CN115414912A - 一种氮掺杂多级孔碳吸附材料的制备方法 - Google Patents

一种氮掺杂多级孔碳吸附材料的制备方法 Download PDF

Info

Publication number
CN115414912A
CN115414912A CN202211060070.7A CN202211060070A CN115414912A CN 115414912 A CN115414912 A CN 115414912A CN 202211060070 A CN202211060070 A CN 202211060070A CN 115414912 A CN115414912 A CN 115414912A
Authority
CN
China
Prior art keywords
nitrogen
adsorption
mixed solution
carbon adsorption
adsorption material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211060070.7A
Other languages
English (en)
Other versions
CN115414912B (zh
Inventor
王夫美
侯艺航
曾亚军
沈伯雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN202211060070.7A priority Critical patent/CN115414912B/zh
Publication of CN115414912A publication Critical patent/CN115414912A/zh
Application granted granted Critical
Publication of CN115414912B publication Critical patent/CN115414912B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种氮掺杂多级孔碳吸附材料的制备方法,该方法为:将聚氧乙烯聚氧丙烯醚嵌段共聚物、去离子水、γ‑环糊精和对苯二胺超声分散搅拌均匀得到混合液,将混合液倒入反应釜中一步碳化合成,冷却至室温后,依次用去离子水和乙醇洗涤,再进行干燥得到固体物质,将得到的固体物质在N2保护和900℃恒温条件下保持6h,冷却到室温后得到氮掺杂多级孔碳吸附材料。本发明的氮掺杂多级孔碳吸附材料具有比表面积大、活性高、稳定性好和可再生性好等优点,同时,制备过程简单易行,可以一步碳化合成,且制备过程中不会大量使用酸碱进行刻蚀,不会对环境产生污染。

Description

一种氮掺杂多级孔碳吸附材料的制备方法
技术领域
本发明属于碳吸附材料技术领域,具体涉及一种氮掺杂多级孔碳吸附材料的制备方法。
背景技术
近年来,CO2作为化石燃料燃烧的副产品,其排放量在不断攀升,从而引起了生态环境问题,如大气温度升高、全球气候变暖等。因此,开发高效的CO2捕集和分离技术,有效的降低CO2的排放量已然成为当下研究的热点。CO2的捕集与分离是一种合理有效的减排手段,目前CO2的捕集方法主要有液体吸收法、固体吸附分离法、膜分离法、低温液化分离法和生物法等。固体吸附法中的多孔碳材料由于具有质量轻、孔隙发达、热化学性质稳定、可再生和易于改性等优点,是CO2捕集与分离技术中相对优异的固体吸附剂,具有很大的应用潜力。但是,碳材料存在吸附量低、吸附选择性差等不足,为了进一步提高常规碳材料对CO2的吸附量和吸附选择性,国内外研究者提出了采用杂原子掺杂的方法来提高吸附剂对CO2的吸附能力。研究表明,多孔碳骨架中引入氮原子既能提供碱性吸附位点又可以提高整个碳骨架的极性,使得CO2吸附量和选择性都得到显著提高。
聚氧乙烯聚氧丙烯醚嵌段共聚物(聚醚Pluronic,F127)中文名为泊洛沙姆,商品名为普兰尼克(Pluronics),是一种常用的非离子型表面活性剂,为雪花、薄片状固体。这种三嵌段共聚物在水溶液中常自发形成多分子聚集的胶束,其内核以疏水PPO(聚氧丙烯)嵌段为主成分,掺有若干的PEO(聚氧乙烯)嵌段,其余的PEO嵌段环绕在外构成外壳。
环糊精是通常含有6~12个D-吡喃葡萄糖单元组成的环状低聚物,其分子内部有空腔的特殊结构,分子外部有亲水性,内部是疏水空洞,有机化合物可以选择性的嵌入其中,因此,可以在环糊精分子上引入新的官能团或者使两个或多个环糊精分子聚合成立体结构复杂的化合物,提高它对于包络物的吸附能力,所以天然环糊精易于改性且改性效果较为明显。Yang Zheng-Chun等人(Chem.Mater.2013,25,704-710)利用α-环糊精和F127水热处理制备尺寸和形貌可控的中空碳纳米粒子,其孔径具有微-介孔结构,具有较大电容量而应用到锂离子电池阳极材料。
传统N掺杂多级孔碳需要多步完成,首先通过硬/软模板法和后活化方法制备得到多孔碳材料,然后再进行后处理N掺杂,其中,介孔和大孔主要来自于去除硬/软模板,而微孔主要通过活化后产生,一般采用如酸、碱、水蒸气或CO2等刻蚀材料表面碳的活化反应实现。硬模板法过程简单,可以通过模板精确控制材料的孔径和结构;利用模板法或活化法的致孔方法可以在结构中产生较为单一的微孔或介孔结构。分级多孔结构的控制合成通常需要复杂的合成步骤和昂贵的成孔剂。此外,大量使用酸碱刻蚀会对环境造成污染,过程复杂耗时,难以在工业上广泛应用。为了克服这些局限性,双模板法同时采用中孔和微孔的模板剂合成具有微孔-中孔结构的材料,并可通过调变二模板剂不同比例和温度来控制最终产物,引起学者们的关注。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种氮掺杂多级孔碳吸附材料的制备方法,氮掺杂多级孔碳吸附材料具有比表面积大、活性高、稳定性好和可再生性好等优点。
为解决上述技术问题,本发明采用的技术方案是:一种氮掺杂多级孔碳吸附材料的制备方法,该方法为:
S1、混合液的制备:将聚氧乙烯聚氧丙烯醚嵌段共聚物加入去离子水中,在室温条件下超声分散后,加入γ-环糊精和对苯二胺,超声分散搅拌均匀后,得到混合液;
聚氧乙烯聚氧丙烯醚嵌段共聚物为市购,购于Sigma-Aldrich公司,中文名为泊洛沙姆,商品名为普兰尼克(Pluronics),型号为F127。
S2、一步碳化合成:将S1得到的混合液放入至聚四氟乙烯水热釜,在温度为200℃的条件下静置12h,自然冷却至室温后,依次用去离子水和乙醇洗涤,然后在温度为80℃的温度条件下进行干燥,得到固体物质;
S3、在N2保护下,将S2得到的固体物质以3℃/min的升温速率从室温升温至900℃,然后恒温保持6h,自然冷却至室温,得到氮掺杂多级孔碳吸附材料。
优选地,S1中所述混合液中聚氧乙烯聚氧丙烯醚嵌段共聚物、去离子水、γ-环糊精和对苯二胺的质量体积比为(7.5~30)mg:100mL:60mg:(7~18)mg。
优选地,S1中超声分散的时间为15min。
优选地,S2中静置的时间为12h。
优选地,S3中所述氮掺杂多级孔碳吸附材料的粒径为0.5μm~5μm。
优选地,S3中所述氮掺杂多级孔碳吸附材料的平均比表面积为1348cm3/g~1405m2/g,平均孔容为0.87cm3/g~1.08cm3/g,平均孔径为1.3nm~2.6nm。
本发明中天然大环化合物γ-环糊精提供碳源和介孔模板剂,聚氧乙烯聚氧丙烯醚嵌段共聚物提供微孔模板剂,可以通过调整聚氧乙烯聚氧丙烯醚嵌段共聚物的添加量,调控微孔与介孔比例。γ-环糊精的质量保持不变,加入的聚氧乙烯聚氧丙烯醚嵌段共聚物质量过大会导致碳吸附材料微孔过多,容易导致空隙堵塞而影响二氧化碳在碳吸附材料孔结构间的传输,导致CO2的吸附量减小;加入的聚氧乙烯聚氧丙烯醚嵌段共聚物质量过小则会使得微孔过少,也导致CO2吸附量减小。对苯二胺作为氮源,可以通过增加对苯二胺添加量,来增加N的掺杂量,但引入过量N可能扰乱聚氧乙烯聚氧丙烯醚嵌段共聚物、γ-环糊精和对苯二胺的相互间组装,影响碳吸附材料孔道结构的有序性;调节吸附温度也可以改变CO2吸附量,氮掺杂多级孔碳吸附材料在低温25℃下CO2的吸附量大于在高温100℃下的CO2吸附量。最终制备的氮掺杂多级孔碳吸附材料的粒径为0.5μm~5μm、平均比表面积和平均孔容大、平均孔径小、CO2/N2的气体选择性也更大,CO2吸附性能更好。
本发明与现有技术相比具有以下优点:
1、本发明的氮掺杂多级孔碳吸附材料具有平均比表面积大、活性高、稳定性好和可再生性好等优点。微孔可以提供较大的有效表面积,微孔与介孔的比例不同则平均比表面积不同,可以通过调节介孔模板剂γ-环糊精和微孔模板剂聚氧乙烯聚氧丙烯醚嵌段共聚物的质量比来调节比表面积,进而调控CO2的吸附量。将氮掺杂多级孔碳吸附材料在100℃,0.1MPa下循环吸附五次,CO2的吸附量基本没有变化,数据波动较小,氮掺杂多级孔碳吸附材料具有优异的可再生性能和热稳定性;还可以通过调节吸附温度来改变CO2吸附量,低吸附温度下CO2吸附量更大,但氮掺杂多级孔碳吸附材料在低吸附温度和高吸附温度下CO2吸附量都有大幅提升。
2、本发明制备过程简单易行,一步实现多级孔碳吸附材料的碳化,并且制备过程中不会大量使用酸碱进行刻蚀,不会对环境产生污染。
3、本发明的氮掺杂多级孔碳吸附材料的氮掺杂量由加入的氮源对苯二胺的质量确定,增加对苯二胺的添加量,可以提高氮的掺杂量,提供更多的表面活性点,还可以提高CO2/N2的气体选择性。
下面结合附图和实施例对本发明作进一步详细说明。
附图说明
图1是本发明的实施例1制备的氮掺杂多级孔碳吸附材料的SEM图。
图2是本发明的实施例2制备的氮掺杂多级孔碳吸附材料的TEM图。
图3是本发明的对比例1-2和实施例1-2的碳吸附材料的孔径分布图。
图4是本发明的实施例3制备的氮掺杂多级孔碳吸附材料的SEM图。
图5是本发明的实施例3制备的氮掺杂多级孔碳吸附材料CF3N9-X的再生性能测试图(五次重复实验)。
具体实施方式
实施例1
本实施例提供了制备氮掺杂多级孔碳吸附材料的方法,该方法为:
S1、混合液的制备:在烧杯中准确称取7.5mg的聚氧乙烯聚氧丙烯醚嵌段共聚物加入100mL去离子水,在室温下条件下超声分散15min后,加入60mg的γ-环糊精和7mg对苯二胺,超声15min分散搅拌均匀后,得到混合液;
聚氧乙烯聚氧丙烯醚嵌段共聚物为市购,购于Sigma-Aldrich公司,中文名为泊洛沙姆,商品名为普兰尼克Pluronics,型号为F127。
S2、一步碳化合成:将S1得到的混合液倒入200mL的聚四氟乙烯水热釜,在温度为200℃的条件下静置12h,自然冷却至室温后,依次用去离子水和乙醇洗涤,在温度为80℃的条件下干燥12h,得到固体物质;
S3、在N2保护下,将S2得到的固体物质以3℃/min的升温速率从室温升温到900℃,然后恒温保持6h,自然冷却至室温,得到氮掺杂多级孔碳吸附材料(命名为CF1N5,F1代表F127的使用量为7.5mg,N5代表N/C摩尔比为5:100)。
本实施例中天然大环化合物γ-环糊精提供碳源和介孔模板剂,聚氧乙烯聚氧丙烯醚嵌段共聚物提供微孔模板剂,对苯二胺提供氮源。
本实施例制备过程简单易行,一步实现氮掺杂多级孔碳吸附材料的碳化,并且制备过程中不会大量使用酸碱进行刻蚀,不会对环境产生污染。
图1为本实施例制备的氮掺杂多级孔碳吸附材料CF1N5的SEM图,可以看出该样品表面存在多孔结构,孔分布不均匀,平均孔径大小为1.3nm。
实施例2
本实施例提供了制备氮掺杂多级孔碳吸附材料的方法,该方法为:
S1、混合液的制备:在烧杯中准确称取15mg的聚氧乙烯聚氧丙烯醚嵌段共聚物加入100mL去离子水,在室温条件下超声分散15min后,加入60mg的γ-环糊精和8mg对苯二胺,超声15min分散搅拌均匀后,得到混合液;
S2、一步碳化合成:将S1得到的混合液倒入200mL的聚四氟乙烯水热釜中,在温度为200℃的条件下静置12h,自然冷却至室温后,依次用去离子水和乙醇洗涤,在温度为80℃的条件下干燥12h,得到固体物质;
S3、在N2保护下,将S2得到的固体物质以3℃/min的升温速率从室温升温到900℃,然后恒温保持6h,自然冷却至室温,得到氮掺杂多级孔碳吸附材料(命名为CF2N5,F2代表F127的使用量为15mg,N5代表N/C摩尔比为5:100)。
图2为本实施例制备的氮掺杂多级孔碳吸附材料CF2N5的TEM图,可以看出该样品为球形多孔材料,其粒径为0.5μm~1.5μm,球的表面分布有许多小孔,平均孔径大小为2nm。
对比例1
本对比例提供了制备碳吸附材料的方法,该方法为:
S1、混合液的制备:在烧杯中加入60mg的γ-环糊精和100mL去离子水,在室温条件下超声分散15min,得到混合液;
S2、一步碳化合成:将S1得到的混合液倒入200mL的聚四氟乙烯水热釜中,在温度为200℃的条件下静置12h,自然冷却至室温后,依次用去离子水和乙醇洗涤,然后在温度为80℃的条件下干燥12h,得到固体物质;
S3、在N2保护下,将S2得到的固体物质以3℃/min的升温速率从室温升温到900℃,然后恒温保持6h,自然冷却至室温,得到碳吸附材料(命名为CF0N0,F0代表F127使用量为0mg,N0代表无氮掺杂)。
对比例2
本对比例提供了制备多级孔碳吸附材料的方法,该方法为:
S1、混合液的制备:在烧杯中准确称取7.5mg的聚氧乙烯聚氧丙烯醚嵌段共聚物加入100mL去离子水,在室温条件下超声分散15min后,加入60mg的γ-环糊精,超声15min分散搅拌均匀后,得到混合液;
S2、一步碳化合成:将S1得到的混合液倒入200mL的聚四氟乙烯水热釜中,在温度为200℃的条件下静置12h,自然冷却至室温后,依次用去离子水和乙醇洗涤,在温度为80℃的条件下干燥12h,得到固体物质;
S3、在N2保护下,将S2得到的固体物质以3℃/min的升温速率从室温升温到900℃,然后恒温保持6h,自然冷却至室温,得到多级孔碳吸附材料(命名为CF1N0,F1代表F127的使用量为7.5mg,N0代表无氮掺杂)。
图3为上述实施例1-2和对比例1-2制备的碳吸附材料的孔径与孔容增量的关系图,由此可知,制备的四种碳吸附材料孔径分布在0.2nm~3nm之间较为密集,平均孔径为1nm,具有丰富的微孔和介孔结构。
实施例3
本实施例提供了制备氮掺杂多级孔碳吸附材料的方法,该方法为:
S1、混合液的制备:在烧杯中准确称取30mg的聚氧乙烯聚氧丙烯醚嵌段共聚物加入100mL去离子水,在室温条件下超声分散15min后,加入60mg的γ-环糊精和18mg对苯二胺,超声15min分散搅拌均匀后,得到混合液;
S2、一步碳化合成:将S1得到的混合液倒入200mL的聚四氟乙烯水热釜,在温度为200℃的条件下静置12h,自然冷却至室温后,依次用去离子水和乙醇洗涤,在温度为80℃的条件下干燥12h,得到固体物质;
S3、在N2保护下,将S2得到的固体物质以3℃/min的升温速率从室温升温到900℃,然后恒温保持6h,自然冷却至室温,得到氮掺杂多级孔碳吸附材料(命名为CF3N9,F3代表F127的使用量为30mg,N9代表N/C摩尔比为9:100)。
图4为本实施例制备的氮掺杂多级孔碳吸附材料CF3N9的扫描电镜图,可以看出该样品的表面粗糙且分布多孔结构,微孔、介孔并存,平均孔径大小为2.6nm。
将本实施例制备的氮掺杂多级孔碳吸附材料CF3N9进行CO2吸附循环性试验,该试验方法为:用吸附分析仪Beishide3H-2000PS2在100℃,0.1MPa下进行了再生实验,图5是本实施例制备的氮掺杂多级孔碳球的再生性能图。通过CO2吸附/解吸循环的变压过程对再生性能进行了五次测试,样品通过变压解吸过程进行了再生,五次再生后的样品分别命名为CF3N9-X(X取值为1、2、3、4或5)。
由五次循环试验得到图5,图中1~5共五条线代表第一次~第五次吸附循环试验后得到的不同再生样品的时间与CO2吸附量变化的关系图。由图可知氮掺杂多级孔碳吸附材料CF3N9每次再生试验后测得的曲线都没有较大的变化,CO2吸附量变化微乎其微,说明本实施例制备的氮掺杂多级孔碳吸附材料CF3N9具有良好的稳定性。
实施例4
本实施例为实施例1-3和对比例1-2制备得到的碳吸附材料CO2吸附性能测试实例。
将实施例1-3获得的氮掺杂多级孔碳吸附材料与对比例1制备的碳吸附材料、对比例2制备的多级孔碳吸附材料先在60℃条件下干燥12h备用。在分析之前,在120℃的温度条件下通过吹扫氮气流对样品脱气,以防止吸附空气中的CO2影响吸附效果。将所得的碳吸附材料取50mg样品放置于吸附分析仪Beishide3H-2000PS2,通入模拟烟气(体积分数为15%的CO2,平衡气为N2)以及纯CO2气体。在上述条件下,吸附温度为25℃和100℃时,实施例1-3和对比例1-2制备的碳吸附材料CO2吸附性能试验数据见表1:
表1碳吸附材料CO2吸附性能的试验数据
Figure BDA0003823935590000091
上表列举了实施例1-3制备的氮掺杂多级孔碳吸附材料和对比例1制备的碳吸附材料、对比例2制备的多级孔碳吸附材料的CO2吸附性能的试验数据。由此可知,实施例2添加15mg聚氧乙烯聚氧丙烯醚嵌段共聚物和8mg对苯二胺制备的氮掺杂多级孔碳吸附材料CF2N5的平均比表面积最大,为1405m2/g;实施例2的平均孔容也最大,为1.08cm3/g;在0.1MPa压力下,实施例3添加30mg聚氧乙烯聚氧丙烯醚嵌段共聚物和18mg对苯二胺制备的氮掺杂多级孔碳吸附材料CF3N9的CO2吸附量最大,当吸附温度为25℃时,CO2吸附量最大为6.91mmol/g,当吸附温度为100℃时,CO2吸附量最大为2.29mmol/g。
平均比表面积是吸附材料的重要指标之一,其数值越大,反应越充分,对比例1没有添加聚氧乙烯聚氧丙烯醚嵌段共聚物制备的CF0N0的平均比表面积为1119m2/g,对比例2添加7.5mg聚氧乙烯聚氧丙烯醚嵌段共聚物制备的CF1N0的平均比表面积为1275m2/g,由此可知添加7.5mg聚氧乙烯聚氧丙烯醚嵌段共聚物后对比例2制备的CF1N0比对比例1制备的CF0N0的平均比表面积增大了156m2/g;实施例1添加7.5mg聚氧乙烯聚氧丙烯醚嵌段共聚物制备的CF1N5的平均比表面积为1348m2/g,实施例2添加15mg聚氧乙烯聚氧丙烯醚嵌段共聚物制备的CF2N5的平均比表面积为1405m2/g,由此可知添加15mg聚氧乙烯聚氧丙烯醚嵌段共聚物后实施例2制备的CF2N5比实施例1制备的CF1N5的平均比表面积增大了57m2/g,两次平均比表面积的涨幅都是较为显著的,说明加入聚氧乙烯聚氧丙烯醚嵌段共聚物后,增加了碳吸附材料微孔比例,进而平均比表面积也增大,大大提高了碳吸附材料的CO2吸附性能。
在吸附材料中孔容指其有效体积,是吸附材料能容纳吸附质的体积,所以孔容越大吸附性能越好,由实施例1添加7.5mg聚氧乙烯聚氧丙烯醚嵌段共聚物制备的氮掺杂多级孔碳吸附材料CF1N5的平均孔容为0.87cm3/g,实施例2添加15mg聚氧乙烯聚氧丙烯醚嵌段共聚物制备的氮掺杂多级孔碳吸附材料CF2N5的平均孔容为1.08cm3/g,由此可知添加15mg聚氧乙烯聚氧丙烯醚嵌段共聚物后实施例2制备的CF2N5比实施例1制备的CF1N5的平均孔容增大了0.21cm3/g,有效提高了氮掺杂多级孔碳吸附材料的CO2吸附性能。
CO2/N2的气体选择性也是CO2吸附性能的指标之一,CO2/N2的气体选择性越大,氮掺杂多级孔碳吸附材料的CO2吸附性能越好。采用Sisp模型对获得的吸附数据进行拟合,并结合理想吸附溶液理论(IAST)模型计算出模拟烟气吸附等温线与实验测得的等温线进行比较,验证模型的合理性,计算出CO2/N2的吸附选择性,本实施例中掺杂氮可以提高氮掺杂多级孔碳吸附材料的气体选择性到20,CO2吸附性能大幅提高。
稳定性也是吸附材料的重要指标之一,由实施例3中制备的CF3N9和CF3N9-5可知经过五次循环再生试验后氮掺杂多级孔碳吸附材料的比表面积、孔容和CO2吸附量都相差无几,稳定性良好。
CO2的吸附量是碳吸附材料的重要指标,对比例1没有添加聚氧乙烯聚氧丙烯醚嵌段共聚物制备的碳吸附材料CF0N0在吸附温度为25℃时CO2的吸附量为2.16mmol/g,在吸附温度为100℃时CO2的吸附量为0.77mmol/g,对比例2添加7.5mg聚氧乙烯聚氧丙烯醚嵌段共聚物制备的多孔碳吸附材料CF1N0在吸附温度为25℃时CO2的吸附量为4.00mmol/g,在吸附温度为100℃时CO2的吸附量为0.92mmol/g,由此可知添加7.5mg聚氧乙烯聚氧丙烯醚嵌段共聚物后对比例2制备的CF1N0比对比例1制备的CF0N0在吸附温度为25℃时CO2的吸附量提高了1.84mmol/g,在吸附温度为100℃时CO2的吸附量提高了0.15mmol/g;对比例2添加7.5mg聚氧乙烯聚氧丙烯醚嵌段共聚物制备的多级孔碳吸附材料CF1N0在吸附温度为25℃时CO2的吸附量为4.00mmol/g,在吸附温度为100℃时CO2的吸附量为0.92mmol/g,实施例1添加7.5mg聚氧乙烯聚氧丙烯醚嵌段共聚物和7mg对苯二胺制备的氮掺杂多级孔碳吸附材料CF1N5在吸附温度为25℃时CO2的吸附量为4.91mmol/g,在吸附温度为100℃时CO2的吸附量为1.57mmol/g,由此可知添加7mg对苯二胺后实施例1制备的CF1N5比对比例2制备的CF1N0在吸附温度为25℃时CO2吸附量提高了0.91mmol/g,在吸附温度为100℃时CO2吸附量提高了0.65mmol/g。从实施例1-3和对比例1-2可以得到,增加聚氧乙烯聚氧丙烯醚嵌段共聚物的添加量、增加对苯二胺的添加量可以加强氮掺杂多级孔碳吸附材料在低吸附温度25℃和高吸附温度100℃下CO2的吸附量,且低吸附温度25℃下CO2的吸附量大于高吸附温度100℃下CO2的吸附量。
综上可知,氮掺杂多级孔碳吸附材料具有比表面积大、活性高和稳定性好的优点,可以通过调节聚氧乙烯聚氧丙烯醚嵌段共聚物的添加量、增加对苯二胺的添加量和调节吸附温度来获得更好的CO2吸附性能。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (6)

1.一种氮掺杂多级孔碳吸附材料的制备方法,其特征在于,该方法为:
S1、混合液的制备:将聚氧乙烯聚氧丙烯醚嵌段共聚物加入去离子水中,在室温条件下超声分散后,加入γ-环糊精和对苯二胺,超声分散搅拌均匀后,得到混合液;
S2、一步碳化合成:将S1得到的混合液放入至聚四氟乙烯水热釜,在温度为200℃的条件下静置碳化12h,自然冷却至室温后,依次用去离子水和乙醇洗涤,然后在温度为80℃的条件下进行干燥,得到固体物质;
S3、在N2保护下,将S2得到的固体物质以3℃/min的升温速率从室温升温至900℃,然后恒温保持6h,自然冷却至室温,得到氮掺杂多级孔碳吸附材料。
2.根据权利要求1所述的一种氮掺杂多级孔碳吸附材料的制备方法,其特征在于,S1中所述混合液中聚氧乙烯聚氧丙烯醚嵌段共聚物、去离子水、γ-环糊精和对苯二胺的质量体积比为(7.5~30)mg:100mL:60mg:(7~18)mg。
3.根据权利要求1所述的一种氮掺杂多级孔碳吸附材料的制备方法,其特征在于,S1中超声分散的时间为15min。
4.根据权利要求1所述的一种氮掺杂多级孔碳吸附材料的制备方法,其特征在于,S2中静置的时间为12h。
5.根据权利要求1所述的一种氮掺杂多级孔碳吸附材料的制备方法,其特征在于,S3中所述氮掺杂多级孔碳吸附材料的粒径为0.5μm~5μm。
6.根据权利要求1所述的一种氮掺杂多级孔碳吸附材料的制备方法,其特征在于,S3中所述氮掺杂多级孔碳吸附材料平均比表面积为1348cm3/g~1405m2/g,平均孔容为0.87cm3/g~1.08cm3/g,平均孔径为1.3nm~2.6nm。
CN202211060070.7A 2022-08-31 2022-08-31 一种氮掺杂多级孔碳吸附材料的制备方法 Active CN115414912B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211060070.7A CN115414912B (zh) 2022-08-31 2022-08-31 一种氮掺杂多级孔碳吸附材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211060070.7A CN115414912B (zh) 2022-08-31 2022-08-31 一种氮掺杂多级孔碳吸附材料的制备方法

Publications (2)

Publication Number Publication Date
CN115414912A true CN115414912A (zh) 2022-12-02
CN115414912B CN115414912B (zh) 2023-11-03

Family

ID=84200920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211060070.7A Active CN115414912B (zh) 2022-08-31 2022-08-31 一种氮掺杂多级孔碳吸附材料的制备方法

Country Status (1)

Country Link
CN (1) CN115414912B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477605A (zh) * 2023-06-15 2023-07-25 武汉理工大学三亚科教创新园 一种原位氮掺杂微米碳球材料的制备方法、钠离子电池组

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911697A (zh) * 2019-11-22 2020-03-24 深圳大学 一种过渡金属/氮掺杂多孔碳纳米球电催化剂及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911697A (zh) * 2019-11-22 2020-03-24 深圳大学 一种过渡金属/氮掺杂多孔碳纳米球电催化剂及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477605A (zh) * 2023-06-15 2023-07-25 武汉理工大学三亚科教创新园 一种原位氮掺杂微米碳球材料的制备方法、钠离子电池组
CN116477605B (zh) * 2023-06-15 2023-09-15 武汉理工大学三亚科教创新园 一种原位氮掺杂微米碳球材料的制备方法、钠离子电池组

Also Published As

Publication number Publication date
CN115414912B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
Guo et al. Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors
Hamouda et al. Synthesis of porous carbon material based on biomass derived from hibiscus sabdariffa fruits as active electrodes for high-performance symmetric supercapacitors
Wang et al. Fabrication of hierarchical carbon nanosheet-based networks for physical and chemical adsorption of CO2
CN108380175B (zh) 一种碳酸氧镧-埃洛石复合材料及其制备方法和应用
Yoshida et al. Solvent-free synthesis and KOH activation of mesoporous carbons using resorcinol/Pluronic F127/hexamethylenetetramine mixture and their application to EDLC
Dassanayake et al. Activated polypyrrole-derived carbon spheres for superior CO2 uptake at ambient conditions
CN115414912B (zh) 一种氮掺杂多级孔碳吸附材料的制备方法
Ma et al. In situ bottom–up growth of metal–organic frameworks in a crosslinked poly (ethylene oxide) layer with ultrahigh loading and superior uniform distribution
CN112023890B (zh) 一种由共价有机框架衍生的纳米空心管材料及其制备方法
Zhang et al. Ultrahigh surface area carbon from carbonated beverages: combining self-templating process and in situ activation
Cai et al. Metal-free core-shell structured N-doped carbon/carbon heterojunction for efficient CO2 capture
CN108854874A (zh) 一种基于空气活化造孔的具有超高比表面积的超纯碳气凝胶及其制备方法
CN109336084A (zh) 一种氮掺杂介孔碳球及其制备方法
CN111453712A (zh) 一种具有多级孔道结构的中空碳球及其制备方法
KR20180104472A (ko) 마이크로기공과 메조기공이 공존하는 구형의 위계다공성 카본 및 그 제조방법
Marciniak et al. Physicochemical characterization of ordered mesoporous carbons functionalized by wet oxidation
Liang et al. Easily tunable hydrogel-derived heteroatom-doped hierarchically porous carbons as multifunctional materials for supercapacitors, CO2 capture and dye removal
Luo et al. From 0D to 3D nanomaterial-based composite membranes for CO2 capture: Recent advances and perspectives
CN113648966A (zh) 一种生物质多孔碳材料及其制备方法和应用
CN108862237A (zh) 一种基于二氧化碳活化造孔的具有超高比表面积的超纯碳气凝胶及其制备方法
CN110342487B (zh) 一种聚多巴胺改性mof衍生碳分子筛的制备方法
CN108404871A (zh) 一种高吸附性金属有机骨架材料的制备方法
Bai et al. CO2 capture from dilute sources using triamine functionalized MCF silica at ambient temperature
CN114524433A (zh) 一种分级多孔硬碳的制备方法及硬碳和应用与负极和电极
TWI400195B (zh) 儲氫結構形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant