的具体步骤包括,将III族氮化物/Si半导体置于反应器中,分别加入甲醇和水的混合溶液、Rh前驱体,在惰性气体氛围的真空状态下,用氙灯作为光沉积光源,进行照明后,制得Rh纳米颗粒修饰III族氮化物/Si光催化剂。
作为本发明的进一步改进,所述Rh前驱体包括六氯代铑酸钠。
作为本发明的进一步改进,所述照明时间为0.5小时~1小时。
一种Rh纳米颗粒修饰III族氮化物Si催化剂的应用,其特征在于:将由权利要求1~9中的任一方法制备得到的光催化剂应用于甲烷蒸汽重整产合成气的反应中,通过调节分子束外延生长参数和光沉积Rh纳米颗粒的条件,可以调控甲烷蒸汽重整生产合成气的活性以及合成气中H2/CO的比例。
与现有技术相比,本发明的有益之处在于:1、通过分子束外延法(MBE),通过调控生长参数,制得不同的III族金属氮化物/Si半导体复合结构。同时,所获得的III族氮化物具有规整的形貌、高的比表面积、可调谐的光电性质、独特的表界面性质,为甲烷和水分子的活化提供大量的活性位点和独特的催化特性。
2、通过调整Rh纳米颗粒/III族氮化物的结构和甲烷蒸汽重整的条件和参数,可以调节合成气的活性。另外,可以在较宽范围内调整氢气和一氧化碳的比例,以满足不同下游产物的需求。
3、将通过本发明制备的光催化剂,首次应用于甲烷蒸汽重整产合成气的反应中,可以直接利用太阳光高效稳定地生产合成气,具有条件温和、反应物原子利用率高、碳排放低、可循环使用等优点。
【附图说明】
图1是实施例1-7制得的InGaN NWs/Si、Rh NPs/InGaN NWs/Si、Rh NPs/Commercial GaN/蓝宝石的XRD谱图。
图2是实施例1-6制备的InGaN NWs/Si与Rh3-GaInN/Si、Rh10-GaInN/Si、Rh25-GaInN/Si、Rh50-GaInN/Si、Rh100-GaInN/Si的质量活性对比图。
图3是实施例1-6制备的InGaN NWs/Si与Rh3-GaInN/Si、Rh10-GaInN/Si、Rh25-GaInN/Si、Rh50-GaInN/Si、Rh100-GaInN/Si的TOF(h-1)值对比图。
图4是实施例4制备的Rh NPs/InGaN NWs/Si在不同光强下的活性对比图。
图5是实施例4和实施例7制得的Rh NPs/InGaN NWs/Si与Rh NPs/CommercialGaN/蓝宝石的质量活性对比图。
【具体实施方式】
下面将结合实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的范围。
实施例1
InGaN NWs/Si半导体复合结构的制备
使用配备射频等离子体辅助氮源的Veeco Gen II MBE系统外延生长InGaN NW。使用3英寸硅(111)晶片作为衬底。在装入MBE室之前,用丙酮和甲醇清洗硅晶片以去除有机污染物,然后用10%氢氟酸冲洗以去除氧化硅。这些纳米线的生长条件包括5×10-8 Torr 的Ga束等效压力(BEP)、4×10-8 Torr的In BEP和350 W的正向等离子体功率。同时,确保富氮气氛围促进纳米线的N端侧表面(m-plane)的形成。此外,使用Ga晶种层来促进Ga极性基面的形成对于N终止。生长的衬底温度约为700℃。通常,底部GaN层首先原位生长以用作InGaNNW的模板。随后,InGaN周期性沉积在GaN纳米线上,生长时间为40min。同时,在每段InGaN之间生长GaN间隔层,最后制得InGaN NWs/Si半导体复合结构。
实施例2-6
Rh NPs/InGaN NWs/Si集成光催化剂体系的制备
将InGaN NWs/Si用蒸馏水冲洗预处理(几何表面积约0.2cm2),然后放入配备有顶部石英窗的400mL玻璃反应器中。将60mL甲醇/水的混合溶液(体积比10/50)倒入反应器中,然后添加所需体积的Rh前驱体(0.2mol/L的六氯代铑酸钠水溶液),具体添加体积见如下表1。将腔室抽真空,用氩气对腔室进行抽放气以除去系统中的空气。使用300W氙灯(Cermax,PE300BUV)作为Rh光沉积的光源,照明时间为30min。制得不同Rh负载量的Rh NPs/InGaNNWs/Si集成光催化剂体系后,用蒸馏水彻底冲洗以去除碳残留物。
表1 Rh前驱体的添加体积
Figure 621044DEST_PATH_IMAGE002
实施例7
Rh NPs/Commercial GaN/蓝宝石集成光催化剂的制备
以生长于蓝宝石衬底的商业化GaN薄膜为模板(生长方式:有机金属化合物化学气相沉积法),经过蒸馏水冲洗预处理,放入配备有顶部石英窗的玻璃反应器中。将一定量的甲醇/水混合溶液(体积比10/50)倒入反应器中,然后添加25μL的Rh前驱体(0.2mol/L,六氯代铑酸钠水溶液)。反应腔室经真空处理后使用300W氙灯(Cermax,PE300BUV)作为Rh光沉积的光源进行照射,照射时间为30min。制备好的Rh NPs/Commercial GaN/蓝宝石集成光催化剂体系用蒸馏水彻底冲洗以去除碳残留物。
实施例8
对实施例1-7制备的光催化剂进行XRD表征
分别将实施例1-7制备的InGaN NWs/Si、Rh NPs@InGaN NWs/Si、Rh NPs/Commercial GaN/蓝宝石进行XRD表征,具体步骤为将制备的催化剂在Rigaku Ultima IV射线衍射仪(XRD)上测定样品的晶相结构,条件为Cu的Kα单色辐射,扫描范围为20°~80°。
图1为制得的InGaN NWs/Si、Rh NPs@InGaN NWs/Si、Rh NPs@Commercial GaN/蓝宝石的XRD谱图,可以看出两者的谱线出峰位置相同。这是因为:所沉积的催化剂是微量的,并没有出现除InGaN和Si片外的XRD峰。
实施例9
InGaN NWs/Si和Rh NPs/InGaN NWs/Si光催化剂的应用实验
分别将实施例1-2制备的InGaN NWs/Si与Rh3-GaInN/Si、Rh10-GaInN/Si、Rh25-GaInN/Si、Rh50-GaInN/Si、Rh100-GaInN/Si进行光反应实验,具体步骤为将所制得的集成光催化剂体系放入密封的石英反应器底部,加入一定量的蒸馏水。对反应器进行真空处理后,注入氩气和甲烷的混合气体,使反应器压力升高至一个大气压。以300W氙灯为光源,照射1h,进行光催化CH4蒸汽重整反应。停止反应,利用配备有双FID和TCD检测器的气相色谱仪(GC)对产物进行分析,检测出混合气体中一氧化碳与氢气的产量,通过计算得到InGaNNWs/Si与Rh3-GaInN/Si、Rh10-GaInN/Si、Rh25-GaInN/Si、Rh50-GaInN/Si、Rh100-GaInN/Si的质量活性以及H2/CO的比例;通过对催化剂进行电感耦合等离子体原子发射光谱法(ICP-AES)检测,得到催化剂上负载Rh元素的含量,进而就可以得到InGaN NWs/Si与Rh3-GaInN/Si、Rh10-GaInN/Si、Rh25-GaInN/Si、Rh50-GaInN/Si、Rh100-GaInN/Si的TOF(h-1)值。
图2为制备的InGaN NWs/Si与Rh3-GaInN/Si、Rh10-GaInN/Si、Rh25-GaInN/Si、Rh50-GaInN/Si、Rh100-GaInN/Si的质量活性对比图,可以看出在加入25μL的Rh前驱体时光反应的质量活性达到了最高。图3为制备的InGaN NWs/Si与Rh3-GaInN/Si、Rh10-GaInN/Si、Rh25-GaInN/Si、Rh50-GaInN/Si、Rh100-GaInN/Si的TOF(h-1)值对比图,可以看出在加入3μL的Rh前驱体时TOF(h-1)达到最大。这是因为:(1)在InGaN NWs/Si上负载Rh NPs可以为光反应提供反应所需的活性位点,进而使反应的活性有了极大的提高;(2)随着加入的Rh前驱体量增多,Rh纳米颗粒的尺寸会增大,原子利用率会下降。因此,表征原子本征活性的TOF值也会随之而下降。
实施例10
Rh NPs@InGaN NWs/Si光催化剂在不同光强下的应用实验
分别将实施例4制备的Rh25-GaInN取出4组,进行光反应实验,具体步骤为将催化剂放入体积为440mL石英反应器底部,顶部是石英盖,在反应器中加入2mL的蒸馏水,之后对石英反应器进行密封,密封好后对反应器抽真空,之后对反应器用氩气进行抽放气,在最后一次抽放气是将氩气的气流调小,以排尽反应器与水中的空气,防止空气对实验进行影响;之后在进行光反应之前抽出反应器中45mL的气体,打入40mL的甲烷气体;所有准备工作完成后,用带有汇聚镜头的氙灯在光强密度分别为6.3W/(cm2)、5.7 W/(cm2)、4.8 W/(cm2)、3.7 W/(cm2)下进行光反应1h。停止反应,利用配备有双FID和TCD检测器的气相色谱仪(GC)对产物进行分析,检测出混合气体中一氧化碳与氢气的产量,通过计算得到反应不同光强密度下的质量活性。
图4为制备的Rh NPs/InGaN NWs/Si在不同光强下的活性对比图。可以看出,活性随着光强密度的降低而下降,当光强密度达到4.8 W/(cm2)以下活性降低极大。这是因为:(1)随着光强的降低,集成光催化剂体系吸收光子产生光生载流子的密度大大降低;(2)光强降低到一定程度,体系光生载流子以非辐射复合损耗为主,不能有效地驱动表面化学反应,从而导致活性大量降低。
实施例11
Rh NPs/InGaN NWs/Si与Rh NPs/Commercial GaN/的应用实验
分别将实施例4与实施例7制备的Rh NPs/InGaN NWs/Si与Rh NPs@CommercialGaN/Si进行光反应实验,具体步骤为将所制得的集成光催化剂体系放入密封的石英反应器底部,加入一定量的蒸馏水。对反应器进行真空处理后,注入氩气和甲烷的混合气体,使反应器压力升高至一个大气压。以300W氙灯为光源,照射1h,进行光催化CH4蒸汽重整反应。停止反应,利用配备有双FID和TCD检测器的气相色谱仪(GC)对产物进行分析,检测出混合气体中一氧化碳与氢气的产量,通过计算得到Rh NPs/InGaN NWs/Si与Rh NPs@CommercialGaN/Si的质量活性。
图5为Rh NPs/InGaN NWs/Si与Rh NPs@Commercial GaN/Si的质量活性对比图,可以看出在加入同样体积的前躯体时,本发明中的Rh NPs/InGaN NWs/Si的活性远高于RhNPs/Commercial GaN Epitaxial Wafers的活性。这是因为:(1) InGaN NWs/Si超高的比表面积和独特的表界面性质可以有效地活化对称的甲烷分子,进而大大地提高了反应活性;(2)相比于GaN薄膜,InGaN NWs窄的能带间隙以及规整的一维纳米线阵列结构有利于光子的高效吸收。

Claims (10)

1.一种Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法,其特征在于:具体步骤包括,
步骤1,以硅晶片为衬底,通过分子束外延法生长,制得III族氮化物/Si半导体复合结构;
步骤2,通过光沉积法在III族氮化物/Si半导体复合结构表面负载Rh纳米颗粒,制得Rh纳米颗粒修饰的III族氮化物/Si集成光催化剂体系。
2.根据权利要求1所述的一种Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法,其特征在于:所述分子束外延法的具体步骤包括以硅晶片为衬底,经预处理去除有机污染物和氧化硅后,利用正向等离子体,通过调控生长参数,制得不同的III族氮化物/Si半导体复合结构。
3. 根据权利要求1所述的一种Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法,其特征在于:所述分子束外延法中的生长参数包括1×10-10~1×10-8 Torr的分子束等效压力(BEP)和200~500W的正向等离子体功率。
4.根据权利要求1所述的一种Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法,其特征在于:所述分子束外延法中,底部III族氮化物层原位生长后用作掺杂III族氮化物纳米线阵列(NWs)的模板,五段掺杂的III族氮化物周期性生长在底层III族氮化物纳米线模板上。
5.根据权利要求1所述的一种Rh纳米颗粒修饰III族氮化物Si光催化剂的制备方法,其特征在于:所述分子束外延法中,在III族氮化物段之间生长有掺杂III族氮化物间隔层。
6.根据权利要求1所述的一种Rh纳米颗粒修饰III族氮化物Si催化剂体系的制备方法,其特征在于:所述分子束外延法中的生长参数还包括衬底温度为650℃~750℃,周期性生长时间为30min~50min。
7.根据权利要求1所述的一种Rh纳米颗粒修饰III族氮化物Si光催化剂的制备方法,其特征在于:所述光沉积法的具体步骤包括,将III族氮化物/Si半导体置于反应器中,分别加入甲醇和水的混合溶液、Rh前驱体,在惰性气体氛围的真空状态下,用氙灯作为光沉积光源,进行照明后,制得Rh纳米颗粒修饰III族氮化物/Si光催化剂。
8.根据权利要求7所述的一种Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法,其特征在于:所述Rh前驱体包括六氯代铑酸钠。
9.根据权利要求7所述的一种Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法,其特征在于:所述照明时间为0.5小时~1小时。
10.一种Rh纳米颗粒修饰III族氮化物Si催化剂的应用,其特征在于:将由权利要求1~9中的任一方法制备得到的光催化剂应用于甲烷蒸汽重整产合成气的反应中,通过调节分子束外延生长参数和光沉积Rh纳米颗粒的条件,可以调控甲烷蒸汽重整生产合成气的活性以及合成气中H2/CO的比例。
CN202211005630.9A 2022-08-22 2022-08-22 Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用 Active CN115430447B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211005630.9A CN115430447B (zh) 2022-08-22 2022-08-22 Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211005630.9A CN115430447B (zh) 2022-08-22 2022-08-22 Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN115430447A true CN115430447A (zh) 2022-12-06
CN115430447B CN115430447B (zh) 2024-08-09

Family

ID=84245102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211005630.9A Active CN115430447B (zh) 2022-08-22 2022-08-22 Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN115430447B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538011A (zh) * 2007-11-21 2009-09-23 艾尼股份公司 由衍生自生物质的含氧化合物开始生产合成气的改进方法
US20110053020A1 (en) * 2007-11-09 2011-03-03 Washington State University Research Foundation Catalysts and related methods
US20130239469A1 (en) * 2012-03-14 2013-09-19 Board Of Regents, The University Of Texas System Photochemical Processes and Compositions for Methane Reforming Using Transition Metal Chalcogenide Photocatalysts
US20140256532A1 (en) * 2013-03-07 2014-09-11 Sunpower Technologies Llc Oriented Photocatalytic Semiconductor Surfaces
KR20150000007A (ko) * 2013-06-18 2015-01-02 서강대학교산학협력단 광촉매를 이용한 메탄올로부터의 수소 제조방법
CN107185578A (zh) * 2017-06-05 2017-09-22 天津大学 在金属片衬底上生长的GaN纳米线光催化材料及制备方法和应用
CN113024352A (zh) * 2019-12-09 2021-06-25 中国科学院大连化学物理研究所 一种光催化甲醇转化制备乙二醇的方法
CN113117672A (zh) * 2021-04-13 2021-07-16 福州大学 一种支链烷烃重整光热催化剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110053020A1 (en) * 2007-11-09 2011-03-03 Washington State University Research Foundation Catalysts and related methods
CN101538011A (zh) * 2007-11-21 2009-09-23 艾尼股份公司 由衍生自生物质的含氧化合物开始生产合成气的改进方法
US20130239469A1 (en) * 2012-03-14 2013-09-19 Board Of Regents, The University Of Texas System Photochemical Processes and Compositions for Methane Reforming Using Transition Metal Chalcogenide Photocatalysts
US20140256532A1 (en) * 2013-03-07 2014-09-11 Sunpower Technologies Llc Oriented Photocatalytic Semiconductor Surfaces
KR20150000007A (ko) * 2013-06-18 2015-01-02 서강대학교산학협력단 광촉매를 이용한 메탄올로부터의 수소 제조방법
CN107185578A (zh) * 2017-06-05 2017-09-22 天津大学 在金属片衬底上生长的GaN纳米线光催化材料及制备方法和应用
CN113024352A (zh) * 2019-12-09 2021-06-25 中国科学院大连化学物理研究所 一种光催化甲醇转化制备乙二醇的方法
CN113117672A (zh) * 2021-04-13 2021-07-16 福州大学 一种支链烷烃重整光热催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONGKE LI: "A semiconducting hybrid of RhOx/GaN@InGaN for simultaneous activation of methane and water toward syngas by photocatalysis", 《PNAS NEXUS》, vol. 2, no. 11, 21 November 2023 (2023-11-21) *
SHENG CHU: "Decoupling Strategy for Enhanced Syngas Generation from Photoelectrochemical CO2 Reduction", 《ISCIENCE》, vol. 23, pages 101390 *
李宝茹: "Ni-Fe/蒙脱土催化剂催化乙醇水蒸气重整制氢的研究", 燃料化学学报, no. 08, 15 August 2016 (2016-08-15) *

Also Published As

Publication number Publication date
CN115430447B (zh) 2024-08-09

Similar Documents

Publication Publication Date Title
AlOtaibi et al. Wafer-level artificial photosynthesis for CO2 reduction into CH4 and CO using GaN nanowires
Li et al. A critical review of CO2 photoconversion: Catalysts and reactors
Kibria et al. One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures
Wu et al. Phosphorus-doped single-crystalline quaternary sulfide nanobelts enable efficient visible-light photocatalytic hydrogen evolution
Alizadeh et al. Cu2O/InGaN heterojunction thin films with enhanced photoelectrochemical activity for solar water splitting
Kubota et al. Photocatalytic water splitting using oxynitride and nitride semiconductor powders for production of solar hydrogen
Devi et al. Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: Recent progress in the role of oxygen vacancies in catalyst design
CN112354553A (zh) 一种g-C3N4基p-n同质结光催化剂的制备方法和氢气的制备方法
Wang et al. Metal-induced oxygen vacancies on Bi2WO6 for efficient CO2 photoreduction
Zhang et al. Photocatalytic CO2 reduction reaction: Influencing factors, reaction pathways and dominant catalysts
Ganesh et al. Rational design and fabrication of surface tailored low dimensional Indium Gallium Nitride for photoelectrochemical water cleavage
Meng et al. Bismuth clusters pinned on TiO2 porous nanowires boosting charge transfer for CO2 photoreduction to CH4
WO2019246186A1 (en) Improved photocatalytic device
Wang et al. Photocatalytic syngas production from bio-derived glycerol and water on AuIn-decorated GaN nanowires supported by Si wafer
CN112517082B (zh) 一种有机金属化合物修饰无机半导体复合光催化剂及其制备方法和应用
Garcia-Baldovi et al. Photocatalytic CO2 reduction to methanol: How can the dilemma be solved?
Um et al. External catalyst-free InGaN photoelectrode for highly efficient energy conversion and H2 generation
CN115430447B (zh) Rh纳米颗粒修饰III族氮化物Si催化剂的制备方法及其应用
CN111036263B (zh) 一种Si衬底上InGaN纳米柱@Ti-Ni纳米粒子复合结构及其制备方法与应用
CN114345383B (zh) 一种氧化铟/磷化铟空心六棱柱p-n结异质结构光催化剂及其制备和应用
CN115364887B (zh) Au-In二元纳米助催化剂负载III族氮化物的制备方法及其应用
JPWO2019031592A1 (ja) 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置
CN111871434B (zh) 一种碘氧化铋/纳米金刚石复合光催化剂及其制备方法
Shimosako et al. Quantum efficiency of photocatalytic activity by GaN films
WO2021016539A2 (en) Co2 conversion with nanowire-nanoparticle architecture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant