CN115364694A - 一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法以及在油水分离中的应用 - Google Patents

一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法以及在油水分离中的应用 Download PDF

Info

Publication number
CN115364694A
CN115364694A CN202211116071.9A CN202211116071A CN115364694A CN 115364694 A CN115364694 A CN 115364694A CN 202211116071 A CN202211116071 A CN 202211116071A CN 115364694 A CN115364694 A CN 115364694A
Authority
CN
China
Prior art keywords
tio
zcs
membrane
bacterial cellulose
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211116071.9A
Other languages
English (en)
Other versions
CN115364694B (zh
Inventor
崔亚文
郑旭东
李昂
王商雄
李忠玉
荣坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202211116071.9A priority Critical patent/CN115364694B/zh
Publication of CN115364694A publication Critical patent/CN115364694A/zh
Application granted granted Critical
Publication of CN115364694B publication Critical patent/CN115364694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • B01D17/085Thickening liquid suspensions by filtration with membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于材料制备技术和分离技术领域,涉及一种ZCS‑TiO2为材料制备细菌纤维素多功能膜的方法以及在油水分离中的应用,本发明先合成ZCS‑TiO2复合材料,然后以BC为改性配体,ZCS‑TiO2为支撑材料,制备BC/ZCS‑TiO2膜,本发明将ZCS/TiO2结合在BC中,可以提高膜材料的抗菌性能,紫外驱动自清洁性能,还能增加膜材料对有机溶剂和油的分离能力。结果表明利用本发明获得的双功能BC/ZCS‑TiO2膜有优越的油水分离性能,且有较高的可重复使用性。

Description

一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法以及在 油水分离中的应用
技术领域
本发明涉及一种ZCS-TiO2为材料制备细菌纤维素多功能膜用于油水分离应用的制备方法,尤其涉及一种能分离油水混合物的制备方法。属于材料制备和分离技术领域。
背景领域
近几十年来,随着石油工业、制造业等工业化的不断发展,水污染造成了严重的生态环境问题。石油泄漏和有机物泄漏已成为世界上重要的水污染源。目前常用的离心、浮选、重选等处理工艺,由于操作复杂、能耗高、二次污染、油水分离不彻底等原因,难以在实际生活中大规模应用。因此,迫切需要开发一种简单高效的油水混合物处理方法。随着海绵、膜、气凝胶等3D多孔材料的出现,使得油水分离的认知领域更加广泛。3D多孔材料比2D网格材料有更多的优势,无需提前收集含油废水,大大节省了处理时间。3D多孔材料易于回收,重复使用率高。
近年来,二氧化钛基膜材料由于其优异的紫外驱动自清洁性能,在油水分离中显示出非常重要的应用。例如CN201810270156.X一种油水乳液分离方法及用于油水乳液分离的滤膜以二氧化钛和纤维素制备复合纳米纤维素滤膜,有利于油水乳液的分离。但其光催化能力差,抗菌性差,通量低。且油水分离循环多次后光催化活性降低,分离效率变差。
细菌纤维素(Bacterial Cellulose,简称BC)具有良好较高的生物相容性、适应性和良好的生物可降解性,又具备了丰富的亲水基团。BC本身收紧的纤维和小孔限制了其作为过滤膜的应用。
因此,如何得到一种兼具优异的光催化、抗菌效果,还能提高分离油水的通量和分离效率的分离膜,这对以后处理复杂污水问题,如染料废水,含有细菌污染物的废水,都能起到启示作用。
发明内容
本发明利用ZCS/TiO2复合膜材料作为分离油水混合物的基体,通过简单水热合成法和真空抽滤法将ZCS-TiO2附着在BC膜的表面,制得BC/ZCS-TiO2膜,并用于对油水混合物中油的分离回收,大大提高分离材料的分离性能。
本发明的技术方案是:
一种ZCS-TiO2为材料制备细菌纤维素多功能膜用于油水分离应用的制备方法,包括以下步骤:
ZnCo2S4(ZCS)的将采用简单水热法合成:1mmol C4H6O4Zn·2H2O、2mmol Co(NO3)2·6H2O、10mmol NaOH溶于100ml去离子水中。将溶液分别超声和搅拌30分钟。随后,在溶液中加入8mmol硫代乙酰胺,继续搅拌,直至溶液变黑。最后,将溶液倒入100ml特氟龙衬垫中,200℃置于烘箱中12h,用乙醇和去离子水清洗材料,60℃干燥;
BC/ZCS-TiO2分离膜的制备为:
(1)采用简单水热法合成ZCS/TiO2,称取1mmol C4H6O4Zn·2H2O、2mmol Co(NO3)2·6H2O和一定量的TiO2,放入砂浆中研磨,直至混合成粉末。粉末溶于去离子水,加入10mmolNaOH。将溶液分别超声和搅拌30分钟。随后,在溶液中加入8mmol硫代乙酰胺,继续搅拌2~3h,直至溶液变黑。最后,将溶液倒入特氟龙衬垫反应釜中,200℃~300℃℃置于烘箱中9~12hh,用乙醇和去离子水清洗材料,60℃~80℃干燥。得到ZCS/TiO2复合材料。
进一步,C4H6O4Zn·2H2O:Co(NO3)2·6H2O的摩尔比为1:2;
进一步,C4H6O4Zn·2H2O:Co(NO3)2·NaOH的摩尔比为1:10;
进一步,ZCS与TiO2的质量比为1:5;
(2)将细菌纤维素(BC)用均质机均匀打碎形成悬浮液;
(3)将步骤(1)ZCS/TiO2加入水中超声分散,超声分散完加入步骤(2)的悬浮液中搅拌6h~8h,搅拌均匀,得混合物;
(4)将步骤(3)混合物在真空抽滤器中抽滤得到BC/X-ZCS-TiO2膜,并在真空烘箱中烘干得到复合膜。
其中,步骤(2)所述的悬浮液质量浓度为1%,w/v。
其中,步骤(4)所述的真空烘箱温度为60℃。
其中,BC/X-ZCS-TiO2膜中,X=5%~20%;X代表ZCS-TiO2在BC/X-ZCS-TiO2膜中的质量占比。作为优选,ZCS-TiO2在复合膜中质量占比为20%。
本发明的技术优点:
利用水热合成法制备ZCS/TiO2简便,运用真空抽滤法将ZCS/TiO2附着在BC膜的表面,利用BC本身具有的亲水性,BC微纤维上存在丰富的羟基。使用了真空抽滤法制备了具有多功能、可重复使用的膜,该过程简单。本发明将ZCS/TiO2结合在BC中,可以提高膜材料的抗菌性能,紫外驱动自清洁性能,还能增加膜材料对有机溶剂和油的分离能力。ZCS/TiO2结合在BC膜上,油水分离循环20次后仍然其光催化活性和抗菌性能保持,且明显提高复合膜的通量速率。
附图说明
图1.BC、BC/TiO2、BC/ZCS-TiO2的扫描电镜形貌图以及mapping图。
图2.BC/ZCS-TiO2的透射电镜形貌图。
图3.BC、BC/TiO2、BC/ZCS-TiO2的XRD图。
图4.BC/ZCS-TiO2的接触角图。
图5.BC/ZCS-TiO2的分离效果及循环次数图。
图6.BC/ZCS-TiO2的光催化性能图。
图7.BC/ZCS-TiO2的自清洁性能图。
图8.BC/ZCS-TiO2的抗菌性能图。
具体实施方式
下面结合具体实施实例对本发明做进一步说明。
将采用简单水热法合成了ZnCo2S4(ZCS):1mmol C4H6O4Zn·2H2O、2mmol Co(NO3)2·6H2O、10mmol NaOH溶于去离子水中。将溶液分别超声和搅拌30分钟。随后,在溶液中加入8mmol硫代乙酰胺,继续搅拌,直至溶液变黑。最后,将溶液倒入特氟龙衬垫中,200℃置于烘箱中12h,用乙醇和去离子水清洗材料,60℃干燥。
实施例:
采用简单水热法合成ZCS/TiO2,称取1mmol C4H6O4Zn·2H2O、2mmol Co(NO3)2·6H2O和按照ZCS与TiO2质量比为1:5的用量关系称取TiO2,放入砂浆中研磨,直至混合成粉末。粉末溶于100ml去离子水,加入10mmol NaOH。将溶液分别超声和搅拌30分钟。随后,在溶液中加入8mmol硫代乙酰胺,继续搅拌,直至溶液变黑。最后,将溶液倒入100ml特氟龙衬垫中,200℃置于烘箱中12h,用乙醇和去离子水清洗材料,60℃干燥。
将细菌纤维素(BC)用均质机均匀打碎形成质量浓度为1%,w/v的悬浮液;将合成的ZCS/TiO2超声分散完加入BC悬浮液中搅拌均匀;将混合溶液在真空抽滤器中抽滤得到膜,并在真空烘箱中60℃烘干得到X-BC/ZCS-TiO2复合膜。其中X=5~20%;代表X-ZCS-TiO2在BC/ZCS-TiO2膜中的质量占比。
按照上述方法,分别制备得到5-BC/ZCS-TiO2、10-BC/ZCS-TiO2、20-BC/ZCS-TiO2复合膜。
对比例
BC膜:与上述实施例相比,区别在于:未加入ZCS-TiO2,其它操作与实施例相同。
BC/TiO2膜:与上述实施例20-BC/ZCS-TiO2相比,区别在于,将ZCS-TiO2等质量替换成TiO2,其它操作与实施例相同,得到20-BC/TiO2膜。
BC/ZCS膜:与上述实施例20-BC/ZCS-TiO2相比,区别在于,将ZCS-TiO2等质量替换成ZCS,其它操作与实施例相同,得到20-BC/ZCS膜。
图1.BC、20-BC/TiO2、20-BC/ZCS-TiO2的扫描电镜形貌图以及mapping图。如图1所示,利用扫描电镜对原BC膜和BC/TiO2、BC/ZCS-TiO2复合膜的形貌进行了分析。
图1A展示了原始细菌纤维素的三维、巨大交织的网状形状;图1B的BC/TiO2展示出在BC膜上负载TiO2,样品实际上显示了TiO2纳米颗粒沿纤维的分布,大量的二氧化钛颗粒聚集在膜的表面,形成了微纳米结构,这是膜的亲水性不可缺少的。图1C的BC/ZCS-TiO2展示出BC膜负载ZCS-TiO2的形貌,其中的TiO2颗粒形态约为100nm,ZCS为颗粒状,粒径小于50nm,负载在TiO2表面。因为ZCS是量子点,在SEM中并不明显,通过在图1D mapping中可以观察到各个元素的分布来证明负载成功。
图2为20-BC/ZCS-TiO2的透射电镜形貌图,如图2所示,通过TEM对复合膜进行表征分析,从图2A和B中可以看出小颗粒的ZCS均匀地附着在TiO2表面。在图2C和D中,晶格间距为0.351nm和0.308nm的条纹分别对应TiO2的(101)晶面和ZCS的(111)晶面。综上所述,通过SEM、TEM和mapping等测试手段证实了ZCS-TiO2在BC膜表面的均匀生长。
如图3所示,用XRD分析了BC、20-BC/TiO2、不同比例的BC/ZCS-TiO2的晶体结构。图3中BC样品在14.5°和22.3°可以看到结晶纤维素的典型峰;BC/TiO2的XRD峰对应典型锐钛矿相TiO2(PDF#21-1272),在25.18°、37.63°、47.9°、53.72°、54.98°和62.63°处的特征峰对应TiO2的(101)、(004)、(200)、(105)、(211)和(201)晶面。在ZCS的XRD图谱中,28.63°、47.63°和56.54°处的特征峰分别对应于ZCS的(111)、(220)和(311)晶面(PDF#47-1656)。在BC/ZCS-TiO2不同配比的衍射图谱中,所有的衍射峰都对应于ZCS和TiO2的特征峰,说明ZCS和TiO2成功负载在BC膜上。
如图4A所示,20-BC/ZCS-TiO2复合膜空气中水接触角为0°;图4B显示出水下油接触角为154°;图4C展示重复实验后的复合膜在紫外光下随着时间的变化其水下油接触角的变化,可以看出恢复其水下超疏油的性能。而20-BC/TiO2膜水下油接触角为143.2°;ZCS/TiO2有利于提高复合膜的疏油性能。
图5A,B展示BC单体及不同负载体的通量和分离效率,其中当ZCS-TiO2的投加量为20%时,通量的提升效果最明显,BC和20-BC/TiO2膜的过滤通量分别为0和973.55±59L·m-2h-1,具有较高的分离效率(>99.9%).不同ZCS-TiO2含量的复合膜的通量有所提高,分离效率相似。而20-BC/ZCS-TiO2的通量为9989.81±121L·m-2h-1,分离效率大于99.9%。然而,通过进一步增加膜中ZCS-TiO2的含量,对通量速率没有显著影响。因此,我们选择20-BC/ZCS-TiO2作为大多数实验中性能最佳的模型膜;20-BC/TiO2膜、20-BC/ZCS膜的通量明显差于BC/ZCS-TiO2膜。图5C展示用20-BC/ZCS-TiO2来测量通量以及对不同种油的分离效率(A-F表示二氯乙烷、石油醚、甲苯、大豆油、柴油、己烷和水的混合物),可以看出20-BC/ZCS-TiO2对多种油水混合物的分离效率高达99%以上,此外,测定了大豆油、柴油和二氯乙烷等一系列油水组合的通量:粘度过高的稠油水混合物的通量较低,为7428~8774L·m-2h-1。低粘度油水混合物的通量高达9597-10000L·m-2h-1;图5D中可以看出在经过20次循环实验,在前10个循环中,分离效率和水通量变化不明显,但仍然保持较高的值。在接下来的10个循环中,复合膜的分离效率和水通量逐渐下降,这可能是由于复合膜经过多次实验后被油滴阻塞所致。但分离效率仍然保持99%以上。
如图6所示,BC、20-BC/TiO2、5-BC/ZCS-TiO2和20-BC/ZCS-TiO2复合膜对罗丹明和亚甲基蓝染料的光催化性能。在光催化实验之前,将悬浮样品的溶液在黑暗中搅拌5h,以忽略材料的吸附系数。此外,为了研究光对染料的光解效果,在相同的光辐照条件下处理了染料的空白溶液。如图6A、B所示,在可见光光照下和处理6h后,罗丹明有少量的降解(10.45%)。另一方面,BC/TiO2和5-BC/ZCS-TiO2在同一持续时间内的光降解率分别为44.57%和59.35%。相比之下,20-BC/ZCS-TiO2复合膜处理3.5h后降解率为80.5%,但降解率略有下降,6h后降解率为96.7%;同样,在光照照射6h后,可以观察到亚甲基蓝的少量降解(8.4%)(图6C,D)。BC/TiO2和5-BC/ZCS-TiO2在处理6h后的效率分别为60%和75%。另一方面,20-BC/ZCS-TiO2在2h内对染料的降解率为80%,然而,后记降解减少,6h后降解率为99%,并观察到一个平坦的曲线。这些结果表明,染料的降解主要是通过光催化作用,而不是光解作用。与其他样品相比,20-BC/ZCS-TiO2膜的光催化活性较高,这可能是由于ZCS-TiO2的负载量以及相互之间的协同作用。
如图7所示复合膜的自清洁性能。以低挥发性油酸为模型油,空气中水接触角从0°增加到59.5°,结果表明,由于油滴粘附在膜表面,复合膜由超亲水膜变为亲水膜。同时,20-BC/ZCS-TiO2膜的水下油接触角从156.5°下降到83.4°,表明膜表面被油滴污染。因此,复合膜失去了原有的润湿性,不能继续分离油水混合物。紫外照射12h后,油酸污染膜的水接触角降至0°,水下油接触角升高至152.9°。这些结果表明,BC/ZCS-TiO2膜在UV照射后可以很好地恢复其超亲水和水下超疏油性能,证明了加入ZCS-TiO2提高了膜的光催化以及自清洁性能。
如图8所示,采用CFU法定量检测了纯BC膜、20-BC/TiO2和BC/ZCS-TiO2膜对金黄色葡萄球菌和大肠杆菌的抑菌活性。如图8A、B中显示了原始BC、BC/TiO2、不同比例的BC/ZCS-TiO2膜分别对金黄色葡萄球菌和大肠杆菌的抑菌活性统计数据。BC没有显示出任何抗菌活性,而菌株对BC/TiO2膜的存活率为95–97%,说明其抗菌性能较差。另一方面,含ZCS-TiO2的样品对两种菌株均表现出显著的杀菌活性。20-BC/ZCS-TiO2样本完全根除了细菌细胞,没有发现活的菌落。ZCS-TiO2含量最低的BC/ZCS-TiO2膜使金黄色葡萄球菌和大肠杆菌的细菌活力分别降低了40.32%和30.64%。随着ZCS-TiO2含量的增加,抑菌活性也有所增加;20-BC/ZCS-TiO2完全根除了两株菌株(无存活菌落)。这些结果表明,由于ZCS-TiO2的存在,复合膜具有抗菌活性。众所周知,BC缺乏抗菌官能团,因此不具有任何抗菌性能。然而,TiO2由于其光催化活性而表现出抗菌性能,这需要紫外光。因此,它在黑暗条件下的杀菌活性较差。因此,将TiO2与抗菌剂结合,以提高其在黑暗条件下的抗菌效率。相比之下,ZCS在不同条件下具有广谱抗菌性能。因此将ZCS与TiO2相结合形成的ZCS-TiO2具有更好的抗菌效果。

Claims (4)

1.一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法,其特征在于,所述制备方法为:
(1)水热法合成ZCS/TiO2:称取C4H6O4Zn·2H2O、Co(NO3)2·6H2O和TiO2放入砂浆中研磨,直至混合成粉末;将混合粉末溶于去离子水中,加入氢氧化钠,得混合溶液后进行超声和搅拌,在混合溶液中加入硫代乙酰胺,继续搅拌,直至溶液变黑;将变黑后溶液倒入反应釜中,200~300℃置于烘箱中9~12h,用乙醇和去离子水清洗材料,干燥;得到ZCS/TiO2复合材料;
(2)将细菌纤维素用均质机均匀打碎形成悬浮液;
(3)将步骤(1)ZCS/TiO2复合材料加入水中超声分散,超声分散后加入步骤(2)的悬浮液中搅拌均匀,得混合物在真空抽滤器中抽滤得到BC/ZCS-TiO2膜,并在真空烘箱中烘干得到BC/X-ZCS-TiO2复合膜。
2.根据权利要求1所述的ZCS-TiO2为材料制备细菌纤维素多功能膜的方法,其特征在于,步骤(1)中C4H6O4Zn·2H2O:Co(NO3)2·6H2O的摩尔比为1:2;ZCS与TiO2的质量比为1:5。
3.根据权利要求1所述的ZCS-TiO2为材料制备细菌纤维素多功能膜的方法,其特征在于,BC/X-ZCS-TiO2膜中,X为ZCS-TiO2在BC/X-ZCS-TiO2膜中的质量比的5%~20%。
4.根据权利要求1-3任一项所述方法制备的细菌纤维素多功能膜在油水分离中的应用。
CN202211116071.9A 2022-09-14 2022-09-14 一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法以及在油水分离中的应用 Active CN115364694B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211116071.9A CN115364694B (zh) 2022-09-14 2022-09-14 一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法以及在油水分离中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211116071.9A CN115364694B (zh) 2022-09-14 2022-09-14 一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法以及在油水分离中的应用

Publications (2)

Publication Number Publication Date
CN115364694A true CN115364694A (zh) 2022-11-22
CN115364694B CN115364694B (zh) 2024-07-16

Family

ID=84071439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211116071.9A Active CN115364694B (zh) 2022-09-14 2022-09-14 一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法以及在油水分离中的应用

Country Status (1)

Country Link
CN (1) CN115364694B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105297405A (zh) * 2015-10-25 2016-02-03 复旦大学 一种硫化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法
CN108516607A (zh) * 2018-03-29 2018-09-11 武汉大学苏州研究院 一种油水乳液分离方法及用于油水乳液分离的滤膜
CN109260764A (zh) * 2018-09-18 2019-01-25 江苏大学 一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法
CN110227491A (zh) * 2019-04-02 2019-09-13 中原工学院 一种纳米硫化物复合纤维材料及其制备方法
US20210106954A1 (en) * 2019-10-14 2021-04-15 Huaiyin Normal University Super-hydrophilic/underwater super-oleophobic separation membrane and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105297405A (zh) * 2015-10-25 2016-02-03 复旦大学 一种硫化钴锌/石墨烯/碳纳米纤维复合材料及其制备方法
CN108516607A (zh) * 2018-03-29 2018-09-11 武汉大学苏州研究院 一种油水乳液分离方法及用于油水乳液分离的滤膜
CN109260764A (zh) * 2018-09-18 2019-01-25 江苏大学 一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法
CN110227491A (zh) * 2019-04-02 2019-09-13 中原工学院 一种纳米硫化物复合纤维材料及其制备方法
US20210106954A1 (en) * 2019-10-14 2021-04-15 Huaiyin Normal University Super-hydrophilic/underwater super-oleophobic separation membrane and preparation method thereof

Also Published As

Publication number Publication date
CN115364694B (zh) 2024-07-16

Similar Documents

Publication Publication Date Title
Liu et al. Recent advances in synthesis and applications of clay-based photocatalysts: a review
Sarma et al. Shape-tunable CuO-Nd (OH) 3 nanocomposites with excellent adsorption capacity in organic dye removal and regeneration of spent adsorbent to reduce secondary waste
US9828265B2 (en) Material used in the removal of contaminants from liquid matrices
Cheng et al. A novel preparation method for ZnO/γ-Al 2 O 3 nanofibers with enhanced absorbability and improved photocatalytic water-treatment performance by Ag nanoparticles
CN111974373B (zh) 一种光催化降解抗生素的方法
Yin et al. Hydrothermal and activated synthesis of adsorbent montmorillonite supported porous carbon nanospheres for removal of methylene blue from waste water
Haye et al. ZnO/Carbon xerogel photocatalysts by low-pressure plasma treatment, the role of the carbon substrate and its plasma functionalization
Yang et al. Fabrication of three-dimensional porous La-doped SrTiO 3 microspheres with enhanced visible light catalytic activity for Cr (VI) reduction
Kumar et al. Comparison of physical-and chemical-activated Jatropha curcas husk carbon as an adsorbent for the adsorption of Reactive Red 2 from aqueous solution
Zhuang et al. Alcohol-assisted self-assembled 3D hierarchical iron (hydr) oxide nanostructures for water treatment
Ling et al. A waxberry-like SiO 2@ MnSiO 3 core–shell nanocomposite synthesized via a simple solvothermal self-template method and its potential in catalytic degradation and heavy metal ion removal
Wang et al. Heterogeneous Fenton-like degradation of methyl blue using MCM-41-Fe/Al supported Mn oxides
CN112958090A (zh) 高效稳定的铁铜蒙脱土非均相芬顿催化剂及其制备方法和应用
CN114768857B (zh) 一种纳米零价铁复合材料及其制备方法和应用
Liu et al. Biomass assisted synthesis of 3D hierarchical structure BiOX (X Cl, Br)-(CMC) with enhanced photocatalytic activity
Apostol et al. Xanthan or esterified xanthan/cobalt ferrite-lignin hybrid materials for methyl blue and basic fuchsine dyes removal: equilibrium, kinetic and thermodynamic studies
He et al. Biogenic C-doped titania templated by cyanobacteria for visible-light photocatalytic degradation of Rhodamine B
Jithendra Kumara et al. Synthesis of reduced graphene oxide decorated with Sn/Na doped TiO2 nanocomposite: a photocatalyst for Evans blue dye degradation
Liu et al. Fabrication and photocatalytic properties of flexible BiOI/SiO2 hybrid membrane by electrospinning method
Ghazali et al. Evaluation of La-doped CaO derived from cockle shells for photodegradation of POME
A'srai et al. CuO/TiO 2 nanocomposite photocatalyst for efficient MO degradation.
CN115364694A (zh) 一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法以及在油水分离中的应用
Palapa et al. Layered Double Hydroxide Coated by Carbon-Based Material for Environmental Dye Pollutant
Mahrunnisa et al. Green synthesis of Cr-PTC-HIna metal organic frameworks (MOFs) and its application in methylene blue photocatalytic degradation
Kalaivizhi et al. ACs@ ZnO incorporated with a PSF/PU polymer membrane for dye removal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant