CN115400769A - 一种运用3d打印技术制备孔状微米零价铁掺杂硫化亚铁的复合材料的方法及其应用 - Google Patents

一种运用3d打印技术制备孔状微米零价铁掺杂硫化亚铁的复合材料的方法及其应用 Download PDF

Info

Publication number
CN115400769A
CN115400769A CN202211141968.7A CN202211141968A CN115400769A CN 115400769 A CN115400769 A CN 115400769A CN 202211141968 A CN202211141968 A CN 202211141968A CN 115400769 A CN115400769 A CN 115400769A
Authority
CN
China
Prior art keywords
powder
printing
concentration
reaction
fes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211141968.7A
Other languages
English (en)
Other versions
CN115400769B (zh
Inventor
李丹
付怡博
徐剑晖
张云飞
李蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN202211141968.7A priority Critical patent/CN115400769B/zh
Publication of CN115400769A publication Critical patent/CN115400769A/zh
Application granted granted Critical
Publication of CN115400769B publication Critical patent/CN115400769B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

本发明提供一种全新的3D打印孔状微米零价铁掺杂硫化亚铁材料来降解废水中抗生素等污染物,在打印的过程中通入部分氢气作为保护气,同时通过吸附和共沉淀的作用将适量的可溶性有机碳加入到Fe/FeS粉末中,通过氢气和一氧化碳的还原作用成功的缓解了3D打印过程中Fe/FeS材料的氧化并增大了其比表面积,利用3D打印出的孔状Fe/FeS材料可以催化双氧水产生强氧化能力的·OH从而有效降解废水中的氟苯尼考等污染物,相比较打印前的粉末材料,3D打印后的孔状Fe/FeS材料降解速率更快且方便回收利用。

Description

一种运用3D打印技术制备孔状微米零价铁掺杂硫化亚铁的复 合材料的方法及其应用
技术领域
本发明涉及有机废水治理技术领域和3D打印领域,尤其涉及一种3D打印微米零价铁掺杂硫化亚铁的复合材料的制备及其应用,3D打印微米零价铁掺杂硫化亚铁的复合材料可用于氧化降解废水中氟苯尼考等有机污染物。
背景技术
氟苯尼考(FLO)是甲砜霉素(thiamphenicol,TAP)的氟化衍生物,是一种酰胺醇类动物专用广谱抗生素,与氯霉素(chloramphenicol,CAP)相比,氟苯尼考无-NO2基团,毒性更低,使用更安全;与TAP相比,其抗菌范围更为广泛,对革兰氏阴性菌和革兰氏阳性菌均有抑制作用,并且以单氟取代了-OH基团后不易产生耐药性,使用更有效。因此,氟苯尼考是CAP和TAP的良好替代品,近年来被广泛应用。但FLO在环境中的累积会促使抗性细菌和抗性基因的产生,从而对人体健康和生态安全构成极大威胁。而且氟苯尼考的消除半衰期长,水溶性差,常温下在水中的溶解度仅为1.05mg/mL~1.35mg/mL,很容易产生药物残留问题。因此寻求条件温和、高效低耗的抗生素类物质降解方法已成为环境技术领域研究的新热点。
目前,高级氧化法是一种高效去除抗生素废水的物理化学法,该技术主要通过利用在反应过程中所产生的具有强氧化能力的·OH对难降解抗生素进行氧化降解,且去除速率高、去除速度快,其中,铁氧化物催化双氧水发生的Fenton反应能够产生大量的·OH。近年来,大多数实验室还在使用金属粉末材料作为催化剂,传统的金属粉末材料存在操作不够灵活、容易流失和不易回收等缺点。但正如专利CN110479331A所提及的内容,3D打印技术构建整体催化剂可以克服传统粉末催化剂的缺点。
专利CN110280761A等提及在3D打印过程中机器的密封性并不是很好,导致金属粉末在打印熔融成型过程中会碰到空气而被氧化,所以惰性气体的单位时间的耗量及氧气含量能否降到且稳定在100-250ppm范围将直接影响打印制件质量,如致密度、表面光洁度等。由于上述问题导致Fe/FeS材料在打印过程中非常容易发生氧化,而氧化后的材料大大降低了其催化降解效果。
发明内容
鉴于上述现有技术的不足,本发明提供一种全新的3D打印微米零价铁掺杂硫化亚铁材料来降解废水中抗生素等污染物,在打印的过程中通入3%的氢气作为保护气,同时通过吸附和共沉淀的作用将适量的可溶性有机碳加入到Fe/FeS粉末中,通过氢气和有机碳在打印过程中转化的一氧化碳的还原作用成功的缓解了3D打印过程中Fe/FeS材料的氧化并增大了其比表面积,利用3D打印出的孔状Fe/FeS材料可以催化双氧水产生强氧化能力的·OH从而有效降解废水中的氟苯尼考等污染物,相比较打印前的粉末材料,3D打印后的孔状Fe/FeS材料降解速率更快且方便回收利用。
本发明的材料制备方法及其降解污染物的过程包括如下步骤:
(1)将一定量零价铁粉末、硫化亚铁粉末以及可溶性有机碳按一定比例称量后放入的烧杯中,加入一定量纯水后反应,当烧杯中物质在底层聚集及上清液基本澄清后倒去烧杯中液体,同时进行四组该步骤的操作。
(2)将四个球磨罐中分别放入同等质量的球磨钢珠,使钢珠重量为步骤(1)中加入粉末的4倍左右。
(3)将一步骤(1)四个烧杯中的聚状体取出分别放入四个球磨罐中,加入一定量乙醇。
(4)将步骤(3)中球磨罐放在行星式球磨机上,设置参数,正转反转各1小时。
(5)将步骤(4)中磨好的粉末在温度为T1的烘箱里干燥2~3小时,得到一定数量的干燥粉末
(6)将步骤(5)中得到的干燥粉末过200目的筛网在振荡机上摇晃至铁粉全部筛至下部盛装粉末的铁盘中。
(7)选用金属激光3D打印设备,安装打印设备的金属打印板并进行调平,使打印板的四个平面达到平行状态,安装刮条使其与打印板子平行并下降至刚好与打印版贴合的位置。
(8)将步骤(6)中得到的金属粉末倒入3D打印机的粉槽中,将粉槽调节至合适的位置进行铺粉操作。
(9)打开冷却水、保护气(氩气、3%的氢气)使打印机内溶解氧含量下降至250ppm,打开并下载事先建模好的孔状3D结构(扫描策略采用X、Y方向等间距旋转90°交替扫描,扫描速度范围为900~1200mm/s,采用激光功率范围为190~220W,扫描间距为0.07~0.11mm,铺粉层厚为0.05mm,),设置峰值为100,打开激光后方可进行打印。
(10)将打印完成的3D铁材料从打印版用水刀上切割下来。浸泡在大于99.7%的工业酒精中超声10~15min,重复2~3次。
(11)浓度为C1的污染物浓度加入一定体积的反应瓶中,加水至反应体积。
(12)浓度为C2的3D打印孔状零价铁材料放入低浓度的酸溶液中酸泡后加入步骤(11)的反应瓶中。
(13)浓度为C3的H2O2加入步骤(11)反应瓶中后开始计时,分别在不同时间t时取1ml反应液放入1.5ml的液相瓶中,加入一定量甲醇或叔丁醇终止反应。
(14)将步骤(13)所取反应液放置高效液相色谱仪中检测污染物剩余浓度。
本发明所述的方法,步骤(5)中,所述温度T1为35~60℃。
本发明所述的方法,步骤(11)中,所述污染物浓度C1为5~10ppm。
本发明所述的方法,步骤(12)中,所述3D打印材料投加浓度C2为0.5~2g/L。
本发明所述的方法,步骤(13),所述双氧水浓度C3为0.1~1.5mM。
本发明所述的方法,步骤(13),所述时间反应时间t为0~70min
本发明所述的方法,步骤(13),所述加入甲醇浓度为15~20μl。本发明相对于现有粉末材料,有以下优点:
1、本发明制备的3D打印孔状Fe/FeS材料相比于其金属粉末材料,不易流失且更方便回收利用。
2、本发明所制备的3D打印孔状Fe/FeS材料性质、性能优异,如比表面积高、机械性能强(数据说明)等。
3、本发明制备的3D打印孔状Fe/FeS材料有利于强化催化和吸附过程中的传质/传热过程,而且操作灵活,可靠性强,因此适于工业生产和实验室研究。
4、本发明所制备的3D打印孔状Fe/FeS材料,铁受氧化的程度相对较低。
5、本发明所制备的3D打印孔状Fe/FeS材料将可以对mg/L级氟苯尼考染物在70min内分解效率在99.9%以上,可实现对氟苯尼考工业化有效净化。
附图说明
图1为氟苯尼考降解数据图。
图2为3D打印孔状Fe/FeS材料的实物图。
图3为3D打印孔状Fe/FeS材料的扫描电镜照片。
具体实施方式
本发明提供一种3D打印孔状微米零价铁掺杂硫化亚铁的复合材料的制备方法和应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下结合实例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在本发明中,图1为氟苯尼考降解数据图。图2为3D打印孔状Fe/FeS材料的实物图。图3为3D打印孔状Fe/FeS材料的扫描电镜照片。
实施例1:用本发明所提供的3D打印孔状微米零价铁掺杂硫化亚铁的复合材料降解氟苯尼考
该材料制备方法及其降解氟苯尼考的过程包括如下步骤:
(1)分别称量112g零价铁粉末、6g硫化亚铁粉末以及6g可溶性有机碳(植被凋落物土层提取)后放入150ml的烧杯中,加入100ml纯水后反应,当烧杯中物质在底层聚集及上清液基本澄清后倒去烧杯中液体,同时进行四组该步骤的操作。
(2)将四个球磨罐中分别放入同等质量的球磨钢珠,使钢珠重量为步骤(1)中加入粉末的4倍左右。
(3)将一步骤(1)四个烧杯中的聚状体取出分别放入四个球磨罐中,加入3.5ml乙醇。
(4)将步骤(3)中球磨罐放在行星式球磨机上,设置转速为400r/min,正转反转各1小时。
(5)将步骤(4)中磨好的粉末在温度为35℃的烘箱里干燥2小时,得到干燥的金属粉末。
(6)将步骤(5)中得到的干燥粉末过200目的筛网在振荡机上摇晃至铁粉全部筛至下部盛装粉末的铁盘中。
(7)选用汉邦SLM-280激光3D打印设备,安装金属3D打印设备的金属打印板并进行调平,使打印板的四个平面达到平行状态,安装刮条使其与打印板子平行并下降至刚好与打印版贴合的位置。
(8)将步骤(6)中得到的金属粉末倒入3D打印机的粉槽中,并将粉槽调节至金属粉末略高于打印板的位置进行铺粉操作。
(9)打开冷却水,通入氩气和3%的氢气使打印机内溶解氧含量下降至250mg/L以下,打开并下载事先建模好的孔状3D结构(扫描策略采用X、Y方向等间距旋转90°交替扫描,扫描速度范围为900~1200mm/s,采用激光功率范围为190~220W,扫描间距为0.07~0.11mm,铺粉层厚为0.05mm,),设置峰值为100,打开激光后方可进行打印。
(10)将打印完成的3D铁材料从打印版用水刀上切割下来。浸泡在大于99.7%的工业酒精中超声10~15min,重复2~3次。
实施例2:
使用实施例1所制备得到的孔状微米零价铁掺杂硫化亚铁的复合材料为催化剂,进一步降解含有氟苯尼考的废水:
(11)浓度为10ppm的氟苯尼考加入150ml的反应瓶中,加水至100ml的反应体积中。
(12)浓度为2g/L的3D打印孔状零价铁材料放入0.1%的HCl溶液中超声5min后加入步骤(11)反应瓶中。
(13)浓度为1.5mM的双氧水加入步骤(11)反应瓶中后开始计时,分别在0、5、10、20、35、50、70时取1ml反应液放入1.5ml的液相瓶中,加入15μl甲醇终止反应。
(14)将步骤(13)所取反应液放置高效液相色谱仪中检测污染物剩余浓度。
(15)将金属零价铁粉末替换3D打印孔状零价铁材料重复上述步骤(11)至步骤(14)的操作,目的在于对于本发明材料相比原Fe/FeS材料粉末材料降解氟苯尼考有巨大的提升。
如图1所示,本发明所制备的3D打印孔状Fe/FeS材料将可以对mg/L级氟苯尼考染物在70min内分解效率在99.9%以上,可实现对氟苯尼考工业化有效净化。在此,我们对3D材料以及双氧水的投加浓度根据上述范围做了个梯度分析,选出2g/L的3D材料和1.5mM的双氧水浓度为最优条件。
图2为3D打印孔状Fe/FeS材料的实物图,本发明制备的3D打印孔状Fe/FeS材料相比于其金属粉末材料,不易流失且更方便回收利用。
在此,我们在3D打印孔状Fe/FeS材料的打印过程中加入了部分氢气作为保护气,同时将可溶性有机碳与Fe/FeS粉末通过吸附和共沉淀的作用混合在一起,成功的缓解了在打印过程中由于氧化造成的影响。铁氧化物因其表面活性高,可作为无机胶结物起到絮凝剂的作用,能够将细颗粒与无机或有机分子结合形成团聚体,有机碳不仅会被吸附在铁氧化物表面,而且会进入铁氧化物内部或堵塞其表面的反应位点,改变其的内部结构和晶型(如图3所示)。在3D打印激光的高温扫描下有机碳会发生氧化转化为碳氧化物,一方面消耗了氧气减缓了Fe/FeS的氧化,另一方面由于有机碳的去除增加了3D材料的比表面积,进而使材料更容易与污染物接触,提高了污染物的降解效果。同时我们控制了有机碳的投加量,使有机碳在打印过程中大部分都氧化为CO,利用CO和氢气的还原能力进一步降低了Fe/FeS材料的氧化。

Claims (8)

1.一种运用3D打印技术制备孔状微米零价铁掺杂硫化亚铁的复合材料的方法,该方法包括以下步骤:
(1)将一定量零价铁粉末、硫化亚铁粉末以及可溶性有机碳按一定比例称量后放入的烧杯中,加入一定量纯水后反应,当烧杯中物质在底层聚集及上清液基本澄清后倒去烧杯中液体,同时进行四组该步骤的操作;
(2)将四个球磨罐中分别放入同等质量的球磨钢珠,使钢珠重量为步骤(1)中加入粉末的4倍左右;
(3)将一步骤(1)四个烧杯中的聚状体取出分别放入四个球磨罐中,加入一定量乙醇;
(4)将步骤(3)中球磨罐放在行星式球磨机上,设置参数,正转反转各1小时;
(5)将步骤(4)中磨好的粉末在温度为T1的烘箱里干燥2~3小时,得到一定数量的干燥粉末;
(6)将步骤(5)中得到的干燥粉末过200目的筛网在振荡机上摇晃至铁粉全部筛至下部盛装粉末的铁盘中;
(7)选用金属激光3D打印设备,安装打印设备的金属打印板并进行调平,使打印板的四个平面达到平行状态,安装刮条使其与打印板子平行并下降至刚好与打印版贴合的位置;
(8)将步骤(6)中得到的金属粉末倒入3D打印机的粉槽中,将粉槽调节至合适的位置进行铺粉操作;
(9)打开冷却水、保护气(氩气、3%的氢气)使打印机内溶解氧含量下降至250ppm,打开并下载事先建模好的孔状3D结构(扫描策略采用X、Y方向等间距旋转90°交替扫描,扫描速度范围为900~1200mm/s,采用激光功率范围为190~220W,扫描间距为0.07~0.11mm,铺粉层厚为0.05mm,),设置峰值为100,打开激光后方可进行打印;
(10)将打印完成的3D铁基材料从打印版用水刀上切割下来,浸泡在大于99.7%的工业酒精中超声10~15min,重复2~3次。
2.一种降解氟苯尼考污染物的方法,运用3D打印技术制备孔状微米零价铁掺杂硫化亚铁的复合材料,
(11)浓度为C1的污染物加入一定体积的反应瓶中,加水至反应体积。
(12)浓度为C2的3D打印孔状零价铁材料放入低浓度的酸溶液中酸泡后加入步骤(11)的反应瓶中。
(13)浓度为C3的H2O2加入步骤(11)反应瓶中后开始计时,分别在不同时间t时取1ml反应液放入1.5ml的液相瓶中,加入一定量甲醇或叔丁醇终止反应。
(14)将步骤(13)所取反应液放置高效液相色谱仪中检测污染物剩余浓度。
3.根据权利要求1所述的复合材料,其特征在于:步骤(5)中,所述温度T1为30~60℃。
4.根据权利要求2所述的方法,其特征在于:步骤(11)中,所述污染物浓度C1为5~10ppm。
5.根据权利要求2所述的方法,其特征在于:步骤(12)中,所述3D打印材料投加浓度C2为0.5~2g/L。
6.根据权利要求2所述的方法,其特征在于:步骤(13),所述双氧水浓度C3为0.1~1.5mM。
7.根据权利要求2所述的方法,其特征在于:步骤(13),所述时间反应时间t为0~70min。
8.根据权利要求2所述的方法,其特征在于:步骤(13),所述加入甲醇浓度为15~20μl。
CN202211141968.7A 2022-09-19 2022-09-19 一种运用3d打印技术制备孔状微米零价铁掺杂硫化亚铁的复合材料的方法及其应用 Active CN115400769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211141968.7A CN115400769B (zh) 2022-09-19 2022-09-19 一种运用3d打印技术制备孔状微米零价铁掺杂硫化亚铁的复合材料的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211141968.7A CN115400769B (zh) 2022-09-19 2022-09-19 一种运用3d打印技术制备孔状微米零价铁掺杂硫化亚铁的复合材料的方法及其应用

Publications (2)

Publication Number Publication Date
CN115400769A true CN115400769A (zh) 2022-11-29
CN115400769B CN115400769B (zh) 2023-08-04

Family

ID=84165193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211141968.7A Active CN115400769B (zh) 2022-09-19 2022-09-19 一种运用3d打印技术制备孔状微米零价铁掺杂硫化亚铁的复合材料的方法及其应用

Country Status (1)

Country Link
CN (1) CN115400769B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291435A (zh) * 2014-11-03 2015-01-21 济南大学 一种Fe/FeS复合材料活化分子氧处理有机废水的方法
US20200298493A1 (en) * 2017-09-11 2020-09-24 Raytheon Company Magnetic encoding of physical objects in an additive manufacturing process
CN113264574A (zh) * 2021-04-22 2021-08-17 东莞理工学院 一种Ni-Fe/MoS2电极的制备方法及其降解氟苯尼考污染物中的应用
CN113716669A (zh) * 2021-08-04 2021-11-30 上海交通大学 一种利用机械法硫化硫化亚铁降解含硫有机废水的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291435A (zh) * 2014-11-03 2015-01-21 济南大学 一种Fe/FeS复合材料活化分子氧处理有机废水的方法
US20200298493A1 (en) * 2017-09-11 2020-09-24 Raytheon Company Magnetic encoding of physical objects in an additive manufacturing process
CN113264574A (zh) * 2021-04-22 2021-08-17 东莞理工学院 一种Ni-Fe/MoS2电极的制备方法及其降解氟苯尼考污染物中的应用
CN113716669A (zh) * 2021-08-04 2021-11-30 上海交通大学 一种利用机械法硫化硫化亚铁降解含硫有机废水的方法

Also Published As

Publication number Publication date
CN115400769B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
Flores et al. Heterogeneous catalysis in the Fenton-type system reactive black 5/H2O2
CN111921536B (zh) 一种基于天然矿物和生物质制备的新型催化吸附材料
CN109179594B (zh) 核壳式铁碳微电解材料高效Fenton催化剂的制备及应用
CN113061441A (zh) 用于氧化修复土壤水体有机污染的生物炭负载铁材料及其制备方法、应用
CN113233452B (zh) 一种富羰基炭材料及其制备方法和应用
CN113371809A (zh) 一种芳香族羧酸改性的零价铁剂及其制备方法和应用
CN111715186A (zh) 一种含自由基的生物炭复合材料去除水中对硝基苯酚的方法
CN111330577B (zh) 一种碳化有机骨架包覆零价铜的芬顿催化剂及其制备方法与应用
Hou et al. Activation of persulfate by graphene/biochar composites for phenol degradation: Performance and nonradical dominated reaction mechanism
Xie et al. Facile synthesis of Cr-doped ferrite catalyst from Cr-containing electroplating sludge with activated persulfate for efficient degradation of tetracycline
Xu et al. Preparation of highly stable and easily regenerated sulfuretted nZVI via one-pot fast pyrolysis method for the removal of diclofenac
Zhang et al. Sulfurized bimetallic biochar as adsorbent and catalyst for selective co-removal of cadmium and PAHs from soil washing effluents
Luo et al. Effect of Mn-based magnetic biochar/PS reaction system on oxidation of metronidazole
Zhang et al. Removal of p-nitrophenol by double-modified nanoscale zero-valent iron with biochar and sulfide: Key factors and mechanisms
Xiong et al. Core-shell FeMn@ NG derived from cellulose supported Prussian blue analogs for peroxymonosulfate activation: Non-radical mechanism and ultra-low metal leaching
Chen et al. Non-radical mechanism of N-doped porous biochar derived from corn stalks for efficient peroxydisulfate activation
Jiao et al. Effect of calcination temperature on catalytic performance of CeCu oxide in removal of quinoline by wet hydrogen peroxide oxidation from water
CN115400769A (zh) 一种运用3d打印技术制备孔状微米零价铁掺杂硫化亚铁的复合材料的方法及其应用
Cheng et al. Enhanced dual synergistic mechanism of adsorption and ozone triggering via biochar-derived zero-valent bimetal sites for water purification
CN114984980B (zh) 一种双功能FeCo2O4-CdS管状微马达及其制备方法和应用
CN112429830B (zh) 一种原位构建骨炭催化Fe(OH)2去除氯代烃的环境修复方法
Wang et al. Iron and nitrogen modified sludge biochar efficiently activated persulfate for mineralization of sulfamethoxazole in groundwater
CN113717733A (zh) 一种修复剂及其制备方法和应用
Mu et al. Utilizing blast-furnace dust as a novel persulfate catalyst for the efficient removal of petroleum contaminants from soil
CN113042110A (zh) 一种基于活化硫酸根的铁基多原子耦合催化剂的简易再生方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant