CN115382500B - 一种还原性水滑石及其制备方法和应用 - Google Patents

一种还原性水滑石及其制备方法和应用 Download PDF

Info

Publication number
CN115382500B
CN115382500B CN202211152358.7A CN202211152358A CN115382500B CN 115382500 B CN115382500 B CN 115382500B CN 202211152358 A CN202211152358 A CN 202211152358A CN 115382500 B CN115382500 B CN 115382500B
Authority
CN
China
Prior art keywords
hydrotalcite
solution
metal salt
hexavalent chromium
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211152358.7A
Other languages
English (en)
Other versions
CN115382500A (zh
Inventor
孔祥贵
郑美琪
刘婷婷
段雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202211152358.7A priority Critical patent/CN115382500B/zh
Publication of CN115382500A publication Critical patent/CN115382500A/zh
Application granted granted Critical
Publication of CN115382500B publication Critical patent/CN115382500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种还原性水滑石及其制备方法和应用,其制备方法,包括以下步骤:(1)将金属氧化物加入去离子水中充分搅拌,然后加入聚乙烯亚胺,室温下磁力搅拌10‑30min,得溶液A;(2)将还原性金属盐和三价金属盐加入去离子水在室温下磁力搅拌至完全溶解至澄清,得溶液B;(3)将步骤(1)所得溶液A和步骤(2)所得溶液B倒入搅拌的反应釜中,升温至35‑85℃温度下保温1‑3h,冷却至室温,去离子水洗涤,然后分散至无水乙醇中旋转蒸发干燥,得还原性水滑石。本发明通过引入聚乙烯亚胺保护具有还原性的二价金属离子在水滑石合成过程中不被氧化有效解决了现有技术中六价铬去除困难和成本高昂等问题。

Description

一种还原性水滑石及其制备方法和应用
技术领域
本发明属于无机材料合成技术领域,具体涉及一种还原性水滑石及其制备方法和应用。
背景技术
水是一种最重要和最基本的自然资源,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。由于我国工业的快速发展,工业生产活动中大量的废水排出,对环境造成了严重的危害。尽管如今国家采取了一系列的环保政策,也加大了监督、处罚的力度,但是水体污染状况仍然很严重。为了解决这一问题,工业废水处理技术的研究显得尤为重要。
铬(Cr)在自然界中最常见的价态呈现三价和六价,从大气、水、土壤中普遍检测出铬及其化合物的存在。由于生物链的作用,铬在动植物体内的残留和蓄积也相当高。工业生产中有关铬的生产和应用是铬污染的主要来源,六价铬的诸多化合物被应用于制革、纺织品生产、印染以及镀铬等行业中,金属加工企业废水中含铬最多。Cr(Ⅵ)是一种致癌、致畸、致突变的剧毒物质,毒性比Cr(Ⅲ)大100倍,被国家列为一类控制的污染物。Cr(Ⅵ)在废水中随pH值的不同分别以CrO3、CrO4 2-、Cr2O7 2-等形式存在,尤其在pH值酸性的情况下,六价铬以Cr2O7 2-形式存在,对六价铬的深度处理带来相当大的难度。
近年来,虽然依靠表面吸附或化学吸附能够有效实现Cr(Ⅵ)的去除,但是,由于工业过程中Cr(Ⅵ)废液量大,工况复杂,常规吸附剂很难发挥作用,在实际含铬废水处理过程中通常采用先还原后沉淀的方法,即通过强还原剂(焦亚硫酸钠等)在酸性条件下将六价铬还原成三价铬,进而通过碱沉淀进行去除,该过程存在还原剂用量大、产生大量危废和固废、沉淀时受制于溶解度问题,导致处理废水难以满足环保要求,需要在此基础上增加膜过滤、活性炭吸附等工序,导致成本大大增加,因此,开发一种兼具还原性和吸附性的吸附剂极为必要。
双金属复合氢氧化物(又称类水滑石,LDHs)是一种由主体层板和层间客体阴离子插层组装形成的阴离子型粘土化合物。该类材料具有与水镁石相似的结构,其结构通式为[M2+ 1-xM3+ x(OH)2]x+An- x/n·mH2O。其中,M2+和M3+分别表示二价和三价金属阳离子(例如Mg2+、Ca2+、Ni2+、Zn2+、Fe3+和Ga3+),An-为层间阴离子(如CO3 2-、Cl-、NO3 -、SO42-、有机阴离子),x为M3 +/(M2++M3+)的摩尔比,通常取值范围为0.2-0.33。此外,M2+可以被Li+代替(仅发现LiAl-LDH),M3+也可以分别被Ti4+、Zr4+和Sn4+代替。随着合成技术的发展,多元素层板组成的LDHs近年来也多有报道。LDHs在层板金属阳离子种类、层间阴离子种类、粒径、表面缺陷和形貌等方面的巨大可调性使其具有多种物理和化学性质,这使得LDHs在催化、水分解、光学材料、超级电容器、吸附、药物传递等领域表现出良好的应用前景,倍受各界关注。在吸附领域,LDHs层间客体的可调变性、LDHs的记忆效应和层间阴离子的可交换性、碱性等。相比于其他材料,LDHs可以通过络合配位、离子交换、沉淀作用、氧化还原等多种方式来实现对重金属离子的去除。
然而,由于具有还原性特点的二价铁和二价锰在强碱性条件极易被氧化,很难在自然条件下合成具有二价铁或二价锰的LDHs,通常需要在氮气保护下或无氧环境中进行合成,导致成本高昂,难以实现真正的应用。
发明内容
针对现有技术中存在的上述问题,本发明提供一种还原性水滑石及其制备方法和应用,通过引入聚乙烯亚胺保护具有还原性的二价金属离子在水滑石合成过程中不被氧化;且利用氧化锌和氧化镁水合过程中弱碱性特点,提供碱源的同时避免了将二价铁或二价锰氧化,有效解决了现有技术中六价铬去除困难和成本高昂等问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:提供一种还原性水滑石的制备方法,包括以下步骤:
(1)将金属氧化物加入去离子水中充分搅拌,得金属氧化物悬浊液;然后加入聚乙烯亚胺,室温下磁力搅拌10-30min,得溶液A;
(2)将还原性金属盐和三价金属盐加入去离子水在室温下磁力搅拌至完全溶解至澄清,得溶液B;
(3)将步骤(1)所得溶液A和步骤(2)所得溶液B倒入搅拌的反应釜中,升温至35-85℃温度下保温1-3h,冷却至室温,去离子水洗涤,然后分散至无水乙醇中旋转蒸发干燥,得还原性水滑石。
升温至35-85℃温度进行反应,低于35℃会导致反应的进行十分缓慢,而高于85℃则会导致耗能提高,也容易导致杂相的出现。
进一步,步骤(1)中,金属氧化物为氧化锌或氧化镁。
进一步,步骤(1)中,溶液A中,金属氧化物的物质的量浓度为0.2-3mol/L;去离子水和聚乙烯亚胺体积比为1:1-9。
进一步,还原性金属盐的物质的量为金属氧化物的1/3-3/4;三价金属盐的物质的量为金属氧化物的1/3。
进一步,三价金属盐为硫酸铝、氯化铝和硝酸铝中的至少一种。
进一步,还原性金属盐为硫酸亚铁、氯化亚铁、硫酸锰、硝酸锰和氯化锰中的至少一种。
进一步,步骤(3)中,步骤(3)中,反应釜中搅拌速度为2500-3500r/min。
以氧化锌、硝酸锰、硝酸铝制备含二价锰的LDHs为例,其化学反应方程式为:
6Zn(OH)2+2Mn(NO3)2+2Al(NO3)3=Zn2Mn2Al2(OH)12(NO3)2+4Zn(NO3)2
由反应方程式可以看出,本发明与其它方法相比,该方法所需设备简单,合成条件温和,且无需强碱的加入而导致形成大量的副产物钠盐。在聚乙烯亚胺的保护下,二价铁或二价锰能够有效抵抗氧化进而进入水滑石的晶格中;所制备的还原性水滑石能够在自然条件下长时间保存并保持良好的还原性能。
此外,本发明的还原性水滑石具有较大的比表面积和丰富的孔结构,能够进一步提升其对六价铬的捕获能力,在水处理方面表现出良好的应用前景。
上述还原性水滑石的制备方法制得的还原性水滑石。
上述还原性水滑石在水中六价铬去除中的应用。
综上所述,本发明具备以下优点:
1、本发明在制备过程中无需氮气保护,所需设备简单,易操作;此外,制备过程中不涉及强碱,因而反应后无需处理含盐废水,提高了合成效率的同时减少了废水处理压力。
2、本发明制得的还原性水滑石具有较高的比表面积和较高的表面电荷密度,有利于对重金属铬的去除;其中具有还原性的二价金属铁或锰能够有效的将六价铬还原成三价铬,而水滑石表面的羟基及自身的碱性能够将三价铬矿化,更重要的部分三价铬能够进入水滑石层板的晶格中,利用其极低的溶度积常数实现铬离子的深度去除,进而实现含铬废水的高效处理。
附图说明
图1为实施例1中所得还原性水滑石的XRD图;
图2为实施例1中所得还原性水滑石的XPS图;
图3为实施例2中所得还原性水滑石的XRD图;
图4为实施例2中所得还原性水滑石的SEM图;
图5为实施例2中所得还原性水滑石的BET图;
图6为对比例1中所得样品的XRD图;
图7为实验例1中六价铬吸附曲线图。
具体实施方式
实施例1
一种还原性水滑石,其制备方法包括以下步骤:
(1)将4.86g氧化锌加入90mL去离子水中充分搅拌,得金属氧化物悬浊液;然后加入10mL聚乙烯亚胺,室温下磁力搅拌20min,得溶液A;
(2)将5.02g硝酸锰和4.26g硝酸铝加入100mL去离子水在室温下磁力搅拌至完全溶解至澄清,得溶液B;
(3)将步骤(1)所得溶液A和步骤(2)所得溶液B倒入搅拌的反应釜中,搅拌速度为3000r/min,升温至80℃温度下保温3h,冷却至室温,去离子水洗涤,然后分散至无水乙醇中旋转蒸发干燥,得还原性水滑石。
获取所得目标产物的XRD图和XPS图,分别如图1和2所示。
由图1可知,制得的还原性水滑石呈现出LDHs特征衍射峰,且无明显杂峰,表明所制备物质为LDHs。
由图2可知,锰在83.7eV和89.3eV出现了Mn2+特征峰,表明锰元素进入了LDHs中且呈现出+2价。
实施例2
一种还原性水滑石,其制备方法包括以下步骤:
(1)将4.86g氧化锌加入80mL去离子水中充分搅拌,得金属氧化物悬浊液;然后加入20mL聚乙烯亚胺,室温下磁力搅拌20min,得溶液A;
(2)将3.98g氯化亚铁和4.26g硝酸铝加入100mL去离子水在室温下磁力搅拌至完全溶解至澄清,得溶液B;
(3)将步骤(1)所得溶液A和步骤(2)所得溶液B倒入搅拌的反应釜中,搅拌速度为3000r/min,升温至50℃温度下保温3h,冷却至室温,去离子水洗涤,然后分散至无水乙醇中旋转蒸发干燥,得还原性水滑石。
获取所得目标产物的XRD图、SEM图和BET图,分别如图3-5所示。
由图3可知,所得的还原性水滑石呈现出LDHs特征衍射峰,且无明显杂峰,表明所制备物质为LDHs。
由图4可知,所制备的ZnFeAl-LDH呈纳米片结构。
由图5可知,所得的还原性水滑石样品的比表面积为121m2/g。
对比例1
一种水滑石的制备方法,包括以下步骤:
称取4.86g氧化锌置于150mL烧杯中,加入100mL去离子水,室温下磁力搅拌20分钟后得到反应溶液A;称取氯化亚铁3.98g,硝酸铝4.26g置于150mL烧杯中,加入100mL去离子水,室温下磁力搅拌20分钟后得到反应溶液B;将反应溶液A和反应溶液B同时倒入快速搅拌的反应釜中(转速3000r/min),反应后的浆料在50℃条件下晶化3小时后去离子水离心洗涤后将沉淀物分散于无水乙醇中,随后采用旋转蒸发仪干燥后即可。
获取对比例1所得样品的XRD图,如图6所示。
由图6可知,所得样品并没有表现出LDH的特征衍射峰,表明未形成LDH。
实验例1
ZnMnAl-LDH对废水中六价铬的去除
称取0.1g实施例1所得还原性水滑石于500mL的烧杯中,加入100ml含Cr6+的水溶液,其中Cr6+的浓度为200mg/L,室温下磁力搅拌60分钟后,取上层溶液后用0.22μm的过滤膜过滤后通过ICP-MS测其中Cr的浓度。其不同时间段去除率结果如图7所示。
由图7可知,本发明所得还原性水滑石对铬的去除率达到92%,其最大吸附量为184mg/g,表现出非常高的去除量和去除效率。
虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (4)

1.一种用于水中六价铬去除的还原性水滑石的制备方法,其特征在于,包括以下步骤:
(1)将金属氧化物加入去离子水中充分搅拌,得金属氧化物悬浊液;然后加入聚乙烯亚胺,室温下磁力搅拌10-30min,得溶液A;所述金属氧化物为氧化锌或氧化镁;所述溶液A中,金属氧化物的物质的量浓度为0.2-3mol/L;去离子水和聚乙烯亚胺体积比为1:1-9;
(2)将还原性金属盐和三价金属盐加入去离子水在室温下磁力搅拌至完全溶解至澄清,得溶液B;所述三价金属盐为硫酸铝、氯化铝和硝酸铝中的至少一种;所述还原性金属盐的物质的量为金属氧化物的1/3-3/4;所述三价金属盐的物质的量为金属氧化物的1/3;所述还原性金属盐为硫酸亚铁、氯化亚铁、硫酸锰、硝酸锰和氯化锰中的至少一种;
(3)将步骤(1)所得溶液A和步骤(2)所得溶液B倒入搅拌的反应釜中,升温至35-85℃温度下保温1-3h,冷却至室温,去离子水洗涤,然后分散至无水乙醇中旋转蒸发干燥,得用于水中六价铬去除的还原性水滑石。
2.如权利要求1所述的用于水中六价铬去除的还原性水滑石的制备方法,其特征在于,步骤(3)中,步骤(3)中,反应釜中搅拌速度为2500-3500r/min。
3.权利要求1-2任一项所述的用于水中六价铬去除的还原性水滑石的制备方法制得的用于水中六价铬去除的还原性水滑石。
4.权利要求3所述的用于水中六价铬去除的还原性水滑石在水中六价铬去除中的应用。
CN202211152358.7A 2022-09-21 2022-09-21 一种还原性水滑石及其制备方法和应用 Active CN115382500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211152358.7A CN115382500B (zh) 2022-09-21 2022-09-21 一种还原性水滑石及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211152358.7A CN115382500B (zh) 2022-09-21 2022-09-21 一种还原性水滑石及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115382500A CN115382500A (zh) 2022-11-25
CN115382500B true CN115382500B (zh) 2024-01-30

Family

ID=84125851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211152358.7A Active CN115382500B (zh) 2022-09-21 2022-09-21 一种还原性水滑石及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115382500B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759213A (zh) * 2010-01-05 2010-06-30 北京化工大学 一种金属粉制备层状双金属氢氧化物的方法
CN101962208A (zh) * 2010-10-28 2011-02-02 上海工程技术大学 镁铝铁类水滑石及其制备方法和作为共吸附剂的应用
CN103611543A (zh) * 2013-11-28 2014-03-05 沈阳化工大学 ZnFeCr水滑石光催化剂的制备方法
CN108160026A (zh) * 2017-12-20 2018-06-15 成都理工大学 一种基于铁镁铝类水滑石吸收与还原Cr(VI)的方法
CN113908815A (zh) * 2021-11-15 2022-01-11 南京工业大学 一种高分子改性吸附剂及其制备方法和其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112915962B (zh) * 2021-01-28 2023-04-28 水利部交通运输部国家能源局南京水利科学研究院 镁铝水滑石负载纳米零价铁复合材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759213A (zh) * 2010-01-05 2010-06-30 北京化工大学 一种金属粉制备层状双金属氢氧化物的方法
CN101962208A (zh) * 2010-10-28 2011-02-02 上海工程技术大学 镁铝铁类水滑石及其制备方法和作为共吸附剂的应用
CN103611543A (zh) * 2013-11-28 2014-03-05 沈阳化工大学 ZnFeCr水滑石光催化剂的制备方法
CN108160026A (zh) * 2017-12-20 2018-06-15 成都理工大学 一种基于铁镁铝类水滑石吸收与还原Cr(VI)的方法
CN113908815A (zh) * 2021-11-15 2022-01-11 南京工业大学 一种高分子改性吸附剂及其制备方法和其应用

Also Published As

Publication number Publication date
CN115382500A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
Xiao et al. The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr (VI) from aqueous solution
Yue et al. Simultaneous removal of Cu (II) and Cr (VI) by Mg–Al–Cl layered double hydroxide and mechanism insight
Zhang et al. Systematic screening of layered double hydroxides for phosphate removal and mechanism insight
CN108160026A (zh) 一种基于铁镁铝类水滑石吸收与还原Cr(VI)的方法
JP5463525B2 (ja) 選択吸着剤およびその製造方法
Guo et al. Synthesis of mesoporous Cu/Mg/Fe layered double hydroxide and its adsorption performance for arsenate in aqueous solutions
Liu et al. An antibacterial and antifouling amidoxime-functionalized graphene oxide aerogel for selective uranium adsorption in Salt Lake water
Zhou et al. Application of FeMgMn layered double hydroxides for phosphate anions adsorptive removal from water
Guo et al. A study of phosphate adsorption by different temperature treated hydrous cerium oxides
Benhiti et al. Kinetic, isotherm, thermodynamic and mechanism investigations of dihydrogen phosphate removal by MgAl-LDH
Cao et al. Ca–La layered double hydroxide (LDH) for selective and efficient removal of phosphate from wastewater
CN109692653B (zh) 高效吸附水中磷酸根离子的吸附剂及其制备方法
CN109692648B (zh) 高效吸附水中硫酸根离子的吸附剂及其制备方法
CN111559760A (zh) 一种磁性水滑石及其制备方法和应用
Hu et al. Enhanced removal of Sb (V) from aqueous solutions using layered double hydroxide modified with sodium dodecyl sulfate
Zhang et al. Removal of Cd2+ from water by Friedel's salt (FS: 3CaO· A12O3· CaCl2· 10H2· O): Sorption characteristics and mechanisms
CN114873623B (zh) 具有还原性和吸附性的可回收水滑石及其制备方法和应用
Intachai et al. Versatile inorganic adsorbent for efficient and practical removal of hexavalent chromium in water
Li et al. Preparation of cobalt-containing spinel oxides as novel adsorbents for efficient phosphate removal
Adegoke et al. Equilibrium sorption of hexavalent chromium from aqueous solution using synthetic hematite
Hongo et al. Synthesis of Ca-Al layered double hydroxide from concrete sludge and evaluation of its chromate removal ability
CN102976517A (zh) 一种工业酸洗废水的处理方法
CN109692650B (zh) 高效脱除水中亚砷酸根离子的吸附剂及其制备方法
CN115382500B (zh) 一种还原性水滑石及其制备方法和应用
KR101317796B1 (ko) 수질 정화 재료, 수질 정화 방법, 인산 비료 원료 조성물 및 인산 비료 원료 조성물의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant