CN115356221A - 一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置及方法 - Google Patents

一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置及方法 Download PDF

Info

Publication number
CN115356221A
CN115356221A CN202210898463.9A CN202210898463A CN115356221A CN 115356221 A CN115356221 A CN 115356221A CN 202210898463 A CN202210898463 A CN 202210898463A CN 115356221 A CN115356221 A CN 115356221A
Authority
CN
China
Prior art keywords
chip
transmission electron
microstructure
nano material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210898463.9A
Other languages
English (en)
Inventor
王立华
马琰
韩晓东
邓青松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202210898463.9A priority Critical patent/CN115356221A/zh
Publication of CN115356221A publication Critical patent/CN115356221A/zh
Priority to US17/990,962 priority patent/US20240035988A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/028One dimensional, e.g. filaments, wires, ropes or cables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/206Modifying objects while observing
    • H01J2237/2062Mechanical constraints

Landscapes

  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置及方法,属于纳米材料显微结构原位测试及表征技术领域。包括芯片部分,支撑部分和操控电路三部分。支撑部分为安装在透射样品杆上的支架和排线,电路部分为与芯片链接的导线和能够施加不同波形、可变电压与可变频率的电源。本设计突破了传统的机械应力驱动疲劳性能的测试方法,利用电压形成的电场并通过调节电压的大小和频率,实现不同振幅和周期的可控调节,使一维纳米材料在电场中发生振动实现疲劳性能的测试;同时利用透射电镜原位观察一维纳米材料疲劳实验过程中原子层次微观结构的演变过程,直接建立疲劳性能与微观结构的相关性。

Description

一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构 相关性的装置及方法
技术领域
本发明涉及一种在透射电子显微镜中,原位原子尺度研究一维纳米材料在高周期循环疲劳加载过程中的疲劳性能和微观结构的装置及方法。本发明属于纳米材料显微结构原位测试及表征技术领域。
背景技术
在过去的几十年里,纳米科学和纳米技术迅速发展,一维纳米材料(纳米线、纳米管、纳米柱等)在微纳米机电器件中的应用越来越受到人们的关注。由于一维纳米材料优异的性能,可以作为纳米器件、纳米机械和微纳米机电系统的关键组成部分。在它们的实际应用中,其在外力下的抗疲劳性能和结构的稳定性对器件性能的稳定输出至关重要。例如柔性电子器件中的一维器件、导线等结构会长时间处于应力应变状态。这些一维纳米材料在长时间的应力应变周期下,其疲劳性能和相应的结构稳定性直接影响其力学、光学、热学性能。开展一维纳米线疲劳性能测试及微观结构演化机制的原位研究,对纳米器件的实际应用检测及设计至关重要。然而由于实验技术的缺乏,目前对一维纳米线疲劳性能与微观结构相关性的原位研究相对较少。此外,一维纳米材料的尺寸小,比表面积大,其在长期疲劳状态下的塑性变形以及断裂机制与传统块体材料会有很大不同,也为新现象的发现提供了新机遇。
传统的材料疲劳性能测试通常利用机械装置对样品进行循环应力加载来实现,适用于大的块体材料。由于一维纳米材料的尺寸小,容易在外力作用下变形断裂,不易转移,两端固定困难,极难利用机械装置测量纳米材料疲劳性能。更重要的是,传统的机械装置测试仅能获得材料的疲劳性能,无法同时原位地观察材料疲劳过程中的结构演化,这样就丢失了材料在受到循环应力过程中的结构演变信息。导致目前我们对材料疲劳应用状态下结构演变规律的研究严重依赖于后位观察或者计算机模拟,极难精准建立材料疲劳性能和微观结构的相关性。因此开发一种能够同时实现一维纳米材料疲劳性能测量和原子层次结构演化的原位实验方至关重要。
针对上述技术难题,本方法另辟蹊径,使用电场力作为疲劳实验的驱动力,可以非常有效的实现对小尺寸一维纳米材料疲劳性能的原位测试,同时在原子层次观察疲劳实验过程中的结构演化。该方法应力可控,应变频率和频次可控,从而精确的测量一维纳米材料的疲劳性能。该发明结合光刻技术和聚焦离子束技术(FIB),制备出微型疲劳实验装置。该装置放置在透射电子显微镜(TEM)中,在对一维纳米材料进行疲劳测试时,也可以原位观察实验过程中一维纳米线的原子层次结构响应,建立一维纳米材料疲劳性能与微观结构相关性。
这种新型装置及实验方法,可以提供一维纳米材料在高频次高周期的应力、应变条件下的疲劳性能以及结构演化的定量化细节。该方法对揭示一维纳米材料在高周期高频次应力、应变作用下的变形机制,建立疲劳性能与微观结构的相关性具有重要意义。有利于了解一维纳米材料器件、柔性器件和微纳米机电系统的应用及失效的本质,指导优异疲劳性能纳米材料设计合成。
发明内容
根据上述的研究背景,发明了一种可以实现在透射电镜中原位测量高周期高频次应力、应变条件下的疲劳性能,同时可以原位观察一维纳米材料在疲劳实验中微观结构演化过程的装置。本发明采用电场力作为驱动力,使一维纳米材料在电场力的作用下发生高周期高频次的运动,通过计算可以精确的获得材料的疲劳性能。此外本发明利用光刻技术、聚焦离子束技术搭建微型实验装置;可以疲劳测试的同时利用透射电子显微镜观察疲劳过程中原子层次结构演化。本发明使极小尺寸的一维纳米材料的疲劳性能测试成为可能,同时还能够原位地观察在实验过程中一维纳米材料微观组织的演化,建立一维纳米材料的疲劳性能和微观组织的相关性。
本发明采用芯片光刻技术在小尺寸硅片上制备出窗口、导线和极板等结构,并将其搭载于TEM原位样品杆上。采用FIB技术将单根一维纳米材料(纳米线、纳米柱、纳米管)转移到芯片上。在透射电子显微镜中,对芯片电容极板施加频率可控的交流电,实现一维纳米材料在交流电场中的高频振动。一维纳米材料在平行单向电场中会受力发生偏转,在极板之间形成的交流电场会使置于其中的一维纳米材料随着电场方向的变化改变其受力方向,从而实现一维纳米材料的高频率振动,振动频率与所施加的交流电频率相同。本发明基于上述的理论基础,能够获得对一维纳米材料高周期高频次应力、应变的条件,根据振动频率计算其疲劳性能。更重要的是可以在透射电子显微镜中原位的观察一维纳米材料原子尺度微观组织和结构的疲劳响应,获得其疲劳性能与微观结构的相关性。
1.一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置,其特征在于:包括芯片部分,支撑部分和操控电路组成;芯片部分包括P型SOI硅片、绝缘层、导线、极板和观察窗口;支撑部分为可以安装在透射电子显微镜样品杆前段的载台,用于承载芯片部分和连接排线;操控电路包括由透射电子显微镜样品杆引出的连接线和外接电源。
2.进一步,P型SOI硅片包含三层:表面的硅器件层、中层的埋氧层和底层的硅衬底层;硅器件层厚度范围10μm~100μm;埋氧层厚度范围100nm~1000nm;硅衬底厚度200μm~1000μm。
3.进一步,绝缘层为采用热氧工艺在SOI硅片上层的硅器件层表面形成100nm~1000nm厚的二氧化硅绝缘层。
4.进一步,导线为金属在绝缘层表面溅射并且光刻剥离形成的导线。
5.进一步,芯片极板,由金属在绝缘层表面溅射而成;为厚度范围2μm~10μm,并且光刻剥离至最小线宽范围10μm~100μm的极板。
6.进一步,芯片观察窗口为穿透SOI硅片厚度方向的矩形通孔,长边尺寸与芯片极板的长度相等,宽度范围5μm~100μm。
7.进一步,连接排线包括与芯片相连的外接排线以及与透射电镜样品杆连接的排线。
8.进一步,待测材料为纳米线、纳米柱、纳米管;其材质为金属或半导体,直径范围10nm~200nm,长度范围10μm~100μm。
9.应用所述装置的方法,其特征在于,采用聚焦离子束显微镜搭载待测材料;转移过程中禁止使用离子束观察样品,防止待测材料损伤;
搭载待测样品后,在透射电子显微镜中进行原位实验,使用外接电源施加所需电压的波形、电压和频率,并原位观察样品在疲劳作用下的微观组织演变。
为了实现上述目的,本发明通过如下的技术方案来实现:
一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置及方法,其特征在于它包括芯片部分,支撑部分和电路部分。芯片部分采用材料为P型SOI硅片,表面器件层厚度10μm~100μm,埋氧层厚度为1μm~10μm的氧化硅,衬底厚度为200μm~1000μm。首先在硅片表面器件层上进行热氧处理,形成一层二氧化硅的表面绝缘层。在硅片背面中心位置蚀刻出边长为500μm的正方形观察窗口,蚀刻厚度为所选用SOI硅片衬底层的厚度,保留器件层和埋氧层。随后在硅片正面溅射20nm~200nm厚的金,并进行光刻图形化,使金形成导线。在制备极板的过程中,极板需要足够的厚度来形成平行电场,为疲劳实验提供驱动力。因此反复多次溅射金属铝,最终溅射厚度为2μm~10μm,并进行光刻图形化,使铝形成极板。最后在硅片正面中心位置光刻出30μm×100μm的窗口,穿透器件层和埋氧层,窗口边缘用于搭载放置一维纳米材料。采用激光划片将硅片切割成3nm×3nm的正方形芯片,搭载在可以安装在透射电子显微镜样品杆的支撑部分上,并将芯片导线和外接排线相连接。采用聚焦离子束技术,选取直径范围50nm~1000nm,长度范围10μm~80μm的单根一维纳米材料,提取并粘接一端在芯片窗口的短边,形成平行于极板中的悬臂梁结构。使用波形发生器作为电源,可以为装置中的极板施加频率可控的交流电,实现一维纳米材料的高频振动,进行疲劳实验的同时原位观察实验材料的组织结构演变。
采用上述原位疲劳测试装置的方法,其特征在于,包括以下步骤:
(1)实验测试的一维纳米材料首先需要清洗分散,选用不与材料反映的有机溶剂和纯水反复清洗待测材料,一方面稀释一维纳米材料溶液的浓度,另一方面去除材料表面的有机成分。然后把含有待测材料的溶液滴在铜网上,等待溶剂蒸发,使待测材料保留在铜网上。
(2)使用双束显微镜中的电子束,选择铜网上尺寸形态符合的待测材料,从铜网中提取出来。提取材料时应尽量避免离子束观察。
(3)将待测材料转移到本装置窗口正中间,一端焊接在观察窗口上,另一端为自由端,使待测材料形成悬臂梁结构。同时待测材料要平行于极板并与两个极板的距离相等。
(4)将搭载材料后的实验装置安装在透射电子显微镜的样品杆上,插入透射电镜中。通过透射电镜观察窗找到样品后连接电路。使芯片上两个极板分别与波形发生器正负极相连。
(5)由于测试的材料物理性质不同,在开始疲劳实验之前需确定所施加的电压和频率。首先给两个极板施加单向电势,电势从小到大逐渐尝试,同时观察电镜中样品的偏转情况,电压范围在1mV~10V。在波形发生器中设定交流电的频率频率范围1Hz~1mHz。
(6)在待测样品疲劳测试的过程中,使用透射电镜中的高速摄像机拍摄待测样品的振动情况,其最大振幅即为疲劳实验的应变量。
(7)根据实验要求,经过足够的疲劳周期后,关闭电源,使用透射电镜拍摄待测的组织结构演化。反复上述疲劳实验和微观组织观察,完成实验。
发明优点
(1)本实验方法解决了传统的机械装置极难对小尺寸一维纳米材料进行力学疲劳测试的难题,发展了一种可以实现对一维纳米材料进行力学疲劳性能测试的方法;
(2)本发明突破传统方法只能后位观察测试样品微观结构的局限性,可以同时实现一维纳米线疲劳性能测量和原子层次微观结构原位观察;
(3)本实验方法利用电场,可实现一维纳米材料在高周期高频次环境下的疲劳性能测量,可以弥补之前的机械装置的不足;
(4)本实验方法具有普适性,可以用于任何种类小尺寸一维纳米材料疲劳性能的测试,可以根据需要控制实验材料的尺寸和形态。包括金属、半导体、纳米线、纳米柱、纳米管等;
(5)本实验装置可以反复使用,每次实验前将上一次实验的样品用使用FIB去除即可。
附图说明
图1原位疲劳实验装置电路示意图
图2原位疲劳实验装置芯片平面图
图3待测材料FIB搭接图
注:1、极板;2、导线;3、待测材料;4、电压频率可控的交变电源。
具体实施方式
结合下列附图,对本方法的具体实施方式进行说明:
选用规格为50-0.5-300μm的SOI硅片,热氧处理在表面形成200nm的SiO2氧化层,保护正面漂去硅片背面氧化层。在硅片正面溅射Cr/Au厚度为20nm/200nm,Al厚度2μm,光刻Au和Al剥离图形化,形成芯片的导线和极板。硅片正面使用干法刻蚀50μm,穿透硅片器件层。硅片背面湿法刻蚀350μm,形成搭载样品的窗口。最后激光划片,制备出3mm×3mm的单个芯片,芯片结构如图1所示,粘接在透射电镜样品杆原位载台上,并将导线和外接排线焊接起来。合成Ag纳米线,并使用酒精和醋酸离心分离,超声清洗。使用去离子水稀释Ag纳米线溶液,滴在铜网上并风干。在双束显微镜中,使用5kV/0.34nA的电子束束流,选取一根Φ100nm×30μm的Ag纳米线,使用钨针转移到本发明装置上,如图3所示。将本装置安装在透射电镜样品杆前段,装入电镜,将引出的排线与波形发生器相连,结构如图2所示。使用电压为300mV的交流电,进行不同频率的疲劳测试,并使用透射电镜原位观察其在疲劳作用下的微观组织演变。

Claims (9)

1.一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置,其特征在于:包括芯片部分,支撑部分和操控电路组成;芯片部分包括P型SOI硅片、绝缘层、导线、极板和观察窗口;支撑部分为可以安装在透射电子显微镜样品杆前段的载台,用于承载芯片部分和连接排线;操控电路包括由透射电子显微镜样品杆引出的连接线和外接电源。
2.根据权利要求1所述的装置,其特征在于:P型SOI硅片包含三层:表面的硅器件层、中层的埋氧层和底层的硅衬底层;硅器件层厚度范围10μm~100μm;埋氧层厚度范围100nm~1000nm;硅衬底厚度200μm~1000μm。
3.根据权利要求1所述的装置,其特征在于:绝缘层为采用热氧工艺在SOI硅片上层的硅器件层表面形成100nm~1000nm厚的二氧化硅绝缘层。
4.根据权利要求1所述的装置,其特征在于:导线为金属在绝缘层表面溅射并且光刻剥离形成的导线。
5.根据权利要求1所述的装置,其特征在于:芯片极板,由金属在绝缘层表面溅射而成;为厚度范围2μm~10μm,并且光刻剥离至最小线宽范围10μm~100μm的极板。
6.根据权利要求1所述的装置,其特征在于:芯片观察窗口为穿透SOI硅片厚度方向的矩形通孔,长边尺寸与芯片极板的长度相等,宽度范围5μm~100μm。
7.根据权利要求1所述的装置,其特征在于:连接排线包括与芯片相连的外接排线以及与透射电镜样品杆连接的排线。
8.根据权利要求1所述的装置,其特征在于:待测材料为纳米线、纳米柱、纳米管;其材质为金属或半导体,直径范围10nm~200nm,长度范围10μm~100μm。
9.应用权利要求1所述装置的方法,其特征在于,采用聚焦离子束显微镜搭载待测材料;转移过程中禁止使用离子束观察样品,防止待测材料损伤;
搭载待测样品后,在透射电子显微镜中进行原位实验,使用外接电源施加所需电压的波形、电压和频率,并原位观察样品在疲劳作用下的微观组织演变。
CN202210898463.9A 2022-07-28 2022-07-28 一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置及方法 Pending CN115356221A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210898463.9A CN115356221A (zh) 2022-07-28 2022-07-28 一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置及方法
US17/990,962 US20240035988A1 (en) 2022-07-28 2022-11-21 Device and method for measuring correlation between fatigue performance and microstructure of one-dimensional (1d) nanomaterial in situ in transmission electron microscope (tem)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210898463.9A CN115356221A (zh) 2022-07-28 2022-07-28 一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置及方法

Publications (1)

Publication Number Publication Date
CN115356221A true CN115356221A (zh) 2022-11-18

Family

ID=84032792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210898463.9A Pending CN115356221A (zh) 2022-07-28 2022-07-28 一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置及方法

Country Status (2)

Country Link
US (1) US20240035988A1 (zh)
CN (1) CN115356221A (zh)

Also Published As

Publication number Publication date
US20240035988A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
Zhang et al. Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device
US8069733B2 (en) Device and method for measuring electromechanical properties and microstructure of nano-materials under stress state
CN108535296B (zh) 一维材料透射电镜力-电耦合原位测试方法
EP1797393A2 (en) Sensors for electrochemical, electrical or topographical analysis
Nabar et al. Piezoelectric ZnO nanorod carpet as a NEMS vibrational energy harvester
Mukhiya et al. Fabrication of capacitive micromachined ultrasonic transducer arrays with isolation trenches using anodic wafer bonding
Wang et al. Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis
CN115356221A (zh) 一种透射电镜中原位测量一维纳米材料疲劳性能与微观结构相关性的装置及方法
Christian et al. Piezo-force and vibration analysis of ZnO nanowire arrays for sensor application
CN210534032U (zh) 一种电子显微镜原位力学性能测试芯片
CN110407154B (zh) Mems微执行器、原位单轴拉伸器件及其制作方法
CN113237733B (zh) 一种原位力热电多场耦合测试芯片及其制备方法
CN202134501U (zh) 透射电镜用双轴倾转的原位力、电性能综合测试样品杆
Nafari et al. MEMS sensor for in situ TEM-nanoindentation with simultaneous force and current measurements
US11112427B2 (en) Method and tip substrate for scanning probe microscopy
Wang et al. Development of a thermoelectric nanowire characterization platform (TNCP) for structural and thermoelectric investigation of single nanowires
CN113218982A (zh) 一种原位力学测试芯片及其制备方法
Huang et al. An integrated MEMS device for in-situ four-probe electro-mechanical characterization of PT nanobeam
Huang et al. Real-time Quantitative Electro-mechanical Characterization of Nanomaterials Based on Integrated MEMS Device
JP3240309B2 (ja) 原子間力顕微鏡用プローバ及び原子間力顕微鏡
Ju et al. Fabrication of a microscopic four-point probe and its application to local conductivity measurement
Wang et al. In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip
CN112305001B (zh) 一种扫描电镜半导体纳米线光机电耦合特性原位表征方法
Zhao et al. Single-molecule Electrical Characterization On A Controllable-break-junction Chip through Electrostatic Microactuators
JP4332624B2 (ja) カーボンナノチューブの付着方法および付着装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination