CN115341167A - 一种纳米孪晶ZrN扩散屏蔽层及其制备方法 - Google Patents

一种纳米孪晶ZrN扩散屏蔽层及其制备方法 Download PDF

Info

Publication number
CN115341167A
CN115341167A CN202211035260.3A CN202211035260A CN115341167A CN 115341167 A CN115341167 A CN 115341167A CN 202211035260 A CN202211035260 A CN 202211035260A CN 115341167 A CN115341167 A CN 115341167A
Authority
CN
China
Prior art keywords
zrn
shielding layer
sample
diffusion shielding
twin crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211035260.3A
Other languages
English (en)
Other versions
CN115341167B (zh
Inventor
刘俊凯
杨丽
周益春
程春玉
曹可
李聪
孙宇
李桂芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202211035260.3A priority Critical patent/CN115341167B/zh
Publication of CN115341167A publication Critical patent/CN115341167A/zh
Application granted granted Critical
Publication of CN115341167B publication Critical patent/CN115341167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

一种纳米孪晶ZrN扩散屏蔽层及其制备方法,纳米孪晶ZrN扩散屏蔽层包括锆合金基体表面设有的纳米孪晶ZrN扩散屏蔽层,纳米孪晶ZrN扩散屏蔽层外侧设有Cr金属涂层;制备方法是先对锆合金基体表面进行预处理,使得样品表面呈镜面且光洁;然后将预处理后的锆合金基体材料在氮气中进行表面激光喷丸处理,激光处理后样品在氮气中冷却,生成纳米孪晶ZrN扩散屏蔽层;最后在ZrN扩散屏蔽层外侧喷涂Cr金属涂层,最终得到锆合金基体外依次设有纳米孪晶ZrN扩散屏蔽层、Cr金属涂层;本发明扩散屏蔽效果好,制备温度低,制备成本低,制备效率高。

Description

一种纳米孪晶ZrN扩散屏蔽层及其制备方法
技术领域
本发明涉及锆合金表面铬金属涂层与锆合金基体结合技术领域,具体涉及一种纳米孪晶ZrN扩散屏蔽层及其制备方法。
背景技术
在核电站事故中,由于作为核电厂反应堆内燃料包壳的锆合金材料与事故环境中的水蒸气发生剧烈反应产生大量的氢气和热量,导致反应堆发生氢爆,对社会和环境造成严重影响。为了解决在事故工况下锆合金燃料包壳与水蒸气剧烈反应的问题,提出了事故容错燃料的概念,旨在提高反应堆燃料耐事故能力以及提高燃料在反应堆正常运行工况下的性能。在诸多事故容错燃料选型中,在锆合金表面喷涂保护性的Cr涂层由于低研发成本以及Cr涂层自身的优势如抗氧化腐蚀性能、良好的高温力学性能、耐辐照性能、低成本等,被广泛认为是最具有实现工业化应用前景的事故容错燃料类型。
然而,Cr涂层锆合金目前存在的最大的问题就是外侧Cr涂层与锆合金基体之间的元素互扩散行为。一方面,基体中的Zr会向Cr涂层中扩散,并在Cr涂层的晶界上生成具有氧扩散路径作用的ZrO2晶粒,这些ZrO2会加剧涂层的氧化;另一方面,涂层中的Cr会向锆合金基体中扩散,这些Cr在基体中会生成脆性的ZrCr2相,严重影响锆合金基体的力学性能,并可能导致锆合金基体的力学失效。这种涂层-基体间的元素互扩散行为不仅会发生在事故工况下(温度高于1000℃),而且在反应堆正常运行工况下(温度低于400℃)也会发生,并严重影响锆合金包壳管的力学性能。所以解决Cr涂层与锆合金基体之间的元素互扩散行为已经成为一个关键的问题,影响着Cr涂层锆合金的工业化应用进程。
针对这一问题,通过在Cr涂层及锆合金基体之间添加扩散屏蔽层来解决涂层与基体之间的元素互扩散问题。目前所用的扩散屏蔽层材料主要包括两种类型,即金属和陶瓷材料。其中金属扩散屏蔽层材料主要包含Mo和Ta等;陶瓷扩散屏蔽层材料主要包含Cr2O3、Y2O3、CrN、ZrN等。目前所报道的金属或陶瓷扩散屏蔽层的技术,扩散屏蔽效果均欠佳。现有的技术在Cr涂层和锆合金基体之间制备的金属扩散屏蔽层均不能有效抑制涂层与基体之间的元素互扩散行为,如Mo扩散屏蔽层,在高温下会与锆合金基体之间发生元素互扩散,影响扩散屏蔽层的结构完整性(Michau A,Ougier M,Maskrot H,et al.Interlayers forCr-coated nuclear fuel claddings[C].NuMat 2020-The Nuclear MaterialsConference,Seattle,USA,2020.)。现有公开的陶瓷扩散屏蔽层材料如CrN(Sidelev DV,Syrtanov MS,Ruchkin SE,et al.Protection of Zr alloyunder high-temperature airoxidation:a multilayer coating approach[J].Coatings,2021,11(2):227.)由于与外侧涂层及内侧基体间热膨胀系数差异较大,会导致扩散屏蔽层的结合性非常差,且易受到热应力的影响。
具有纳米孪晶结构的ZrN一方面作为陶瓷能够有效抑制涂层与基体间的元素互扩散行为,另一方面ZrN内的纳米孪晶结构能够有效起到增韧效果,提高涂层和基体间的结合强度,是一种理想的扩散屏蔽层材料。目前关于在锆合金表面的ZrN扩散屏蔽层(崔严光,李崇,卢俊强,et al.一种用于锆合金包壳管外表面的涂层及制作方法[Z]),使用的制备方法是对锆合金基体进行氮化,该方法中并未对氮化的主要技术参数加以说明,也未对氮化后的锆合金基体进行特殊处理以生成纳米孪晶结构,这意味着制备出的ZrN涂层不具备纳米孪晶增韧的效果。关于ZrN涂层在其他领域的制备工艺,目前还有电弧离子镀(Lei Z,ZhangQ,Zhu X,et al.Corrosion performance of ZrN/ZrO2 multilayer coatings depositedon 304stainless steel using multi-arc ion plating[J].Applied Surface Science,2018,431:170-176.)和磁控溅射(Lamni R,Martinez E,Springer S G,et al.Opticaland electronic properties of magnetron sputtered ZrNx thin films[J].ThinSolid Films,2004,447:316-321.)等方法,这些方法均可以直接在锆合金表面沉积ZrN涂层,沉积所得的ZrN涂层结构致密,厚度均匀,且厚度可控,但沉积所得ZrN与锆合金基体之间的结合性较差,且制备成本高,最重要的是,沉积所得到的ZrN不具备纳米孪晶结构。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供了一种纳米孪晶ZrN扩散屏蔽层及其制备方法,扩散屏蔽效果好,制备温度低,制备成本低,制备效率高。
为了达到上述目的,本发明采取的技术方案为:
一种纳米孪晶ZrN扩散屏蔽层,包括锆合金基体表面设有的纳米孪晶ZrN扩散屏蔽层,纳米孪晶ZrN扩散屏蔽层外侧设有Cr金属涂层。
一种纳米孪晶ZrN扩散屏蔽层的制备方法,包括以下步骤:
第一步,对锆合金基体的样品表面进行预处理,使得样品表面呈镜面且光洁;
第二步,将预处理后的样品在氮气环境中进行激光表面喷丸处理以生成ZrN扩散屏蔽层;
第三步,将激光表面喷丸处理后的样品冷却至室温,得到锆合金表面纳米孪晶ZrN扩散屏蔽层;
在激光处理过程中,生成的ZrN会受到激光的冲击作用,在冲击应力的作用下ZrN内会生成纳米孪晶结构,此外在激光表面喷丸处理后,样品表面温度迅速从高温降低到室温,在该过程中的热应力作用也有利于ZrN内纳米孪晶结构的生成,最终生成纳米孪晶ZrN扩散屏蔽层;
第四步,在样品纳米孪晶ZrN扩散屏蔽层外侧喷涂Cr金属涂层,最终得到锆合金基体外依次设有纳米孪晶ZrN扩散屏蔽层、Cr金属涂层。
所述的第一步预处理包括打磨、抛光以及超声清洗。
所述的第二步激光表面喷丸处理参数为:将样品夹持在样品架上,启动脉冲激光器,加载电压,激光能量50-600mJ,波长为532nm,重复频率10Hz,脉冲宽度8nm,扫描速度0.1-5mm/s,光斑直径0.5-4mm,所用气氛为纯氮气或氮气+惰性气体。
所述的第三步冷却环境为纯氮气或氮气+惰性气体。
所述的第四步喷涂方法包括磁控溅射、电弧离子镀、冷喷涂等;Cr金属涂层厚度为5-15μm。
本发明的有益效果为:
1、本发明采用氮气环境下激光表面喷丸方法制备的ZrN扩散屏蔽层与锆合金基体间结合性好,且制备所得ZrN层结构致密;由于激光表面处理会将锆合金基体的晶粒纳米化,提高了氮元素的扩散速率,所以该方法氮化效率高,制备成本低。
2、本发明制备ZrN扩散屏蔽层相对于其他金属扩散屏蔽层材料不易发生扩散和氧化,具有更优异的扩散屏蔽效果。
3、本发明制备过程中仅在样品最外表面产生高温,而内侧的温度低,不会影响锆合金基体的微观结构及力学性能。
4、本发明制备过程中ZrN扩散屏蔽层在热应力及激光冲击的作用下生成纳米孪晶结构,相对于普通的ZrN涂层及其他类型的陶瓷扩散屏蔽层具有更优异的韧性,能够提高ZrN层与外侧Cr涂层及内侧基体间的结合力,能够抵抗热应力的作用。
附图说明
图1为本发明纳米孪晶ZrN扩散屏蔽层示意图。
图2为本发明纳米孪晶ZrN扩散屏蔽层制备过程示意图。
图3为本发明实施例1中制备所得纳米孪晶ZrN扩散屏蔽层+Cr涂层的扫描电子显微镜组织结构图。
图4为本发明实施例1中制备所得纳米孪晶ZrN扩散屏蔽层的透射电子显微镜组织结构图。
具体实施方式
下面结合附图和实施例对本发明做详细描述。
如图1所示,一种纳米孪晶ZrN扩散屏蔽层,包括锆合金基体表面设有的纳米孪晶ZrN扩散屏蔽层,纳米孪晶ZrN扩散屏蔽层外侧设有Cr金属涂层。
实施例1,一种纳米孪晶ZrN扩散屏蔽层的制备方法,包括以下步骤:
第一步,对锆合金基体的样品表面进行预处理,预处理包括打磨、抛光以及超声清洗,使得样品表面呈镜面且光洁;
第二步,如图2所示,将预处理后的样品在氮气环境中进行激光表面喷丸处理以生成ZrN扩散屏蔽层,将样品夹持在样品架上,启动脉冲激光器,加载电压,脉冲激光经透镜对样品表面喷丸处理;激光能量600mJ,波长为532nm,重复频率10Hz,脉冲宽度8nm,扫描速度5mm/s,光斑直径4mm,所用气氛为纯氮气;
第三步,将激光表面喷丸处理后的样品冷却至室温,得到锆合金表面纳米孪晶ZrN扩散屏蔽层;
由于在第二步激光处理过程中,生成的ZrN会受到激光的冲击作用,在冲击应力的作用下ZrN内会生成纳米孪晶结构;此外在第三步激光表面喷丸处理后,样品表面温度迅速从高温降低到室温,在该过程中的热应力作用也有利于ZrN内纳米孪晶结构的生成,最终生成纳米孪晶ZrN扩散屏蔽层;
第四步,在样品纳米孪晶ZrN扩散屏蔽层外侧喷涂Cr金属涂层,喷涂方法为磁控溅射,Cr金属涂层厚度为10μm;最终得到锆合金基体外依次设有纳米孪晶ZrN扩散屏蔽层、Cr金属涂层,如图1所示。
本实施例的有益效果为:利用扫描电子显微镜对制备所得纳米孪晶ZrN扩散屏蔽层进行微观结构研究,测试结果如图3所示,该纳米孪晶ZrN扩散屏蔽层厚度均匀,结构致密,与锆合金基体结合紧密;利用透射电子显微镜对制备所得纳米孪晶ZrN扩散屏蔽层进行微观结构研究,测试结果如图4所示,根据透射电镜明场像(a)、暗场像(b)和(c)以及选区电子衍射图谱(d)的结果可知,该纳米孪晶ZrN扩散屏蔽层呈明显的纳米孪晶结构;对制备所得Cr-ZrN-锆合金基体体系在1200℃的水蒸气环境中保温2h,结果显示Cr金属涂层中未出现ZrO2颗粒,且在锆合金基体中未发现Cr,这证明纳米孪晶ZrN扩散屏蔽层能有效屏蔽Cr金属涂层与锆合金基体间的元素互扩散行为。
实施例2,将实施例1第二步中所用气氛改为氮气+惰性气体,激光能量改为350mJ,扫描速度改为3mm/s,光斑直径改为2.5mm;第四步喷涂方法改为电弧离子镀,Cr金属涂层厚度为5μm。
本实施例的有益效果为:利用扫描电子显微镜对制备所得纳米孪晶ZrN扩散屏蔽层微观结构研究,测试结果表明该纳米孪晶ZrN扩散屏蔽层厚度均匀,结构致密,与锆合金基体结合紧密;利用透射电子显微镜对制备所得纳米孪晶ZrN扩散屏蔽层进行微观结构研究,测试结果表明该纳米孪晶ZrN扩散屏蔽层呈明显的纳米孪晶结构,对制备所得Cr-ZrN-锆合金基体体系在1200℃的水蒸气环境中保温2h,结果显示Cr金属涂层中未出现ZrO2颗粒,且在锆合金基体中未发现Cr,这证明纳米孪晶ZrN扩散屏蔽层能有效屏蔽Cr金属涂层与锆合金基体间的元素互扩散行为。
实施例3,将实施例1第二步中所用气氛改为氮气+惰性气体,激光能量改为50mJ,扫描速度改为0.1mm/s,光斑直径改为0.5mm;第四步喷涂方法改为电弧离子镀,Cr金属涂层厚度为15μm。
本实施例的有益效果为:利用扫描电子显微镜对制备所得纳米孪晶ZrN扩散屏蔽层进行微观结构研究,测试结果表明该纳米孪晶ZrN扩散屏蔽层厚度均匀,结构致密,与锆合金基体结合紧密;利用透射电子显微镜对制备所得纳米孪晶ZrN扩散屏蔽层进行微观结构研究,测试结果表明该纳米孪晶ZrN扩散屏蔽层呈明显的纳米孪晶结构。对制备所得Cr-ZrN-锆合金基体体系在1200℃的水蒸气环境中保温2h,结果显示Cr金属涂层中未出现ZrO2颗粒,且在锆合金基体中未发现Cr,这证明纳米孪晶ZrN扩散屏蔽层能有效屏蔽Cr金属涂层与锆合金基体间的元素互扩散行为。

Claims (8)

1.一种纳米孪晶ZrN扩散屏蔽层,其特征在于:包括锆合金基体表面设有的纳米孪晶ZrN扩散屏蔽层,纳米孪晶ZrN扩散屏蔽层外侧设有Cr金属涂层。
2.根据权利要求1所述的一种纳米孪晶ZrN扩散屏蔽层的制备方法,其特征在于,包括以下步骤:
第一步,对锆合金基体的样品表面进行预处理,使得样品表面呈镜面且光洁;
第二步,将预处理后的样品在氮气环境中进行激光表面喷丸处理以生成ZrN扩散屏蔽层;
第三步,将激光表面喷丸处理后的样品冷却至室温,得到锆合金表面纳米孪晶ZrN扩散屏蔽层;
第四步,在样品纳米孪晶ZrN扩散屏蔽层外侧喷涂Cr金属涂层,最终得到锆合金基体外依次设有纳米孪晶ZrN扩散屏蔽层、Cr金属涂层。
3.根据权利要求2所述的方法,其特征在于:在第二步激光处理过程中,生成的ZrN会受到激光的冲击作用,在冲击应力的作用下ZrN内会生成纳米孪晶结构;此外在第三步激光表面喷丸处理后,样品表面温度从高温降低到室温,在该过程中的热应力作用也有利于ZrN内纳米孪晶结构的生成,最终生成纳米孪晶ZrN扩散屏蔽层。
4.根据权利要求2所述的方法,其特征在于:所述的第一步预处理包括打磨、抛光以及超声清洗。
5.根据权利要求2所述的方法,其特征在于:所述的第二步激光表面喷丸处理参数为:将样品夹持在样品架上,启动脉冲激光器,加载电压,激光能量50-600mJ,波长为532nm,重复频率10Hz,脉冲宽度8nm,扫描速度0.1-5mm/s,光斑直径0.5-4mm,所用气氛为纯氮气或氮气+惰性气体。
6.根据权利要求2所述的方法,其特征在于:所述的第三步冷却环境为纯氮气或氮气+惰性气体。
7.根据权利要求2所述的方法,其特征在于:所述的第四步喷涂方法包括磁控溅射、电弧离子镀、冷喷涂等;Cr金属涂层厚度为5-15μm。
8.根据权利要求2所述的方法,其特征在于,包括以下步骤:
第一步,对锆合金基体的样品表面进行预处理,预处理包括打磨、抛光以及超声清洗,使得样品表面呈镜面且光洁;
第二步,将预处理后的样品在氮气环境中进行激光表面喷丸处理以生成ZrN扩散屏蔽层,将样品夹持在样品架上,启动脉冲激光器,加载电压,脉冲激光经透镜对样品表面喷丸处理;激光能量600mJ,波长为532nm,重复频率10Hz,脉冲宽度8nm,扫描速度5mm/s,光斑直径4mm,所用气氛为纯氮气;
第三步,将激光表面喷丸处理后的样品冷却至室温,得到锆合金表面纳米孪晶ZrN扩散屏蔽层;
由于在第二步激光处理过程中,生成的ZrN会受到激光的冲击作用,在冲击应力的作用下ZrN内会生成纳米孪晶结构;此外在第三步激光表面喷丸处理后,样品表面温度迅速从高温降低到室温,在该过程中的热应力作用也有利于ZrN内纳米孪晶结构的生成,最终生成纳米孪晶ZrN扩散屏蔽层;
第四步,在样品纳米孪晶ZrN扩散屏蔽层外侧喷涂Cr金属涂层,喷涂方法为磁控溅射,Cr金属涂层厚度为10μm;最终得到锆合金基体外依次设有纳米孪晶ZrN扩散屏蔽层、Cr金属涂层。
CN202211035260.3A 2022-08-26 2022-08-26 一种纳米孪晶ZrN扩散屏蔽层及其制备方法 Active CN115341167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211035260.3A CN115341167B (zh) 2022-08-26 2022-08-26 一种纳米孪晶ZrN扩散屏蔽层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211035260.3A CN115341167B (zh) 2022-08-26 2022-08-26 一种纳米孪晶ZrN扩散屏蔽层及其制备方法

Publications (2)

Publication Number Publication Date
CN115341167A true CN115341167A (zh) 2022-11-15
CN115341167B CN115341167B (zh) 2024-01-16

Family

ID=83953030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211035260.3A Active CN115341167B (zh) 2022-08-26 2022-08-26 一种纳米孪晶ZrN扩散屏蔽层及其制备方法

Country Status (1)

Country Link
CN (1) CN115341167B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117283004A (zh) * 2023-11-27 2023-12-26 赣州澳克泰工具技术有限公司 一种含孪晶强化的TiBx涂层的刀具及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3112460A1 (de) * 1981-03-28 1982-09-30 Fried. Krupp Gmbh, 4300 Essen "verfahren zur herstellung eines verbundkoerpers sowie nach diesem verfahren hergestellter verbundkoerper"
US4514698A (en) * 1972-09-05 1985-04-30 Trw Inc. Chemical laser pump including cryogenic and condensing means
US20070068605A1 (en) * 2005-09-23 2007-03-29 U.I.T., Llc Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact
CN102676750A (zh) * 2012-05-09 2012-09-19 江苏大学 激光气体氮化与冲击复合改性医用钛合金的方法及装置
US20130180969A1 (en) * 2012-01-18 2013-07-18 Purdue Research Foundation Laser shock peening apparatuses and methods
CN103643243A (zh) * 2013-12-11 2014-03-19 江苏大学 一种金属材料高强韧化表面改性方法
CN113275740A (zh) * 2021-05-24 2021-08-20 吉林大学 激光抛光实现激光氮化锆基非晶合金表面平坦化的方法
CN113293374A (zh) * 2021-05-07 2021-08-24 上海核工程研究设计院有限公司 一种用于锆合金包壳管外表面的涂层及制作方法
CN113901631A (zh) * 2020-07-06 2022-01-07 中国科学院沈阳自动化研究所 一种基于激光能量补偿的斜激光冲击强化工件的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514698A (en) * 1972-09-05 1985-04-30 Trw Inc. Chemical laser pump including cryogenic and condensing means
DE3112460A1 (de) * 1981-03-28 1982-09-30 Fried. Krupp Gmbh, 4300 Essen "verfahren zur herstellung eines verbundkoerpers sowie nach diesem verfahren hergestellter verbundkoerper"
US20070068605A1 (en) * 2005-09-23 2007-03-29 U.I.T., Llc Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact
US20130180969A1 (en) * 2012-01-18 2013-07-18 Purdue Research Foundation Laser shock peening apparatuses and methods
CN102676750A (zh) * 2012-05-09 2012-09-19 江苏大学 激光气体氮化与冲击复合改性医用钛合金的方法及装置
CN103643243A (zh) * 2013-12-11 2014-03-19 江苏大学 一种金属材料高强韧化表面改性方法
CN113901631A (zh) * 2020-07-06 2022-01-07 中国科学院沈阳自动化研究所 一种基于激光能量补偿的斜激光冲击强化工件的方法
CN113293374A (zh) * 2021-05-07 2021-08-24 上海核工程研究设计院有限公司 一种用于锆合金包壳管外表面的涂层及制作方法
CN113275740A (zh) * 2021-05-24 2021-08-20 吉林大学 激光抛光实现激光氮化锆基非晶合金表面平坦化的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117283004A (zh) * 2023-11-27 2023-12-26 赣州澳克泰工具技术有限公司 一种含孪晶强化的TiBx涂层的刀具及其制备方法
CN117283004B (zh) * 2023-11-27 2024-02-13 赣州澳克泰工具技术有限公司 一种含孪晶强化的TiBx涂层的刀具及其制备方法

Also Published As

Publication number Publication date
CN115341167B (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
Park et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings
Ko et al. Review of manufacturing technologies for coated accident tolerant fuel cladding
CN109666911B (zh) 核用锆合金包壳表面耐高温腐蚀的高熵合金涂层及其制备方法
EP0192880B1 (en) Process of coating alloy substrates
CN109207953B (zh) 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺
CN109852943B (zh) 核用锆合金表面CrN涂层的制备方法及产品
CN111041436B (zh) 一种用于锆合金防护的Fe-Cr-Al-Y防护涂层及其制备方法和应用
JP3865705B2 (ja) 耐食性および耐熱性に優れる熱遮蔽皮膜被覆材並びにその製造方法
CN115341167B (zh) 一种纳米孪晶ZrN扩散屏蔽层及其制备方法
US7229675B1 (en) Protective coating method for pieces made of heat resistant alloys
CN103042759A (zh) 一种沉淀硬化不锈钢表面的类三明治结构强化涂层
Bahamirian et al. Thermal durability of YSZ/nanostructured Gd2Zr2O7 TBC undergoing thermal cycling
CN108330452A (zh) Max相涂层的制备方法
CN111074271B (zh) 一种在锆合金表面获得高硬度NbTiZrx难熔中熵合金涂层的方法
CN113388811B (zh) 一种事故容错燃料包壳用双层Cr/Cr2AlC涂层及其制备方法
CN113235051B (zh) 一种纳米双相高熵合金薄膜及其制备方法
CN110499494A (zh) 一种以Zr为基底的Cr/Al单层膜及其制备方法
CN111218657A (zh) 一种非晶钨基高熵合金薄膜材料及制备方法
Tang et al. Metallic and ceramic coatings for enhanced accident tolerant fuel cladding
CN114959569A (zh) 一种Cr2AlC扩散阻挡层的制备方法
Pazderová et al. Improvement of steels' corrosion resistance in liquid lead and lead-bismuth by coatings
GB2252981A (en) Diffusion barrier coating for titanium alloys involving alloying
CN111286708B (zh) 一种多层膜防护涂层、制备方法及应用
CN115679263B (zh) 一种核反应堆用耐蚀涂层、包壳材料及其制备方法
CN112853287B (zh) 一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant