CN115382539A - 一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法 - Google Patents

一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法 Download PDF

Info

Publication number
CN115382539A
CN115382539A CN202211133052.7A CN202211133052A CN115382539A CN 115382539 A CN115382539 A CN 115382539A CN 202211133052 A CN202211133052 A CN 202211133052A CN 115382539 A CN115382539 A CN 115382539A
Authority
CN
China
Prior art keywords
graphitization
tio
polyacrylonitrile
photocatalyst
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211133052.7A
Other languages
English (en)
Inventor
谭红琳
欧阳滔远
张正东
白耀宁
李馨茹
闫昱玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202211133052.7A priority Critical patent/CN115382539A/zh
Publication of CN115382539A publication Critical patent/CN115382539A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种近室温催化聚丙烯腈(PAN)石墨化光催化剂Ag@TiO2的制备方法,在纯氩气的气氛下,将Ag沉积在晶体硅的衬底上。将磁控溅射腔室中气氛调为氩气和氧气的混合气氛,然后将TiO2沉积至Ag上。最后在氩气气氛和450℃条件下对沉积的材料进行退火1小时就得到了光催化剂Ag@TiO2。利用制备的Ag@TiO2光催化增强在不同温度下进行PAN催化石墨化,可以发现在温度较低的情况下制备的Ag@TiO2对PAN有较强的的催化石墨化能力。本发明中Ag@TiO2纳米颗粒复合结构可以扩大光响应面积,提高热电子‑空穴对分离效率,在催化剂制氢和降解水污染方面有潜在的应用,且对PAN石墨化显示出优异的光催化性能,促进PAN近室温下石墨化的发展。

Description

一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法
技术领域
本发明涉及光催化材料领域,特别是一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法。
背景技术
高效光催化剂的研究是提高能源利用效率,缓解环境污染的重点所在,近年来,金属纳米材料的局部表面等离子体共振(LSPR)效应越来越受人们关注,等离子体金属(Ag)、铜(Cu)、铝(Al)是常见的催化剂,由于表面等离
子体共振(SPR)效应,它们被应用于各个领域。与铜和铝等离激元金属相比,
银表现出优异的化学稳定性。此外,等离子体金属/半导体混合结构的构建已被
证明是扩大光响应区域和提高光催化中热电子-空穴对分离效率的一种先进策略。PAN石墨化以后可以形成性能优异的低维碳纳米材料,近年来逐步成为研究的重点。传统的PAN石墨化方式主要借助高温热解,能耗较高。利用Ag@TiO2
光催化剂对PAN进行催化石墨化可以实现在近室温下进行,降低了能耗的同时为PAN石墨化提供新方向。
Ag@TiO2采用磁控溅射方法有效地制备了复合材料,该催化剂可用于增强低温聚丙烯腈的催化石墨化。因此,通过磁控溅射技术获得化学性质稳定、高效以及衬底均匀的银基光催化剂在低温聚丙烯腈的催化石墨化方面是一个极具吸引力的探索领域。
目前报道的基于SPR效应制备的贵金属基光催化剂大部分都是利用溶液合成技术制备的,合成过程的杂质不易控制且化学性质不稳定,因此本发明着眼于寻找一种合成过程简单、合成样品杂质较少、合成样品化学性质稳定以及衬底均匀的银基光催化剂制备技术,并展示了其在近室温下催化聚丙烯腈石墨化的优异性能。
发明内容
本发明的目的是提供一种稳定的银基PAN催化石墨化的光催化剂:Ag@TiO2的制备方法,针对目前银基光催化剂合成过程的杂质不易控制且化学性质不稳定等问题,实现合成过程简单、合成样品杂质较少、合成样品化学性质稳定以及衬底均匀的银基光催化剂制备,将其应用于PAN石墨化发现,磁控溅射制备的Ag@TiO2光催化剂在近室温可以实现PAN催化石墨化。
为实现上述目的,本发明采用以下技术方案:
一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,具体步骤如下:
(1)利用砂纸打磨Ag靶材;
(2)利用丙酮溶液对打磨后的Ag靶材进行超声处理;
(3)清洗超声后的Ag靶材,利用去离子水对Ag靶材进行超声处理;
(4)利用乙醇溶液对Ag靶材进行超声处理;
(5)在溅射腔室中通入纯氩气,对Ag进行溅射,将其沉积在晶体硅基底;
(6)利用砂纸打磨Ti靶材;
(7)利用丙酮溶液对打磨后的Ti靶材进行超声处理;
(8)清洗超声后的Ti靶材,利用去离子水对Ti靶材进行超声处理;
(9)利用乙醇溶液对Ti靶材进行超声处理;
(10)在溅射腔室中通入氩气和氧气的混合气体,对Ti进行溅射,将TiO2沉积在Ag上,将其均匀的包裹起来;
(11)在管式炉中通氩气的气氛下对沉积的样品进行退火。
(12)对制备样品进行PAN催化石墨化实验并进行光催化性能测试。
步骤(1)打磨砂纸为1500目,打磨时长5分钟。
步骤(2)超声时间为30分钟。
步骤(3)超声时间为30分钟。
步骤(4)超声时间为30分钟。
步骤(5)溅射腔室内部压力调整为2.0*10-5Pa以下,沉积时间10分钟。
步骤(6)打磨砂纸为1500目,打磨时长5分钟。
步骤(7)超声时间为30分钟。
步骤(8)超声时间为30分钟。
步骤(9)超声时间为30分钟。
步骤(10)溅射腔室内部压力调整为2.0*10-5Pa以下,氧气和氩气的体积比为3:7,沉积时间2小时。
步骤(11)退火温度为450℃,退火时间为1小时。
步骤(12)中的催化温度分别为80℃、100℃、120℃、140℃、160℃以及180℃。
本发明的有益效果为:
本发明利用磁控溅射技术,在制备出Ag@TiO2复合光催化材料。合成过程简单、合成样品杂质较少、合成样品化学性质稳定以及衬底均匀是本发明突出的特点。特别是与传统的酸刻蚀制备的催化衬底相比磁控溅射制备的Ag@TiO2催化衬底更加均匀,会更加有利于近室温聚丙烯腈催化石墨化。由形貌分析可知 Ag纳米颗粒的尺寸大约 100nm,TiO2以更小的纳米颗粒形式负载在较大 Ag颗粒球表面。由结构分析可知,Ag是没有被氧化的状态,呈单质的形式存在,并且 TiO2是锐钛矿相存在。等离子体金属 Ag与二氧化钛半导体的混合结构增强载流子的分离效率,延长了热电子的使用寿命,这是Ag@TiO2具备高性能催化性能的主要原因。除了应用于近室温催化聚丙烯腈石墨化以外,该方法的这些特点确保了其在光催化和热催化中的进一步应用,在废水处理、新能源产氢、复合材料、电池、非稀贵金属的利用等领域都有着广阔的应用前景。
附图说明
图1 (a) Ag@TiO2的 SEM图像;(b)Ag/TiO2在放大倍数下的 SEM图像;(c-f) EDS能谱图显示了 Ag、Ti和 O的分布。
图2(a) Ag, TiO2, Ag/TiO2纳米结构的 XRD图;(b)Ag/TiO2纳米结构的拉曼光谱;(c) Ag@TiO2复合材料的 XPS全光谱;(d)Ti 2p的 XPS光谱;(e) Ag 3d的 XPS光谱;(f)O1s的 XPS光谱。
图3(a) Si、Ag、Ag@TiO2表面上 P AN的原位拉曼光谱图;(b)不同衬底上 P AN被石墨化后 ID/IG的比值。
图4溶剂的挥发发温度也是对聚丙烯腈催化石墨化的影响。
图5(a) Ag、TiO2、Ag/TiO2的紫外-可见光谱;(b)研究了 Ag、TiO2、Ag/TiO2的光致发光光谱;(c)光开关过程中的光电流响应;(d)显示了 Ag、TiO2、Ag/TiO2的电化学阻抗。
具体实施方式
下面结合实施例对本发明做进一步说明,其中未详细叙述部分为本领域常规技术或公知常识。
实施例1
一种近室温催化聚丙烯腈石墨化光催化剂Ag纳米颗粒的制备方法,具体步骤如下:
(1)利用1500目砂纸打磨Ag靶材5分钟;
(2)利用丙酮溶液对打磨后的Ag靶材进行超声处理30分钟;
(3)清洗超声后的Ag靶材,利用去离子水对Ag靶材进行超声处理处理30分钟;
(4)利用乙醇溶液对Ag靶材进行超声处理30分钟;
(5)在溅射腔室中通入纯氩气,溅射腔室内部压力调整为2.0*10-5Pa以下,对Ag进行溅射,将其沉积在晶体硅基底,沉积时间10分钟;
(6)在管式炉中通氩气的气氛下,常压,对沉积的样品在150℃条件下,进行退火1小时。
利用Ag纳米颗粒对聚丙烯腈进行光催化石墨化以后,经过拉曼测试分析,发现催化后的聚丙烯腈石墨ID/IG为1.03,说明Ag纳米颗粒对聚丙烯腈石墨化有一定的催化作用。
实施例2
一种近室温催化聚丙烯腈石墨化光催化剂TiO2@Ag的制备方法,具体步骤如下:
(1)利用1500目砂纸打磨Ti靶材5分钟;
(2)利用丙酮溶液对打磨后的Ti靶材进行超声处理30分钟;
(3)清洗超声后的Ti靶材,利用去离子水对Ti靶材进行超声处理30分钟;
(4)利用乙醇溶液对Ti靶材进行超声处理30分钟;
(5)在溅射腔室中通入氩气和氧气的混合气体,溅射腔室内部压力调整为2.0*10- 5Pa以下,对Ti进行溅射,将TiO2沉积在Ag上,沉积时间为2小时;
(6)利用1500目砂纸打磨Ag靶材5分钟;
(7)利用丙酮溶液对打磨后的Ag靶材进行超声处理30分钟;
(8)清洗超声后的Ag靶材,利用去离子水对Ag靶材进行超声处理处理30分钟;
(9)利用乙醇溶液对Ag靶材进行超声处理30分钟;
(10)在溅射腔室中通入纯氩气,溅射腔室内部压力调整为2.0*10-5Pa以下,对Ag进行溅射,将其沉积在晶体硅基底,沉积时间10分钟;
(11)在管式炉中通氩气的气氛下,常压,对沉积的样品在150℃条件下,进行退火1小时。
利用TiO2@Ag对聚丙烯腈进行光催化石墨化以后,经过拉曼测试分析,发现并没有出现石墨的特征峰拉曼D峰和G峰,说明TiO2@Ag并不具备催化聚丙烯腈石墨化能力。
实施例3
一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,具体步骤如下:
(1)利用1500目砂纸打磨Ag靶材5分钟;
(2)利用丙酮溶液对打磨后的Ag靶材进行超声处理30分钟;
(3)清洗超声后的Ag靶材,利用去离子水对Ag靶材进行超声处理处理30分钟;
(4)利用乙醇溶液对Ag靶材进行超声处理30分钟;
(5)在溅射腔室中通入纯氩气,溅射腔室内部压力调整为2.0*10-5Pa以下,对Ag进行溅射,将其沉积在晶体硅基底,沉积时间10分钟;
(6)利用1500目砂纸打磨Ti靶材5分钟;
(7)利用丙酮溶液对打磨后的Ti靶材进行超声处理30分钟;
(8)清洗超声后的Ti靶材,利用去离子水对Ti靶材进行超声处理30分钟;
(9)利用乙醇溶液对Ti靶材进行超声处理30分钟;
(10)在溅射腔室中通入氩气和氧气的混合气体,溅射腔室内部压力调整为2.0*10-5Pa以下,对Ti进行溅射,将TiO2沉积在Ag上,沉积时间为2小时,将Ag均匀的包裹起来;
(11)在管式炉中通氩气的气氛下,常压,对沉积的样品在150℃条件下,进行退火1小时。
利用Ag@TiO2对聚丙烯腈进行光催化石墨化以后,经过拉曼测试分析,发现催化后的聚丙烯腈石墨ID/IG为0.86,说明了Ag@TiO2对聚丙烯腈催化石墨化能力较强。
实施例4
一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,具体步骤如下:
(1)利用1500目砂纸打磨Ag靶材5分钟;
(2)利用丙酮溶液对打磨后的Ag靶材进行超声处理30分钟;
(3)清洗超声后的Ag靶材,利用去离子水对Ag靶材进行超声处理处理30分钟;
(4)利用乙醇溶液对Ag靶材进行超声处理30分钟;
(5)在溅射腔室中通入纯氩气,溅射腔室内部压力调整为2.0*10-5Pa以下,对Ag进行溅射,将其沉积在晶体硅基底,沉积时间10分钟;
(6)利用1500目砂纸打磨Ti靶材5分钟;
(7)利用丙酮溶液对打磨后的Ti靶材进行超声处理30分钟;
(8)清洗超声后的Ti靶材,利用去离子水对Ti靶材进行超声处理30分钟;
(9)利用乙醇溶液对Ti靶材进行超声处理30分钟;
(10)在溅射腔室中通入氩气和氧气的混合气体,溅射腔室内部压力调整为2.0*10-5Pa以下,对Ti进行溅射,将TiO2沉积在Ag上,沉积时间为2小时,将Ag均匀的包裹起来;
(11)在管式炉中通氩气的气氛下,常压,对沉积的样品在150℃条件下,进行退火1小时。
对制备的Ag@TiO2在不同的温度下(80℃、100℃、120℃、140℃、160℃、180℃)进行聚丙烯腈催化石墨化,其ID/IG分别为0.87、0.88、0.85、0.97、1.08、1.43。温度高于100℃Ag极易被氧化,在80℃催化聚丙烯腈石墨化,其ID/IG可低至0.87显示出优异的光催化性能。
综上所述,本发明提供的Ag@TiO2光催化剂制备方法,一方面,Ag纳米颗粒具有众所周知的 SPR效应,它可以明显地促进可见光的吸收。另一方面,等离子体金属/半导体混合结构的构建在界面上产生了肖特基势垒。肖特基势垒的形成允许由 LSPR效应产生的热电子从Ag纳米颗粒转移到 TiO2的导带,有助于提高光催化中热电子-空穴对的分离效率。因此,Ag@TiO2纳米复合材料具备优异的光催化效应。除此以外,将其应用于催化PAN石墨化可以发现,Ag@TiO2纳米复合材料在近室温下可以实现PAN石墨化。这进一步降低了PAN石墨化的能耗,为PAN石墨化提供新方向。

Claims (9)

1.一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,其特征在于,具体步骤如下:
(1)利用砂纸打磨Ag靶材;
(2)分别利用丙酮溶液、去离子水以及乙醇溶液对打磨后的Ag靶材进行超声处理;
(3)在溅射腔室中通入纯氩气,对Ag进行溅射,将其沉积在晶体硅基底;
(4)利用砂纸打磨Ti靶材;
(5)利用丙酮溶液去离子水以及乙醇溶液对打磨后的Ti靶材进行超声处理;
(6)在溅射腔室中通入氩气和氧气的混合气体,对Ti进行溅射,将TiO2沉积在Ag上,将其均匀的包裹起来;
(7)在管式炉中通氩气的气氛下对沉积的样品进行退火;
(8)将制备的样品涂抹PAN溶液,分别置于不同的温度条件下进行催化石墨化。
2.根据权利要求1所述近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,其特征在于,步骤(1)打磨砂纸为1500目,打磨时长5分钟。
3.根据权利要求1所述近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,其特征在于,步骤(2)超声时间均为30分钟。
4.根据权利要求1所述近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,其特征在于,步骤(3)溅射腔室内部压力调整为2.0*10-5Pa以下,沉积时间10分钟。
5.根据权利要求1所述近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,其特征在于,步骤(4)打磨砂纸为1500目,打磨时长5分钟。
6.根据权利要求1所述近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,其特征在于,步骤(5)超声时间分别为30分钟。
7.根据权利要求1所述近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,其特征在于,步骤(6)溅射腔室内部压力调整为2.0*10-5Pa以下,氧气和氩气的体积比为3:7,沉积时间2小时。
8.根据权利要求1所述近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,其特征在于,步骤(7)退火温度为450℃,退火时间为1小时。
9.根据权利要求1所述近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法,其特征在于,步骤(8)温度条件分别为80℃、100℃、120℃、140℃、160℃以及180℃。
CN202211133052.7A 2022-09-16 2022-09-16 一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法 Pending CN115382539A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211133052.7A CN115382539A (zh) 2022-09-16 2022-09-16 一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211133052.7A CN115382539A (zh) 2022-09-16 2022-09-16 一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法

Publications (1)

Publication Number Publication Date
CN115382539A true CN115382539A (zh) 2022-11-25

Family

ID=84127089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211133052.7A Pending CN115382539A (zh) 2022-09-16 2022-09-16 一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法

Country Status (1)

Country Link
CN (1) CN115382539A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302398A (zh) * 2012-05-25 2015-01-21 乐金华奥斯有限公司 光催化剂,该光催化剂的制备方法及光催化剂装置
CN104971757A (zh) * 2015-06-05 2015-10-14 山西省分析科学研究院 一种Ag、N共掺杂TiO2纳米薄膜的制备方法及其纳米薄膜的应用
US20160168688A1 (en) * 2014-12-15 2016-06-16 Cheng-Shang Tsao Method for preparation of composite composition
CN106807454A (zh) * 2015-11-27 2017-06-09 上海朗亿功能材料有限公司 一种掺杂改性的光催化剂粉末的制备方法
CN112978726A (zh) * 2021-03-10 2021-06-18 昆明理工大学 一种碳纳米管/铜催化聚丙烯腈室温环化为石墨的方法
CN114100667A (zh) * 2021-12-17 2022-03-01 昆明理工大学 一种铜纳米颗粒@石墨化聚丙烯腈/石墨化氮化碳光催化剂的制备方法
CN114713293A (zh) * 2022-05-02 2022-07-08 滨州学院 一种负载复合型光催化剂的聚丙烯腈纳米纤维膜及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302398A (zh) * 2012-05-25 2015-01-21 乐金华奥斯有限公司 光催化剂,该光催化剂的制备方法及光催化剂装置
US20160168688A1 (en) * 2014-12-15 2016-06-16 Cheng-Shang Tsao Method for preparation of composite composition
CN104971757A (zh) * 2015-06-05 2015-10-14 山西省分析科学研究院 一种Ag、N共掺杂TiO2纳米薄膜的制备方法及其纳米薄膜的应用
CN106807454A (zh) * 2015-11-27 2017-06-09 上海朗亿功能材料有限公司 一种掺杂改性的光催化剂粉末的制备方法
CN112978726A (zh) * 2021-03-10 2021-06-18 昆明理工大学 一种碳纳米管/铜催化聚丙烯腈室温环化为石墨的方法
CN114100667A (zh) * 2021-12-17 2022-03-01 昆明理工大学 一种铜纳米颗粒@石墨化聚丙烯腈/石墨化氮化碳光催化剂的制备方法
CN114713293A (zh) * 2022-05-02 2022-07-08 滨州学院 一种负载复合型光催化剂的聚丙烯腈纳米纤维膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
Nguyen et al. Noble metals on anodic TiO2 nanotubes mouths: Thermal dewetting of minimal Pt co-catalyst loading leads to significantly enhanced photocatalytic H2 generation
Tong et al. Enhanced photoelectrochemical water splitting performance of TiO 2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition
Hu et al. Effective water splitting using CuOx/TiO2 composite films: Role of Cu species and content in hydrogen generation
KR101287891B1 (ko) 연료전지용 촉매의 제조방법
Wang et al. Novel Raney-like nanoporous Pd catalyst with superior electrocatalytic activity towards ethanol electro-oxidation
US10413883B2 (en) Catalytic structures and methods of generating hydrogen gas
Li et al. Graphitic carbon nitride nanosheet coated carbon black as a high-performance PtRu catalyst support material for methanol electrooxidation
US20140147377A1 (en) Photocatalyst for water splitting
Lee et al. Anatase-phase titanium oxide by low temperature oxidation of metallic Ti thin film
CN113477270A (zh) 一种铜铁双金属限域氮掺杂碳纳米管复合材料的制备方法
Zhao et al. Photocatalytic performance of TiO2 nanotube structure based on TiN coating doped with Ag and Cu
Zhou et al. Ultrathin MoS2-coated Ag@ Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production
Welegergs et al. Electrodeposition of nanostructured copper oxide (CuO) coatings as spectrally solar selective absorber: Structural, optical and electrical properties
CN108579775B (zh) 一种磷酸银/银/二氧化钛纳米花复合材料及其制备方法与应用
Guan et al. Rational design and fabrication of Cu2O film as photoelectrode for water splitting
Lim et al. The shape-controlled synthesis of gallium–palladium (GaPd 2) nanomaterials as high-performance electrocatalysts for the hydrogen evolution reaction
CN110064386B (zh) 一种锡纳米颗粒修饰的具氧空位四氧化三锡纳米片复合光催化材料及制备方法
CN115382539A (zh) 一种近室温催化聚丙烯腈石墨化光催化剂Ag@TiO2的制备方法
CN111841597A (zh) 一种钴负载氮杂氧化石墨烯/介孔薄层氮化碳的复合光催化材料及其制备方法
CN116889884A (zh) Cs-css/nhc异质纳米立方体的制备方法及应用
CN114262875B (zh) 一种Ag纳米带/片/花的制备方法
Wang et al. Nanoporous metals based on metallic glasses: Synthesis, structure and functional applications
Wang et al. Preparation and photoelectric properties of Pt/TiO2 nanotube electrodes by a pre-doping method
Takeuchi et al. Fabrication of Ag/ZnO nanowire thin films and their photocatalytic reactivities
Xu et al. Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20221125

WD01 Invention patent application deemed withdrawn after publication