CN115385309A - 一种二维氧掺杂GaSe纳米片的制备方法及应用 - Google Patents

一种二维氧掺杂GaSe纳米片的制备方法及应用 Download PDF

Info

Publication number
CN115385309A
CN115385309A CN202211135345.9A CN202211135345A CN115385309A CN 115385309 A CN115385309 A CN 115385309A CN 202211135345 A CN202211135345 A CN 202211135345A CN 115385309 A CN115385309 A CN 115385309A
Authority
CN
China
Prior art keywords
gase
doped
oxygen
dimensional
nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211135345.9A
Other languages
English (en)
Other versions
CN115385309B (zh
Inventor
李中
唐涛
欧建臻
程银芬
余昊
梁一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202211135345.9A priority Critical patent/CN115385309B/zh
Publication of CN115385309A publication Critical patent/CN115385309A/zh
Application granted granted Critical
Publication of CN115385309B publication Critical patent/CN115385309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及材料制备技术领域,公开了一种二维氧掺杂GaSe纳米片的制备方法及应用,包括以下步骤:步骤1:将GaSe粉末置于溶剂中,超声处理;步骤2:在步骤1得到的溶液中滴加H2O2;其中GaSe粉末和H2O2的比例为4:1;步骤3:滴加完成后超声处理,离心得到含二维氧掺杂GaSe纳米片;本发明得到的氧掺杂GaSe纳米片制备得到的气敏传感器件,在UV光激发条件下实现了室温下的可逆传感,其具有较低的NO2检测极限,较快的气敏响应和恢复速度以及优异的气体选择性。

Description

一种二维氧掺杂GaSe纳米片的制备方法及应用
技术领域
本发明涉及材料制备技术领域,具体涉及一种二维氧掺杂GaSe纳米片的制备方法及应用。
背景技术
二维材料的氧掺杂是改变和增强二维材料器件性能的重要策略之一。二维材料经氧掺杂后能获得性能的提升,包括器件的化学稳定性、宽带隙、高开/关比、高迁移率和透明性等。各种二维材料共混的掺杂,在器件最大化电子迁移率和光电异质结构方面有着巨大的前景和潜力。随着二维材料器件的发展,各种特殊需要不断提出。
现有的二维氧掺杂技术如CN106898691A公开了一种氧掺杂二硫化钼热电材料的制备方法,氧掺杂二硫化钼热电材料的制备方法包括以下步骤:首先称取一定质量的MoS2粉末,平铺于刚玉舟中,然后放到水平管式炉的石英管中,升到一定的温度,在空气气氛下恒温一定时间,得到氧掺杂二硫化钼粉末。这种方法制备过程复杂,不适合进行工业化生产。
发明内容
本发明针对现有技术存在的问题提供一种二维氧掺杂GaSe纳米片的制备方法及应用。
本发明采用的技术方案是:
一种二维氧掺杂GaSe纳米片的制备方法,包括以下步骤:
步骤1:将GaSe粉末置于溶剂中,超声处理;
步骤2:在步骤1得到的溶液中滴加H2O2水溶液;其中GaSe粉末和H2O2的质量比为4:1;
步骤3:滴加完成后超声处理,离心得到二维氧掺杂GaSe纳米片。
进一步的,所述步骤1中GaSe粉末首先进行研磨,研磨时间为30 min。
进一步的,所述步骤1中溶剂为异丙醇。
进一步的,所述步骤1中超声功率为100 W,超声时间为2 h。
进一步的,所述步骤2中H2O2水溶液滴加时间为30 min。
进一步的,所述步骤3中离心转速为4000 rpm,离心时间为30 min,得到离心后上清液,然后以10000 rpm的高速离心收集上清液中的材料。
二维氧掺杂GaSe纳米片的应用,二维氧掺杂GaSe纳米片用于制备气体传感器。
进一步的,所述气体传感器的制备过程如下:将含有二维氧掺杂GaSe纳米片分散液滴注在插值电极上即可得到气体传感器。
本发明的有益效果是:
(1)本发明通过简单的制备方法实现二维材料的剥离和氧的掺杂,得到玻璃的二维GaSe纳米片,其平均厚度为3.7 nm;
(2)本发明得到的氧掺杂GaSe纳米片制备得到的气敏传感器件,在UV光激发条件下实现了室温下的可逆传感,其具有较低的NO2检测极限,较快的气敏响应和恢复速度以及优异的气体选择性。
附图说明
图1为本发明实施例1得到的二维氧掺杂GaSe纳米片的测试结果,a为原子力显微镜图,b、c、d为X射线光子谱分析曲线,b为Ga3D的XPS,c为Se3d的XPS图,d为O1s的XPS图,e为紫外-可见光吸收光谱,f为能带隙计算的Tauc plot图。
图2为采用本发明实施例1得到的二维氧掺杂GaSe纳米片制备得到的气敏传感器测试结果,a为实物图,b为GaSe和二维氧掺杂GaSe纳米片对NO2气敏响应对比图,c为传感器对不同气体的选择性,d为气体传感器的动态气敏响应图,e为传感器对不同NO2的响应时间和恢复时间,f为传感器在UV光激发条件下对10 ppm NO2气敏传感的重复性。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
一种二维氧掺杂GaSe纳米片的制备方法,包括以下步骤:
步骤1:将GaSe粉末置于溶剂中,超声处理;其中GaSe首先置于研钵中研磨30 min,以获得更小尺寸的体相GaSe从而提高材料的制备效率。将研磨后的GaSe倒入烧杯中加入40mL的异丙醇作为剥离溶剂。将烧杯放入超声破碎仪中以100 W的超声功率处理2 h。
步骤2:在步骤1得到的溶液中滴加H2O2水溶液;其中GaSe粉末和H2O2的质量比为4:1;其中H2O2浓度为1 %,滴加时间为30 min。
步骤3:滴加完成后超声处理,离心得到含二维氧掺杂GaSe纳米片的上清液;超声处理后,将烧杯中的分散液离心处理30 min,离心转速为4000 rpm,以除去分散液中的未被完全剥离的体相GaSe,取4000 rpm离心的上清液,对其进行10000 rpm的高速离心收集上清液中的材料。
实施例1
一种二维氧掺杂GaSe纳米片的制备方法,包括以下步骤:
步骤1:将40 mg GaSe粉末置于溶剂中,超声处理;其中GaSe首先置于研钵中研磨30 min,以获得更小尺寸的体相GaSe从而提高材料的制备效率。将研磨后的GaSe倒入烧杯中加入40 mL的异丙醇作为剥离溶剂。将烧杯放入超声破碎仪中以100 W的超声功率处理2h。
步骤2:在步骤1得到的溶液逐滴加入10 mL 0.1 % H2O2;滴加时间为30 min。
步骤3:滴加完成后超声处理,离心得到含二维氧掺杂GaSe纳米片的上清液;超声处理后,将烧杯中的分散液离心处理30 min,离心转速为4000 rpm,以除去分散液中的未被完全剥离的体相GaSe,取4000 rpm离心的上清液,对其进行10000 rpm的高速离心收集上清液中的材料。
将该实施例得到的二维氧掺杂GaSe纳米片进行表征,其原子力显微镜如图1a所示,剥离得到了材料厚度为3.7 nm的薄片,表面成功剥离得到了少层的二维材料。随后对剥离得到的少层二维材料进行X射线光电子谱分析,结果如图b、c和d所示。二维材料中同时存在Ga、Se、O元素,表面GaSe剥离的同时发生了氧掺杂。二维氧掺杂GaSe的紫外-可见光吸收光谱如图e所示,其对700 nm范围内的光内有较强的吸收,通过Tauc plot法计算的直接能带间隙为1.8 eV如图f所示。
将本实施例得到的二维氧掺杂GaSe纳米片制备得到气体传感器,方法如下:将含有氧掺杂GaSe纳米片的分散液滴注在间距为10 μm的插值电极上获得,如图2a所示。其气体传感测试在室温、365 nmUV光光照射下进行,传感器的电阻通过Tektronix DMM 4040数字万用表进行测量。进入气敏腔室的总气体流速保持在200标准立方厘米/分钟(sccm),由高精度质量流量控制器控制。气敏响应定义为(R0-Rg)/Rg×100%,其中R0和Rg分别代表器件在N2平衡气体和分析气体中的电阻。
如图2b所示,氧掺杂后的GaSe对比纯GaSe对10 ppm NO2的气敏响应值提升了接近两倍。此外,基于氧掺杂GaSe的气敏器件对NO2展现出优异的选择性如图2c所示。其对10ppm NO2的响应值为500 ppm CO、1% CH4、1% H2、50 ppm H2S、50 ppm SO2、300 ppm NH3的6.65倍,这源于NO2分子对氧掺杂GaSe纳米片较强的亲和力。其在室温条件下该传感器对10ppm NO2的响应值达到了82.1%,且其实际测试极限对0.05 ppm NO2的响应值为12.6%,如图2d所示。该传感器对不同浓度的NO2的响应时间和恢复时间分析如图2e所示,随着NO2浓度的增加,其响应时间逐渐降低(6 min、3 min、3 min、3 min、2 min、1 min),但其恢复时间基本为6 min。UV光激发下的室温条件下,该传感器对10 ppm NO2气敏传感的可重复性如图2f所示,实验可以观察到经过六个连续测试循环后响应幅度几乎没有变化。
通过在超声玻璃GaSe的过程中加入特殊的氧化剂H2O2,同时实现了二维材料的剥离与氧掺杂,从而获得了二维氧掺杂GaSe。通过滴注法获得了二维氧掺杂GaSe的气敏传感器件,其相关气敏测试表面,该气敏传感器在UV光激发条件下实现了室温下的可逆传感,具有较低的NO2检测极限(0.05 ppm),较快的气敏响应和恢复速度以及优异的气体选择性。
本发明制备方法简单,实现了二维材料的剥离与氧掺杂,得到二维氧掺杂GaSe。通过滴注法获得了二维氧掺杂GaSe气敏传感器件,其气敏测试表面,该气敏传感器在UV光激发条件下实现了室温下的可逆传感,其具有较低的NO2检测极限(0.05 ppm),较快的气敏响应和恢复速度以及优异的气体选择性。

Claims (8)

1.一种二维氧掺杂GaSe纳米片的制备方法,其特征在于,包括以下步骤:
步骤1:将GaSe粉末置于溶剂中,超声处理;
步骤2:在步骤1得到的溶液中滴加H2O2水溶液;其中GaSe粉末和H2O2的质量比为4:1;
步骤3:滴加完成后超声处理,离心后得到二维氧掺杂GaSe纳米片。
2.根据权利要求1所述的一种二维氧掺杂GaSe纳米片的制备方法,其特征在于,所述步骤1中GaSe粉末首先进行研磨,研磨时间为30 min。
3.根据权利要求1所述的一种二维氧掺杂GaSe纳米片的制备方法,其特征在于,所述步骤1中溶剂为异丙醇。
4.根据权利要求1所述的一种二维氧掺杂GaSe纳米片的制备方法,其特征在于,所述步骤1中超声功率为100 W,超声时间为2 h。
5.根据权利要求1所述的一种二维氧掺杂GaSe纳米片的制备方法,其特征在于,所述步骤2中H2O2水溶液滴加时间为30 min。
6.根据权利要求1所述的一种二维氧掺杂GaSe纳米片的制备方法,其特征在于,所述步骤3中离心转速为4000 rpm,离心时间为30 min,得到离心后上清液,然后以10000 rpm的高速离心收集上清液中的材料。
7.如权利要求1~6任一项所述二维氧掺杂GaSe纳米片的制备方法得到的二维氧掺杂GaSe纳米片的应用,其特征在于,二维氧掺杂GaSe纳米片用于制备气体传感器。
8.根据权利要求7所述的一种二维氧掺杂GaSe纳米片的应用,其特征在于,所述气体传感器的制备过程如下:将含有二维氧掺杂GaSe纳米片分散液滴注在插值电极上即可得到气体传感器。
CN202211135345.9A 2022-09-19 2022-09-19 一种二维氧掺杂GaSe纳米片的制备方法及应用 Active CN115385309B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211135345.9A CN115385309B (zh) 2022-09-19 2022-09-19 一种二维氧掺杂GaSe纳米片的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211135345.9A CN115385309B (zh) 2022-09-19 2022-09-19 一种二维氧掺杂GaSe纳米片的制备方法及应用

Publications (2)

Publication Number Publication Date
CN115385309A true CN115385309A (zh) 2022-11-25
CN115385309B CN115385309B (zh) 2023-06-13

Family

ID=84127105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211135345.9A Active CN115385309B (zh) 2022-09-19 2022-09-19 一种二维氧掺杂GaSe纳米片的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115385309B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344258A (ja) * 1993-06-10 1994-12-20 Japan Energy Corp セレン化亜鉛用研磨加工液
RU2006116830A (ru) * 2006-05-16 2007-12-10 Государственное образовательное учреждение высшего профессионального образовани Воронежска государственна технологическа академи (RU) Способ получения атомно-гладкой поверхности арсенида галлия
US20100329970A1 (en) * 2009-03-04 2010-12-30 Solar Applied Materials Technology Corp. Method for recovery of copper, indium, gallium, and selenium
RU2494493C1 (ru) * 2012-04-02 2013-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный университет инженерных технологий (ФГБОУ ВПО ВГУИТ) Способ консервации поверхности подложек из арсенида галлия
KR20150125425A (ko) * 2014-04-30 2015-11-09 한국과학기술연구원 판상형 무기칼코게나이드 및 무기산화물의 복합 물질 및 그 제조방법
WO2016167698A1 (en) * 2015-04-17 2016-10-20 Perstorp Ab Catalysed baeyer-villiger oxidation of cyclic ketones
KR20170091886A (ko) * 2016-02-02 2017-08-10 성균관대학교산학협력단 2 차원 물질 분산액의 제조 방법, 및 상기 2 차원 물질 분산액을 포함하는 잉크
CN108910954A (zh) * 2018-06-21 2018-11-30 广东工业大学 一种二维材料及其剥离方法和应用
US10414668B1 (en) * 2017-11-27 2019-09-17 United States Of America As Represented By The Secretary Of The Air Force Exfoliating layered transition metal dichalcogenides
CN110371932A (zh) * 2018-04-12 2019-10-25 中国科学院化学研究所 一种二维纳米片及其制备方法和用途
CN112216751A (zh) * 2019-07-11 2021-01-12 哈尔滨工业大学 GaSe/MoS2异质结的制备方法
CN112265969A (zh) * 2020-10-14 2021-01-26 西北大学 一种GaSe纳米材料、液相剥离方法及其应用
US20210217617A1 (en) * 2018-09-28 2021-07-15 The Penn State Research Foundation Method of growing crystalline layers on amorphous substrates using two-dimensional and atomic layer seeds

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344258A (ja) * 1993-06-10 1994-12-20 Japan Energy Corp セレン化亜鉛用研磨加工液
RU2006116830A (ru) * 2006-05-16 2007-12-10 Государственное образовательное учреждение высшего профессионального образовани Воронежска государственна технологическа академи (RU) Способ получения атомно-гладкой поверхности арсенида галлия
US20100329970A1 (en) * 2009-03-04 2010-12-30 Solar Applied Materials Technology Corp. Method for recovery of copper, indium, gallium, and selenium
RU2494493C1 (ru) * 2012-04-02 2013-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный университет инженерных технологий (ФГБОУ ВПО ВГУИТ) Способ консервации поверхности подложек из арсенида галлия
KR20150125425A (ko) * 2014-04-30 2015-11-09 한국과학기술연구원 판상형 무기칼코게나이드 및 무기산화물의 복합 물질 및 그 제조방법
WO2016167698A1 (en) * 2015-04-17 2016-10-20 Perstorp Ab Catalysed baeyer-villiger oxidation of cyclic ketones
KR20170091886A (ko) * 2016-02-02 2017-08-10 성균관대학교산학협력단 2 차원 물질 분산액의 제조 방법, 및 상기 2 차원 물질 분산액을 포함하는 잉크
US10414668B1 (en) * 2017-11-27 2019-09-17 United States Of America As Represented By The Secretary Of The Air Force Exfoliating layered transition metal dichalcogenides
CN110371932A (zh) * 2018-04-12 2019-10-25 中国科学院化学研究所 一种二维纳米片及其制备方法和用途
CN108910954A (zh) * 2018-06-21 2018-11-30 广东工业大学 一种二维材料及其剥离方法和应用
US20210217617A1 (en) * 2018-09-28 2021-07-15 The Penn State Research Foundation Method of growing crystalline layers on amorphous substrates using two-dimensional and atomic layer seeds
CN112216751A (zh) * 2019-07-11 2021-01-12 哈尔滨工业大学 GaSe/MoS2异质结的制备方法
CN112265969A (zh) * 2020-10-14 2021-01-26 西北大学 一种GaSe纳米材料、液相剥离方法及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ARUTYUNYAN, NR ET AL: "Size-induced evolution of optical properties in gallium selenide thin layers", 《JOURNAL OF LUMINESCENCE》, vol. 242, pages 1 - 6 *
HILDEBRANDT, T ET AL: "A better understanding of Cbd-Zn(S,O) using hydrogen peroxide as an additive", 《THIN SOLID FILMS》, vol. 619, pages 25 - 32, XP029823335, DOI: 10.1016/j.tsf.2016.10.031 *
倪友保;吴海信;黄昌保;程旭东;王振友;毛明生;: "红外非线性晶体GaSe的合成、生长与性能", 《激光与红外》, no. 01, pages 46 - 49 *
刘杨先;王燕;: "UV/H_2O_2高级氧化工艺在化工与环保领域的研究进展", 《化学工业与工程技术》, no. 03, pages 33 - 38 *
史丽: "几种二维材料电催化及环境稳定性的理论研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》, no. 5, pages 015 - 3 *

Also Published As

Publication number Publication date
CN115385309B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
Wang et al. Highly selective n-butanol gas sensor based on mesoporous SnO2 prepared with hydrothermal treatment
Li et al. High-sensitivity, high-selectivity, and fast-recovery-speed triethylamine sensor based on ZnO micropyramids prepared by molten salt growth method
Ramgir et al. Growth and gas sensing characteristics of p-and n-type ZnO nanostructures
Jundale et al. Nanocrystalline CuO thin films for H2S monitoring: microstructural and optoelectronic characterization
CN102621199B (zh) 一种石墨烯修饰的Pt电极及检测痕量重金属的方法
Qin et al. Polypyrrole shell (nanoparticles)-functionalized silicon nanowires array with enhanced NH3-sensing response
Thangamani et al. Hydrothermal synthesis of copper (׀׀) oxide-nanoparticles with highly enhanced BTEX gas sensing performance using chemiresistive sensor
Luo et al. Local vapor transport synthesis of zinc oxide nanowires for ultraviolet-enhanced gas sensing
CN108535337A (zh) 基于氧化锡/氧化镓异质结纳米阵列的柔性气敏传感器及其制备方法
Song et al. Synthesis of star-shaped lead sulfide (PbS) nanomaterials and theirs gas-sensing properties
CN104862663B (zh) 一种提高硼掺杂纳米金刚石薄膜p型导电性能的方法
Urasinska-Wojcik et al. H2S sensing properties of WO3 based gas sensor
CN107179337A (zh) 一种双模湿度传感器及其制备方法
CN112730531A (zh) 一种基于三氧化钼纳米片的硫化氢气体传感器制备方法
CN110804724A (zh) 一种二氧化锡微米线的可控制备方法
Teimoori et al. Investigation on the electrical and methane gas-sensing properties of ZnO thin films produced by different methods
Zhang et al. Construction of hierarchical ZnO flower-like structure for boost H2S detection at low temperature
Wu et al. Au modified ZnO nanowires for ethanol gas sensing
CN112326624A (zh) 掺杂二维半导体纳米材料在表面拉曼散射增强中的应用
CN115385309A (zh) 一种二维氧掺杂GaSe纳米片的制备方法及应用
Haunsbhavi et al. Nanostructured NiO thin film for ammonia sensing at elevated temperatures
Li et al. Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase
CN107144600A (zh) 含Pd量子点MoO3纳米纤维纸H2传感器及制备方法
Chen et al. Study on gas sensitivity of ZnO@ NiO loaded functional carbon materials
Baratto et al. Iron-doped indium oxide by modified RGTO deposition for ozone sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant