CN115427589A - 热轧扁钢产品及其生产方法 - Google Patents

热轧扁钢产品及其生产方法 Download PDF

Info

Publication number
CN115427589A
CN115427589A CN202080100125.5A CN202080100125A CN115427589A CN 115427589 A CN115427589 A CN 115427589A CN 202080100125 A CN202080100125 A CN 202080100125A CN 115427589 A CN115427589 A CN 115427589A
Authority
CN
China
Prior art keywords
hot
steel
flat steel
steel product
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080100125.5A
Other languages
English (en)
Inventor
尼古拉斯·温泽
叶卡捷林娜·博查罗瓦
罗兰·塞巴德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of CN115427589A publication Critical patent/CN115427589A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明涉及一种厚度>1.5mm的热轧扁钢产品,其具有优化的机械性能,特别适合于通过热浸镀施加锌基腐蚀保护层。为此,该扁钢产品按质量%计组成如下,C:0.04‑0.23%,Si:0.04‑0.54%,Mn:1.4‑2.9%,Ti+V,其中Ti和V含量之和%Ti+%V适用0.005%<%Ti+%V<0.15%,以及分别选择性地“Al、Cr、Mo、B”组中的一种或多种元素,如果存在,其含量如下确定:Al:0.01‑1.5%,Cr和M含量之和%Cr+%Mo:0.02<%Mo+%Cr<1.4%,B:0.0005‑0.005%,其余部分由铁和不可避免的杂质组成,其中不可避免的杂质包括<0.02%P,<0.005%S,<0.01%N和<0.005%Nb。扁钢产品的组织结构按面积%计算由总和为50‑90%的铁素体和贝氏体铁素体、5‑50%的马氏体、2‑15%的残余奥氏体和<10%的其他组织结构组分组成。同时,扁钢产品具有>290MPa的屈服极限Rp0.2,>490MPa的抗拉强度Rm和断裂伸长率A80,其根据下列式(1)计算:A80[%]=B‑Rm/37,其中31<B<51。通过热浸涂层在扁钢产品的至少一个表面上施加Zn涂层。本发明还涉及一种用于生产这种扁钢产品的方法。

Description

热轧扁钢产品及其生产方法
技术领域
本发明涉及一种热轧扁钢产品,其包括钢基材和通过热浸涂层施加在其上的锌基腐蚀保护层。
此外,本发明还涉及一种用于生产这种扁钢产品的方法。
在本文中,“扁钢产品”被理解为长度和宽度分别都明显大于其厚度的轧制产品。这些产品尤其包括钢带和钢板。
在本文中,除非另有明确说明,有关合金成分含量的信息总是以质量%表示。
除非另有说明,否则扁钢产品的钢基材组织结构的特定组分的比例是以面积%来表示的。
在本文中,钢、锌或其他合金的“杂质”是指技术上不可避免的钢伴随物,其在生产过程中进入钢中,或者不能完全从钢中去除,但其含量在任何情况下都非常小,对钢的性能没有影响。
通过200至2000倍放大率的光学显微镜(“LOM”)和2000至20000倍放大率的扫描电子显微镜(“REM”)以光学摄影的方式进行图像分析,以定量确定组织结构。
锰(Mn)在根据本发明的扁钢产品的钢基材组织结构中的分布通过组织结构的波长分散X射线微距分析(WDX)来确定,例如Reimer L.(1998)在“元素分析和X射线成像(Elemental Analysis andImaging with X-Rays)”中说明的,出版在Scanning ElectronMicroscopy,Springer Series in Optical Sciences,第45卷,Springer,Berlin,Heidelberg。
这里提到的强度和伸长性能,如扁钢产品的抗拉强度Rm、屈服极限Rp0.2、均匀伸长率Ag、伸长率A50和伸长率A80是根据DIN-EN6892-1:2017标准在拉伸试验中测定的,除非另有说明。
背景技术
高负荷的乘用车辆和载重车辆部件,如汽车车身的防撞结构和底盘,需要厚度超过1.5mm、抗拉强度超过590MPa的热镀锌钢板。
通常使用由复杂相钢(CP-W)组成的热轧扁钢产品生产此类部件,其组织结构主要由贝氏体组成。然而,CP-W钢的变形能力相对较低,这妨碍了几何上复杂部件的设计。
双相钢(DP)由硬相(如马氏体或贝氏体)和软相(如铁素体)组合而成,由于其兼具高强度和良好的变形能力,适合于生产复杂部件。然而,厚度大于1.5mm的冷轧双相钢(DP-K)对表面缺陷,如未镀锌位置的敏感性较高。因此,热镀锌DP-K钢的最大板材厚度一般限制在2mm。
热轧双相钢(DP-W)的直接镀锌也同样不可行。为了进行镀锌,板材必须被加热到大于460℃的温度(锌浴温度)。然而,在该温度下,组织结构中的硬组分,尤其是马氏体,会被回火,而失去DP特性。
一种可能性是在热浸镀锌设备中通过典型的DP-K退火循环对热轧带钢进行退火,然后进行镀锌(即在临界温度范围内进行部分奥氏体化,即在相应钢的Ac1和Ac3温度之间的温度范围内,其中产生α-Fe和γ-Fe的平衡)。这种方式与DP-K钢的制造过程相似,除了冷轧步骤。然而,这里存在着省略冷轧步骤导致与DP-K钢相比机械性能变差的风险。
从DE 10 2012 013 113 A1中已知最小抗拉强度为580MPa的高强度多相钢。该钢优选具有双相结构,并允许生产具有改进的成型性能的冷轧或热轧钢带,尤其可以用其生产轻质车辆结构的部件。为此,已知的多相钢按质量%的组成为:0.075%≤C≤0.105%,0.600%≤Si≤0.800%,1.000%≤Mn≤2.250%,0.280%≤Cr≤0.480%,0.010%≤Al≤0.060%,≤0.020%P,≤0.0100%N,≤0.0150%S,其余部分为铁和杂质。
另一种最低抗拉强度为580MPa的高强度多相钢是从DE 10 2012 006 017 A1中已知的钢。该钢优选也具有双相结构,并适合于生产具有良好成型性能的冷轧或热轧钢带。用于轻型车辆结构的部件尤其要由这种钢带形成。为此,该已知的钢按质量%计算的组成为:0.075%≤C≤0.105%,0.200%≤Si≤0.300%,1.000%≤Mn≤2.000%,0.280%≤Cr≤0.480%,0.010%≤Al≤0.060%,最多0.020%P,0.005%≤Nb≤0.025%,最多0.0100%N,最多0.0050%S,其余部分由铁和技术上不可避免的杂质组成。
DE 10 2013 013 067 A1中已知的钢也属于上面解释的已知的多相钢,这种钢优选具有双相结构,并适用于具有改进的成型性能的冷轧或热轧钢带。这种已知的钢应具有不超过73%的屈服极限比,并且按质量%计算组成为:0.075%≤C≤0.105%,0.600%≤Si≤0.800%,1.000%≤Mn≤1.900%,0.100%≤Cr≤0.700%,0.010%≤Al≤0.060%,0.0020%≤N≤0.0120%,≤0.0030%S,0.005%≤Nb≤0.050%,0.005%≤Ti≤0.050%,0.0005%≤B≤0.0040%,≤0.200%Mo,≤0.040%Cu,≤0.040%Ni,其余为铁和不可避免的杂质。
发明内容
在上述现有技术的背景下,本发明的目的在于开发一种扁钢产品,其不仅具有优化的机械性能,而且还特别适合于通过热浸镀来施加锌基腐蚀保护层。
本发明通过一种扁钢产品实现了这一目的,该产品至少具有权利要求1中规定的特征。
此外,本发明应给出一种方法,用这种方法可以可靠地实现根据本发明获得的扁钢产品的生产。
为了实现这一目的,本发明提出了权利要求8中规定的方法。不言而喻,在执行根据本发明的方法时,本领域的技术人员不仅要实施权利要求中提到的和在此解释的方法步骤,而且如果有必要的话,还要执行在实际实施这种方法时在现有技术中经常进行的所有其他步骤和活动。
本发明的有利设计方案在从属权利要求中给出,并在下文中连同总体发明构思进行详细解释。
因此,本发明提供了一种热轧扁钢产品,其包括钢基材和通过热浸涂层涂在其上的基于锌(Zn)的腐蚀保护层。
在此,根据本发明的扁钢产品的钢基材的钢按质量%计算包括:
C:0.04-0.23%,
Si:0.04-0.54%,
Mn;1.4-2.9%,
Ti+V,其中Ti和V的含量之和%Ti+%V适用以下规定:
0.005%≤%Ti+%V≤0.15%,
以及分别选择性地“Al、Cr、Mo、B”组中的一种或多种元素,如果存在的话,规定其含量如下确定:
Al:0.01-1.5%
Cr+Mo的含量之和:0.02-1.4%
B:0.0005-0.005
其余部分由铁和不可避免的杂质组成,其中不可避免的杂质包括小于0.02%的P,小于0.005%的S,小于0.01%的N和小于0.005%的Nb。
在此,根据本发明的扁钢产品的钢基材至少有1.5mm厚,并且其组织结构按面积%计算由总量50-90%的铁素体和贝氏体铁素体、5-50%的马氏体、2-15%的残余奥氏体和最多10%的因生产而不可避免的其他组织结构组分组成。
同时,根据本发明的扁钢产品的屈服极限Rp0.2至少为290MPa,抗拉强度Rm至少为490MPa,断裂伸长率A80由以下公式(1)确定:
A80[%]=B-Rm/37,其中3≤B≤51。
根据本发明的扁钢产品可以通过至少进行以下工作步骤来生产:
A)至少通过以下子步骤生产钢带形式的热轧钢基材:
A.1)熔化根据本发明的规格组成的钢;
A.2)将钢熔体铸造为预产品,该预产品为板坯或薄板坯;
A.3)在预热温度下预热预产品,预热温度为至少1150℃,最高为1350℃;
A.4)将预产品热轧成热轧钢带,其中热轧的结束温度为至少840-980℃,热轧钢带的厚度为1.5-10mm;
A.5)将热轧钢带冷却到510-640℃的卷取温度;
A.6)将冷却到卷取温度的热轧钢带卷取。
B)至少在以下连续进行的子步骤中为以热轧钢带形式存在的钢基材涂上锌基腐蚀保护涂层:
B.1)选择性地酸洗热轧钢带;
B.2)以0.5-100℃/s的加热速度将热轧钢带加热到750-950℃的退火温度,并将热轧钢带在该退火温度保持10-1000s的退火持续时间;
B.3)以0.5-100℃/s的冷却速度将热轧钢带冷却到入浴温度BET,其中BT≤BET≤(BT+20℃),其中锌熔体浴的温度称为BT,为450-480℃;
B.4)将冷却到入浴温度BET的热轧钢带通过锌熔体浴,锌熔体浴由最多5质量%的Mg、最多10质量%的Al、其余的Zn和不可避免的杂质组成;
B.5)以0.5-100℃/s的冷却速度冷却得到的扁钢产品;
B.6)对扁钢产品进行选择性的平整轧制,平整率为0.3-2.0%。
在工作步骤A.1中要求至少1150℃的预热温度,以便使预产品的组织结构完全均匀化。在更低的温度下,预产品的微观结构将被随后生产的热轧带材所继承,因此根据本发明所需的Mn偏析无法形成。同样,在更低的预热温度下,合金元素将被束缚在析出物中,因此其无法对根据本发明的扁钢产品的机械性能产生影响。
为了能够以运行可靠的方式将根据本发明合金化的预产品轧制成热轧钢带,需要至少840℃的热轧结束温度。在更低的热轧结束温度下,轧制力会过高,因此,用于热轧的轧制机架的轧辊损坏的风险会不成比例地增加。为了将这种风险减少到最小,可以设定至少880℃的热轧结束温度。热轧结束温度不应超过980℃,因为高于这个上限的热轧结束温度在实践中无法实现。
根据本发明的热轧钢带必须至少有1.5mm的厚度,以便在热轧后能在组织结构中形成根据本发明需要的Mn偏析。在更小的钢带厚度下,热轧钢带在热轧过程中会经历过大的变形,这反过来又会导致热轧钢带结构中的Mn分布出现不希望的均匀化。厚度超过10mm的钢带不能用于预定用途。因此,最大的带材厚度被限制在10mm。
形成根据本发明的扁钢产品的钢基材的热轧钢带的卷取温度至少为510℃,以确保在卷材形式的热轧钢带冷却期间形成Mn偏析。更高的卷取温度可以促进这一过程,因此,至少为530℃,尤其至少为550℃的卷取温度是特别有利的。在过低的卷取温度下,会产生不希望的均匀的Mn分布,这样就无法实现本发明所追求的机械性能。过高的卷取温度会引发明显晶界氧化的风险。为了防止这种情况,卷取温度被限制在640℃,优选620℃。
热轧钢带以卷材形式冷却后,如果有必要,可以用传统的方式进行酸洗,以去除钢带上的氧化皮或为后续的工作步骤准备钢带的表面。
对于热浸镀,热轧钢带首先在预热阶段以每秒0.5-100℃的加热速度加热到退火温度。加热速度必须在这个窗口内,以确保组织结构的充分转化,尤其是其完全再结晶。出于同样的原因,750-950℃的退火温度,10-1000秒的保持时间是必要的。在过低的退火温度或过短的保持时间下,组织结构不会完全结晶,这带来的结果是在随后的冷却过程中,没有足够的奥氏体来形成组织结构所需的马氏体比例。未结晶的钢基材也会导致根据本发明的扁钢产品的机械性能出现明显的各向异性。
同样以每秒0.5-100℃的冷却速度进行从退火温度冷却到锌浴进入温度BET。在此,入浴温度BET至少等于熔体浴温度,最多比熔体浴温度高20℃,以防止熔体浴温度因热轧钢带的进入而发生重大变化。
选择性地可以在热浸镀之后再进行一次热处理(“镀锌”),其中将热浸镀的扁钢产品加热到最高550℃,以便烧掉先前施加的腐蚀保护层。
无论是直接在离开锌浴后还是在额外的热处理后,将得到的扁钢产品以0.5-100℃/s的冷却速度冷却到室温。
这样生产出来的扁钢产品还可以选择性地进行常规的平整轧制,以优化其尺寸精度和表面性能。这里设定的平整率通常至少为0.3%,最多为2.0%,其中至少0.5%的平整率已被证明是特别实用的。平整率小于0.3%时会导致腐蚀保护层的表面粗糙度降低,这将对扁钢产品的成型性产生负面影响。当平整率超过2.0%时,屈服极限Rp0.2会增加,断裂伸长率A80会降低,因此无法达到符合公式1的断裂伸长率。
令人惊讶的是,已经发现包括根据本发明合金化的、并具有根据本发明组织结构的钢基材的扁钢产品在热轧状态下实现了高的断裂伸长率值,该值与开头提到类型的、有类似强度的传统冷轧扁钢产品(“DP-K钢”)的断裂伸长率A80相当。因此,在实践中,断裂伸长率值A80通常可以实现,对其而言,公式(1)中的参数B至少在31-51范围内,优选是36-46。
高强度和高断裂伸长率值的结合由根据本发明的扁钢产品的钢基材中存在2-15面积%的残余奥氏体比例实现,其中至少5面积%的残余奥氏体比例通常存在于根据本发明的扁钢产品的钢基材的组织结构中,并对扁钢产品的机械性能产生积极影响。因此,根据本发明的扁钢产品中可以确定的残余奥氏体含量明显高于具有可比的合金组成的冷轧扁钢产品。
根据本发明的认知,组织结构中存在较大的残余奥氏体比例是继承了根据本发明的扁钢产品的经本发明热轧的钢基材中存在的Mn偏析的结果,并且通过扁钢产品为了其热浸镀而进行的退火处理得到了保持。因此可以证明,在根据本发明的扁钢产品的本发明生产方式中,在卷取(根据本发明的方法的子步骤A.6)之后和热浸镀(根据本发明的方法的工作步骤B)之前,热轧钢基材具有高度各向异性和不均匀的组织结构,其具有高的以条状存在的珠光体含量。对该组织结构进行的波长色散X射线微观分析(WDX)的结果显示,珠光体条带中的Mn是偏析的,并且Mn偏析在卷取后和热浸镀前以高度各向异性和不均匀的分布存在。
在连续进行的热浸镀中,根据本发明的扁钢产品的钢基材在进入熔体浴之前经过退火(根据本发明的方法的子步骤B.2),在此期间,将其在退火温度下保持一段持续时间。在此,根据本发明,退火温度和退火持续时间是相互协调的,使得不会出现Mn偏析的重新分布。因此,在完成热浸镀的根据本发明的扁钢产品中,尽管在准备锌腐蚀保护层时需要进行退火处理,钢基材中仍存在各向异性和不均匀的Mn分布,这种分布是从扁钢产品的热轧钢基材卷取后存在的最终组织结构中“继承”下来的。
因为Mn在跨临界(interkritisch)区域中退火期间对奥氏体的稳定性有非常大的贡献,与偏离本发明规范在较低温度下卷取的热轧扁钢产品相比,转化温度和冷却后的残余奥氏体含量都以更不均匀的方式分布。在根据本发明生产的扁钢产品中,与钢基材的Mn浓度较低的组织结构区域相比,钢基材的Mn浓度较高的组织结构区域更容易转化,从而在冷却后保留更多的奥氏体。其在更高的温度下转化或者根本不转化,因此在此保持着更高比例的原始铁素体。
根据本发明的完全加工的扁钢产品的钢基材中锰分布的不均匀性可以通过钢基材组织结构中其锰浓度(按质量%)比扁钢产品整个组织结构中锰浓度的平均值高15%以上的总面积比例进行量化。根据本发明的扁钢产品的钢基材组织结构中其锰浓度比整个组织结构中锰浓度的平均值高15%以上的面积比例之和标记为“X”。在根据本发明的扁钢产品中,X至少占总组织结构的10%,尤其是至少12%,有利的是至少15%。形成总和X的面积比例可以用WDX测量来评估,其中通常在一个至少200x200μm的测量面上确定Mn浓度,步长为0.5μm。
根据本发明的扁钢产品在根据本发明的生产过程中作为热轧钢带存在的钢基材的钢组成如下。
碳(C)以0.04-0.23质量%的含量存在于根据本发明的扁钢产品的钢基材中。C是形成马氏体和奥氏体的基本元素,为了达到根据本发明的扁钢产品所要求的强度性能,需要形成马氏体和奥氏体。为了使这种效果达到足够的程度,根据本发明的钢至少含有0.04质量%,其中在C含量至少为0.07质量%时,特别可靠地达到预期的效果。过高的C含量会对扁钢产品的焊接行为产生不利影响。一般来说,钢的可焊性会随着其C含量的增加而降低。因此,为了避免C含量对其加工性能的负面影响,根据本发明的钢的C含量被限制在最高0.23质量%,尤其最高0.20质量%,其中C的存在的负面影响可以在最多0.17质量%的含量下特别可靠地避免。
硅(Si)以0.04-0.54质量%的含量存在于根据本发明的扁钢产品的钢基材中。需要用Si来抑制退火过程中组织结构中珠光体的形成,其会对最终产品的机械性能产生负面影响。为此,需要0.04质量%的最小Si含量。另外,过高的Si含量会防止在卷取过程中形成珠光体,从而防止Mn在钢基材组织结构中的偏析。卷取过程中Mn的显著偏析是实现高总和X和所需机械性能的必要条件。过高的Si含量同样会损害根据本发明的扁钢产品的表面质量。由于这些原因,Si含量的上限被限制在0.54质量%。
铝(Al)可以选择性地以0.01-1.5质量%的含量添加到根据本发明的扁钢产品的钢基材中,以便有助于抑制珠光体的形成。即使以通常的方式使用Al对熔体进行脱氧处理,也会产生最少0.01质量%的Al含量。然而,过高的Al含量会对钢的可铸性产生负面影响,并在热浸镀过程中使涂层行为恶化。根据本发明的扁钢产品的基材的钢中Al的存在的这种负面影响可以通过将Al含量限制在最多1.0质量%,尤其最多0.5质量%而特别可靠地避免。
锰(Mn)在根据本发明的扁钢产品的钢基材中的含量为1.4-2.9质量%。锰是一种混合晶体元素,有助于提高材料的强度。Mn在根据本发明的扁钢产品的基材的钢中的存在还能使基材组织结构中的奥氏体更加稳定。根据本发明的合金方案与根据本发明的扁钢产品的根据本发明的生产相结合的特殊性在于,根据本发明的扁钢产品是高抗拉强度和高断裂伸长率的最佳组合,这是由于在卷取后在钢基材的珠光体条带中Mn的偏析的结果,即使当扁钢产品已经为热浸镀退火并通过了热浸浴,也能保持这种状态。为了使Mn通过偏析在珠光体条带中富集到足够的程度,Mn含量至少要达到1.4质量%,其中当Mn含量至少为1.5质量%时,就Mn对根据本发明的扁钢产品性能的积极影响的可靠性而言是有利的。然而,过高的Mn浓度也会对焊接性产生不利影响。因此,根据本发明的扁钢产品的钢基材的Mn含量的上限被限制在2.9质量%,优选2.5质量%,其中Mn对根据本发明的扁钢产品的性能的贡献在Mn含量最多为2.2质量%时可以被特别有效地利用。
铬(Cr)和钼(Mo)可以作为增加强度的选择性元素添加到根据本发明的扁钢产品的钢基材的钢中。此外,Cr和/或Mo的存在在连续涂层设备中从跨临界区冷却扁钢产品的过程中相对于珠光体增加了马氏体的形成。如果要利用这些效应,需要铬和钼的含量总共达到至少0.02质量%,尤其至少0.05质量%。然而,当Cr含量过高时,显著晶界氧化的危险也会提高。由于成本的原因,也要避免过高的Mo含量。因此,为了能够有效地利用根据本发明的扁钢产品的钢基材的钢中Cr和Mo的作用,将Cr和Mo的总含量的上限设定为1.4质量%,优选1.0质量%。在此,Cr和Mo不一定要组合使用,也可以以按照本发明规定的0.02-1.4质量%,尤其0.05-1.0质量%的含量分别单独添加到钢中,以达到说明的效果。然而,当Cr和Mo同时分别以有效的含量存在时,产生了特别有利的效果,只要这些含量的总和在本发明规定的范围内。
钛(Ti)和钒(V)中的至少一种元素作为必要组分以0.005-0.15质量%的含量存在于根据本发明的扁钢产品的钢基材的钢中,其中,在此,当Ti和V分别以有效含量同时存在时,这些元素的最佳效果会出现。Ti和V是微合金元素,其会在钢中形成精细的析出物。这种析出物可以防止奥氏体晶粒在高于钢的Ar1温度下粗化,并以这种方式导致组织结构的细化。更精细的组织结构有利于根据本发明所追求的、在根据本发明的扁钢产品生产过程中进行的卷取过程中的Mn的偏析,因为Mn的扩散距离因Ti和/或V的存在而减少。含Ti和含V的析出物此外还通过弥散硬化有助于根据本发明的扁钢产品的强度。为了实现Ti和V的这些效果,Ti和/或V的总含量至少要达到0.005质量%。当含量超过0.15质量%时,Ti和/或V的存在不再导致根据本发明所需的性能的任何特别的增加。相反,如果Ti和V的含量之和最多为0.1质量%,则可以特别有效地加以利用。
根据本发明,铌(Nb)的含量被限制在小于0.005质量%,因此,如果铌存在,其也属于技术上无效的杂质。更高的Nb含量会导致细小的Nb析出物的形成,这在连续铸造过程中或在板坯冷却或再加热的情况下会容易形成裂纹。因此,Nb含量优选限制在小于0.003质量%,尤其小于0.002质量%。
硼(B)同样可以选择性地以0.0005-0.005质量%的含量添加到根据本发明的扁钢产品的钢基材的钢中,以防止在扁钢产品生产过程中从跨临界区进行的冷却过程中形成铁素体。通过这种方式,B促进贝氏体的形成,从而导致强度的提高。为此,要求B的最低含量为0.0005质量%。但过高的B含量会导致不希望出现的脆化。因此,根据本发明,如果添加了B,则B的含量上限被设定为不超过0.005质量%,尤其0.002质量%。
磷(P)是根据本发明的扁钢产品的钢基材的钢中不希望出现的、但在技术上一般不可避免的杂质,因此应尽可能低。P被证明在焊接性方面尤其是不利的。为了可靠地避免其不利影响,根据本发明,P的含量被限制在小于0.02质量%,优选小于0.01质量%,尤其小于0.005质量%。
硫(S)也是根据本发明的扁钢产品的钢基材的钢中不希望出现的、但在技术上一般不可避免的杂质,因此应尽可能低。在较高的浓度下,S会导致MnS或(Mn,Fe)S的形成,这将对根据本发明的扁钢产品的伸长行为产生不利影响。为了避免这种不利的影响,根据本发明的S含量被限制在小于0.005质量%,优选小于0.002质量%。
氮(N)也是根据本发明的扁钢产品的钢基材的钢中不希望出现的、但技术上一般不可避免的杂质,因此应尽可能低。例如,N会与铝或钛形成氮化物。在N含量较高的情况下,这将导致粗大的析出物,其可能对扁钢产品的成型性有害。因此,根据本发明,N的含量被限制在小于0.01质量%,优选小于0.005质量%。
在传统的钢生产中,钙(Ca)也会进入钢中,因为添加钙是为了脱氧和脱硫以及改善可铸性。过高的Ca浓度会导致形成不希望的夹杂物,这对机械和轧制性能有负面影响。因此,Ca含量的上限被限制在最多0.005质量%,优选最多0.002质量%。
铜(Cu)、镍(Ni)、锡(Sn)、砷(As)、钴(Co)、锆(Zr)、镧(La)和/或铈(Ce)同样是属于根据本发明的扁钢产品的钢基材的钢的杂质的合金元素,它们的存在本身是不希望的。为了可靠地防止这些元素对根据本发明的扁钢产品性能的影响,在根据本发明的扁钢产品的钢基材的钢中,Cu含量被限制在最多0.2质量%,Ni含量限制在最多0.1质量%,Sn含量限制在最多0.05质量%,As含量限制在最多0.02质量%,Co含量限制在最多0.02质量%,Zr含量限制在最多0.0002质量%,La含量限制在最多0.0002质量%,以及Ce含量限制在最多0.0002质量%。
氧(O)也是一种不希望的杂质,因为在存在较多的O时,会形成氧化物伴随物,这对扁钢产品的机械性能和其钢基材的钢的可铸性和可轧性都有负面影响。因此,氧的含量限制在最多0.005质量%,优选0.002质量%。
氢(H)也是根据本发明的扁钢产品的钢基材的钢的不希望的杂质之一。作为最小的原子,H在钢中的间隙位点上有很强的流动性,并在热轧后的冷却过程中尤其是在超高强度钢中会导致芯部开裂。因此,根据本发明的扁钢产品的钢基材的钢中的H含量减少到最大0.001质量%,优选最大0.0006质量%,更优选最大0.0004质量%,最优选最大0.0002质量%。
对腐蚀保护涂层的组成以及因此对扁钢产品在热浸镀过程中经过的相关熔体浴的组成没有特别要求。因此,根据本发明的扁钢产品的腐蚀保护涂层主要由锌(Zn)组成,其余可以以常规方式组成。
相应地,除了Zn和不可避免的杂质外,腐蚀保护层还可以包含最多20质量%的Fe,最多5质量%的Mg和最多10质量%的Al。通常,如果其分别存在,则设定至少5质量%的Fe、至少1质量%的Mg和/或至少1质量%的Al,以达到最佳的腐蚀保护使用性能。
具体实施方式
下面将借助于实施例更详细地解释本发明。
为了测试本发明,将钢A-I熔化并铸成板坯,其组成在表1中给出。合金元素的小到在技术意义上为“0”的含量,即小到对钢的性能没有影响的含量,在表1中用条目“-”来表示。
在预热炉中充分加热板坯,其中预热温度为VT。
随后,以常规方式对预热过的板坯进行热轧,形成热轧钢带W1-W35,其中热轧是在轧制结束温度ET下结束的。
以这种方式得到的热轧钢带W1-W35以同样的常规方式从卷取温度HT开始卷取,以分别形成卷材。如果有必要,在卷取之前,以常规方式将它们冷却到卷取温度HT。
为了证明本发明的效果,在生产分别由钢A-I组成的热轧钢带W1-W35时,分别选择表2中给出的预热炉温度VT、热轧结束温度ET和卷取温度HT的组合I-VIII之一。表2中给出了属于组合I-VIII中的每一个的预热炉温度VT、热轧结束温度ET和卷取温度HT。在此,分别不符合本发明规格的那些预热炉温度VT、热轧结束温度ET和卷取温度HT用下划线强调。
热轧钢带W1-W35以卷材形式冷却后,通过热浸镀涂上锌基腐蚀保护层。为此,这些带材分别经受退火处理和熔体施加的六种变体之一,它们在这些变体中在预热阶段以加热速度HR被加热到退火温度GT,随后在该退火温度下分别保持40s到100s的退火持续时间。随后,热轧钢带W1-W35以冷却速度KR1冷却到入浴温度BET,该温度分别等于熔体浴的浴温,热轧钢带在各自相应的退火处理a-f后通过该熔体浴。该熔体浴在此由至少99质量%的锌组成。从熔体浴中出来的、现在完成的、基于热轧钢带W1-W35制造的扁钢产品随后以冷却速度KR2冷却到室温。属于退火处理和熔体施加的变体a-f的参数加热速度HR、退火温度GT、冷却速度KR1、入浴温度BET和冷却速度KR2记录在表3中。
在以上述方式获得的扁钢产品上确定机械性能和组织结构组分。这些研究的结果,屈服极限Rp0.2、抗拉强度Rm、断裂伸长率A80、公式(1)中的参数“B”、组织结构中铁素体比例F、组织结构中马氏体比例M、组织结构中奥氏体比例A、组织结构中其他组分比例SO以及钢基材组织结构的其中Mn浓度比组织结构中Mn浓度的平均值高15%以上的面积比例之和X,汇总于表4,其中,对于基于热轧钢带W1-W35制造的扁钢产品,还给出了各相应扁钢产品的钢基材由哪种钢A-I组成,各相应钢基材进行了热轧钢带制造的组合I-VIII(“WEZ”栏)以及退火处理和熔体施加的变体a-f(“GS”栏)中的哪些。
由热轧钢带W1、W3、W6、W7、W8和W27生产的扁钢产品没有按照根据本发明的方式制造:
在用热轧钢带W1生产的扁钢产品中,用过低的预热温度VT加热板坯,所以板坯没有完全退火。因此,合金元素和生产方法没有对机械性能产生影响。
热轧钢带W3含有太少的Mn,所以热轧钢带结构的珠光体条带中的Mn没有以足够的程度偏析。这导致了较低的残余奥氏体含量,因此导致由热轧钢带W3生产的扁钢产品的断裂伸长率A80相对较低。因此,参数B低于31。
在生产热轧钢带W6、W7和W8时,设置了过低的卷取温度。这导致了对Mn偏析的类似影响,因此导致机械性能不足,就像由热轧钢带W3生产的扁钢产品一样。
在热轧钢带W27的退火处理期间,设置了过低的GT,因此组织结构没有完全再结晶。这导致所获得的扁钢产品的钢基材组织结构中奥氏体含量较低,因此断裂伸长率A80较低。
Figure BDA0003903995400000151
Figure BDA0003903995400000152
*)未根据本发明的参数标有下划线
Figure BDA0003903995400000153
Figure BDA0003903995400000161

Claims (11)

1.热轧扁钢产品,包括
-至少1.5mm厚的钢基材,
所述钢基材按质量%计算的组成为:
C:0.04-0.23%,
Si:0.04-0.54%,
Mn;1.4-2.9%,
Ti+V,其中Ti和V的含量之和%Ti+%V适用以下规定:
0.005%≤%Ti+%V≤0.15%,
以及分别选择性地“Al、Cr、Mo、B”组中的一种或多种元素,如果存在的话,规定其含量如下确定:
Al:0.01-1.5%
Cr和Mo的含量之和%Cr+%Mo:0.02≤Mo%+Cr%≤1.4%
B:0.0005-0.005%
其余部分由铁和不可避免的杂质组成,其中不可避免的杂质包括小于0.02%的P,小于0.005%的S,小于0.01%的N和小于0.005%的Nb,
-组织结构按面积%计算由总量50-90%的铁素体和贝氏体铁素体、5-50%的马氏体、2-15%的残余奥氏体和最多10%的因生产而不可避免的其他组织结构组分组成,
并且
-屈服极限Rp0.2至少为290MPa,抗拉强度Rm至少为490MPa,断裂伸长率A80由以下公式(1)确定:
A80[%]=B-Rm/37,其中3≤B≤51,
并且
-包括通过热浸涂层涂在其至少一个表面上的基于锌的腐蚀保护层。
2.根据权利要求1所述的扁钢产品,其特征在于,所述钢基材的组织结构含有至少5面积%的残余奥氏体。
3.根据前述权利要求中任意一项所述的扁钢产品,其特征在于,公式(1)的参数B适用:36≤B≤46。
4.根据前述权利要求中任意一项所述的扁钢产品,其特征在于,所述钢基材组织结构中其锰浓度比组织结构中锰浓度的平均值高15%以上的面积比例之和X占总组织结构的至少10%。
5.根据权利要求4所述的扁钢产品,其特征在于,和X为至少12%。
6.根据权利要求5所述的扁钢产品,其特征在于,和X为至少15%。
7.根据前述权利要求中任意一项所述的扁钢产品,其特征在于,所述腐蚀保护层由至少75质量%Zn组成。
8.用于生产根据权利要求1至7中任意一项得到的扁钢产品的方法,在所述方法中至少进行以下工作步骤:
A)至少通过以下子步骤生产钢带形式的热轧钢基材:
A.1)熔化钢熔体,所述钢熔体以质量%计算的组成为:C:0.04-0.23%,Si:0.04-0.54%,Mn:1.4-2.9%,Ti+V,其中Ti和V含量之和%Ti+%V适用:0.005%≤%Ti+%V≤0.15%,以及分别选择性地“Al、Cr、Mo、B”组中的一种或多种元素,如果存在,其含量如下确定:Al:0.01-1.5%,Cr和Mo,其中Cr和Mo含量之和%Cr+%Mo适用:0.02≤%Mo+%Cr≤1.4%,B:0.0005-0.005%,其余部分由铁和不可避免的杂质组成,其中不可避免的杂质包括少于0.02%的P,少于0.005%的S,少于0.01%的N和少于0.005%的Nb;
A.2)将钢熔体铸造为预产品,所述预产品为板坯或薄板坯;
A.3)在预热温度下预热预产品,预热温度为至少1150℃,最高为1350℃;
A.4)将预产品热轧成热轧钢带,其中热轧的结束温度为至少840-980℃,热轧钢带的厚度为1.5-10mm;
A.5)将热轧钢带冷却到510-640℃的卷取温度;
A.6)将冷却到卷取温度的热轧钢带卷取,
B)至少在以下连续进行的子步骤中为以热轧钢带形式存在的钢基材涂上锌基的腐蚀保护层:
B.1)选择性地酸洗热轧钢带;
B.2)以0.5-100℃/s的加热速度将热轧钢带加热到750-950℃的退火温度,并将热轧钢带在所述退火温度保持10-1000s的退火持续时间;
B.3)以0.5-100℃/s的冷却速度将热轧钢带冷却到入浴温度BET,其中BT≤BET≤(BT+20℃),其中锌熔体浴的温度称为BT,为450-480℃;
B.4)将冷却到入浴温度BET的热轧钢带通过锌熔体浴,锌熔体浴由最多5质量%的Mg、最多10质量%的Al、其余的Zn和不可避免的杂质组成;
B.5)以0.5-100℃/s的冷却速度冷却得到的扁钢产品;
B.6)对扁钢产品进行选择性的平整轧制,平整率为0.3-2.0%。
9.根据权利要求8所述的方法,其特征在于,所述卷取温度为至少530℃。
10.根据权利要求9所述的方法,其特征在于,所述卷取温度为至少550℃。
11.根据权利要求8至9中任意一项所述的方法,其特征在于,所述卷取温度为最高620℃。
CN202080100125.5A 2020-04-22 2020-04-22 热轧扁钢产品及其生产方法 Pending CN115427589A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2020/061200 WO2021213647A1 (de) 2020-04-22 2020-04-22 Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung

Publications (1)

Publication Number Publication Date
CN115427589A true CN115427589A (zh) 2022-12-02

Family

ID=70456767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080100125.5A Pending CN115427589A (zh) 2020-04-22 2020-04-22 热轧扁钢产品及其生产方法

Country Status (4)

Country Link
US (1) US20230151468A1 (zh)
EP (1) EP4139492A1 (zh)
CN (1) CN115427589A (zh)
WO (1) WO2021213647A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2589677A1 (en) * 2010-06-29 2013-05-08 JFE Steel Corporation High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
CN104520448A (zh) * 2012-06-05 2015-04-15 蒂森克虏伯钢铁欧洲股份公司 钢材,扁钢产品及该扁钢产品的制造方法
EP3375902A1 (en) * 2015-12-25 2018-09-19 JFE Steel Corporation High strength hot dip hot-rolled steel sheet and manufacturing method therefor
CN108884532A (zh) * 2016-03-25 2018-11-23 杰富意钢铁株式会社 高强度热浸镀锌钢板及其制造方法
CN110268083A (zh) * 2017-02-10 2019-09-20 杰富意钢铁株式会社 高强度镀锌钢板及其制造方法
CN110291215A (zh) * 2017-01-20 2019-09-27 蒂森克虏伯钢铁欧洲股份公司 由具有大部分为贝氏体的组织结构的复相钢组成的热轧扁钢产品和用于生产这种扁钢产品的方法
EP3575432A1 (en) * 2017-01-25 2019-12-04 JFE Steel Corporation High strength hot-dipped steel sheet having excellent plating adhesion, and method for producing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540885B2 (ja) * 2010-05-20 2014-07-02 新日鐵住金株式会社 溶融めっき熱延鋼板およびその製造方法
JP5499984B2 (ja) * 2010-08-06 2014-05-21 新日鐵住金株式会社 溶融めっき熱延鋼板およびその製造方法
JP5541263B2 (ja) * 2011-11-04 2014-07-09 Jfeスチール株式会社 加工性に優れた高強度熱延鋼板およびその製造方法
DE102012006017A1 (de) 2012-03-20 2013-09-26 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102012013113A1 (de) 2012-06-22 2013-12-24 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa
JP5821864B2 (ja) * 2013-01-31 2015-11-24 Jfeスチール株式会社 バーリング加工性に優れた高強度熱延鋼板およびその製造方法
DE102013013067A1 (de) 2013-07-30 2015-02-05 Salzgitter Flachstahl Gmbh Siliziumhaltiger, mikrolegierter hochfester Mehrphasenstahl mit einer Mindestzugfestigkeit von 750 MPa und verbesserten Eigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
ES2636780T3 (es) * 2013-08-22 2017-10-09 Thyssenkrupp Steel Europe Ag Procedimiento para la fabricación de un componente de acero
JP5783229B2 (ja) * 2013-11-28 2015-09-24 Jfeスチール株式会社 熱延鋼板およびその製造方法
EP3555337A1 (de) * 2016-12-14 2019-10-23 ThyssenKrupp Steel Europe AG Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
DE102017209982A1 (de) * 2017-06-13 2018-12-13 Thyssenkrupp Ag Hochfestes Stahlblech mit verbesserter Umformbarkeit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2589677A1 (en) * 2010-06-29 2013-05-08 JFE Steel Corporation High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
CN104520448A (zh) * 2012-06-05 2015-04-15 蒂森克虏伯钢铁欧洲股份公司 钢材,扁钢产品及该扁钢产品的制造方法
EP3375902A1 (en) * 2015-12-25 2018-09-19 JFE Steel Corporation High strength hot dip hot-rolled steel sheet and manufacturing method therefor
CN108884532A (zh) * 2016-03-25 2018-11-23 杰富意钢铁株式会社 高强度热浸镀锌钢板及其制造方法
CN110291215A (zh) * 2017-01-20 2019-09-27 蒂森克虏伯钢铁欧洲股份公司 由具有大部分为贝氏体的组织结构的复相钢组成的热轧扁钢产品和用于生产这种扁钢产品的方法
EP3575432A1 (en) * 2017-01-25 2019-12-04 JFE Steel Corporation High strength hot-dipped steel sheet having excellent plating adhesion, and method for producing same
CN110268083A (zh) * 2017-02-10 2019-09-20 杰富意钢铁株式会社 高强度镀锌钢板及其制造方法

Also Published As

Publication number Publication date
EP4139492A1 (de) 2023-03-01
US20230151468A1 (en) 2023-05-18
WO2021213647A1 (de) 2021-10-28

Similar Documents

Publication Publication Date Title
JP4738735B2 (ja) 超高張力鋼シート、超高張力鋼シートの製造方法、及び前記方法により得られた超高張力鋼シート
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
US11427880B2 (en) High-strength galvanized steel sheet and method for manufacturing same
WO2019106895A1 (ja) 高強度亜鉛めっき鋼板およびその製造方法
KR101607041B1 (ko) 내시효성과 베이킹 경화성이 우수한 고강도 냉연 강판의 제조 방법
JP4559969B2 (ja) 加工用熱延鋼板およびその製造方法
CN109790606B (zh) 镀覆钢板、热浸镀锌钢板的制造方法及合金化热浸镀锌钢板的制造方法
WO2013114850A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
KR20070061859A (ko) 신장과 구멍 확장성이 우수한 고강도 박강판 및 그 제조방법
CN111684096B (zh) 热浸镀锌钢板以及合金化热浸镀锌钢板
JP6079726B2 (ja) 高強度鋼板の製造方法
WO2013160928A1 (ja) 高強度鋼板およびその製造方法
JP6597938B1 (ja) 高強度冷延鋼板、高強度めっき鋼板及びそれらの製造方法
JP3433687B2 (ja) 加工性に優れた高張力熱延鋼板およびその製造方法
EP4180547A1 (en) Hot-pressed member and manufacturing method therefor
JP4116901B2 (ja) バーリング性高強度薄鋼板およびその製造方法
JP2004068051A (ja) 高強度溶融亜鉛めっき鋼板及びその製造方法
JP2001226741A (ja) 伸びフランジ加工性に優れた高強度冷延鋼板およびその製造方法
JP3539546B2 (ja) 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
JP2004052071A (ja) 伸びフランジ性、強度−延性バランスおよび歪時効硬化特性に優れた複合組織型高張力冷延鋼板およびその製造方法
JP5678695B2 (ja) 高強度鋼板およびその製造方法
JP4292986B2 (ja) 高張力冷延鋼板およびその製造方法
WO2013084477A1 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
JP5655436B2 (ja) 深絞り性に優れた高強度鋼板およびその製造方法
JP4525386B2 (ja) 形状凍結性と深絞り性に優れた高強度鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination