CN115338463A - Taper ball end mill and chip dividing groove design method thereof - Google Patents
Taper ball end mill and chip dividing groove design method thereof Download PDFInfo
- Publication number
- CN115338463A CN115338463A CN202210863049.4A CN202210863049A CN115338463A CN 115338463 A CN115338463 A CN 115338463A CN 202210863049 A CN202210863049 A CN 202210863049A CN 115338463 A CN115338463 A CN 115338463A
- Authority
- CN
- China
- Prior art keywords
- chip
- structural parameters
- splitter
- stress
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C5/00—Milling-cutters
- B23C5/02—Milling-cutters characterised by the shape of the cutter
- B23C5/10—Shank-type cutters, i.e. with an integral shaft
- B23C5/1009—Ball nose end mills
- B23C5/1018—Ball nose end mills with permanently fixed cutting inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C2210/00—Details of milling cutters
- B23C2210/40—Flutes, i.e. chip conveying grooves
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Milling Processes (AREA)
Abstract
Description
技术领域technical field
本发明涉及立铣刀技术领域,特别是一种锥度球头立铣刀及其分屑槽的设计方法。The invention relates to the technical field of end mills, in particular to a tapered ball end mill and a design method for chip splitting grooves thereof.
背景技术Background technique
锥度球头立铣刀被广泛应用于航空航天行业的叶轮、叶盘和机匣等关键零部件的加工。 随着国家对于航空航天行业的大力投入,锥度球头立铣刀的市场需求量同业飞速增长。对于 需要大切深加工的零件,会在锥度球头立铣刀上设计分屑槽,以减小切削力和增强排屑能力。 但对于钛合金、高温合金和高强度钢等难加工材料,常规带分屑槽的锥度球头立铣刀存在以 下问题:Tapered ball nose end mills are widely used in the machining of key components such as impellers, blisks and casings in the aerospace industry. With the country's great investment in the aerospace industry, the market demand for tapered ball end mills has grown rapidly in the same industry. For parts that require large depth of cut, a chip splitter is designed on the tapered ball end mill to reduce cutting force and enhance chip removal. However, for difficult-to-machine materials such as titanium alloys, high-temperature alloys, and high-strength steels, conventional tapered ball-end mills with chip dividers have the following problems:
1、由于锥度球头广泛用于曲面仿形铣加工,且由于具有锥度,刀具从底刃沿轴向方向刀 具直径不断变大,常规分屑槽的设计会产生分屑槽后端干涉前端的风险,使刀具产生振动, 降低工件表面质量;1. Since the tapered ball head is widely used in surface profiling milling, and due to the taper, the diameter of the tool from the bottom edge along the axial direction continues to increase. The design of the conventional chip splitter will cause the rear end of the chip splitter to interfere with the front end. risk, causing the tool to vibrate and reducing the surface quality of the workpiece;
2、常规锥度球头立铣刀分屑槽设计为降低切削力和增强排屑能力,其形状设计直接影响 刀具的散热条件和刀具强度,目前仍缺少以刀具功能为导向的分屑槽设计方法。2. Conventional taper ball nose end mills are designed to reduce the cutting force and enhance the chip removal ability. The shape design directly affects the heat dissipation conditions and tool strength of the tool. At present, there is still a lack of tool function-oriented chip divider design method .
发明内容Contents of the invention
本发明的主要目的在于提出一种锥度球头立铣刀及其分屑槽的设计方法,其克服了现有 技术的锥度球头立铣刀分屑槽的设计方法所存在的不足之处,一方面,锥度球头立铣刀的分 屑槽宽度设置为从刃口沿垂直刃口方向不断增大,避免分屑槽后端干涉前端,造成刀具振动; 另一方面,采用正交分析法获得分屑槽结构参数的最佳匹配;基于分屑槽结构参数的最佳匹 配结果,采用单因素分析法获得分屑槽结构参数的公差,使分屑槽对刀具性能提升更显著及 提高球头立铣刀生产效率。The main purpose of the present invention is to propose a kind of taper ball end mill and the design method of chip distribution groove thereof, it has overcome the weak point existing in the design method of the taper ball end mill chip distribution groove of prior art, On the one hand, the width of the chip splitter of the tapered ball-nose end mill is set to increase continuously from the cutting edge along the vertical direction of the cutting edge, so as to avoid the rear end of the chip splitter interfering with the front end and causing tool vibration; on the other hand, the orthogonal analysis method is adopted Obtain the best match of the structural parameters of the chip splitter; based on the best matching result of the structural parameters of the chip splitter, use the single factor analysis method to obtain the tolerance of the structural parameters of the chip splitter, so that the performance of the chip splitter on the tool can be improved more significantly and the ball can be improved. head end mill productivity.
本发明采用如下技术方案:The present invention adopts following technical scheme:
一方面,一种锥度球头立铣刀,包括底刃、周刃和柄部;所述周刃包括容屑槽、第一后 刀面、第二后刀面和分屑槽;所述容屑槽与所述第一后刀面的相交处构成切削刃;所述分屑 槽设置于所述第一后刀面和第二后刀面之间;所述分屑槽的轴对称线垂直于刀具中心线方向, 所述分屑槽的宽度沿分屑槽轴对称线,从所述第一后刀面到第二后刀面方向不断增大,在垂 直于所述第一后刀面的平面内,分屑槽的槽内深度不变。On the one hand, a kind of taper ball nose end mill, comprises bottom cutting edge, peripheral cutting edge and shank; Said peripheral cutting edge comprises flute, first relief surface, second relief surface and chip splitting groove; Said containment The intersection of the chip flute and the first flank constitutes a cutting edge; the chip splitter is arranged between the first flank and the second flank; the axis of symmetry of the chip splitter is vertical In the direction of the center line of the tool, the width of the chip splitting flute increases continuously from the first flank to the second flank along the axial symmetry line of the chip splitting flute, and is perpendicular to the first flank In the plane of , the depth in the groove of the chip splitter remains unchanged.
优选的,所述分屑槽采用如下设计方法:Preferably, the chip splitting groove adopts the following design method:
采用正交分析法和有限元仿真法获得分屑槽结构参数的最佳匹配;Orthogonal analysis method and finite element simulation method are used to obtain the best matching of the structural parameters of the chip splitter;
基于分屑槽结构参数的最佳匹配结果,采用单因素分析法和有限元仿真法获得分屑槽结 构参数的公差。Based on the best matching results of the structural parameters of the chip splitter, the tolerance of the structural parameters of the chip splitter is obtained by single factor analysis and finite element simulation.
优选的,采用正交分析法和有限元仿真法获得分屑槽结构参数的最佳匹配,具体包括:Preferably, orthogonal analysis and finite element simulation are used to obtain the best matching of structural parameters of the chip splitter, specifically including:
根据分屑槽结构参数的个数和参数间的关联情况,采用正交设计表确定试验方案;According to the number of structural parameters of the chip splitter and the relationship between the parameters, the test plan is determined by using an orthogonal design table;
采用有限元仿真方法,将一个完整的分屑槽的芯径/刃径值最小的部分截取作为仿真模型, 根据确定的试验方案进行铣削仿真,以切削刃应力作为判定基准;Using the finite element simulation method, the part with the smallest core diameter/blade diameter of a complete chip splitter is intercepted as the simulation model, and the milling simulation is carried out according to the determined test plan, and the cutting edge stress is used as the judgment standard;
根据正交试验极差分析,确定分屑槽结构参数对切削刃应力的影响程度,找出最显著影 响结构参数,并根据结构参数-应力曲线得到分屑槽结构参数的最佳匹配结果。According to the range analysis of the orthogonal test, the degree of influence of the structural parameters of the chip splitter on the stress of the cutting edge is determined, the most significant influencing structural parameters are found, and the best matching result of the structural parameters of the chip splitter is obtained according to the structural parameter-stress curve.
优选的,所述分屑槽结构参数包括:前端宽度Wmin、后端宽度Wmax、长度L和深度H,所述后端宽度Wmax大于前端宽度Wmin。Preferably, the structural parameters of the chip splitter include: front width W min , rear width W max , length L and depth H, and the rear width W max is greater than the front width W min .
优选的,所述正交分析法采用四因素三水平正交设计表,所述四因素包括前端宽度Wmin、 后端宽度Wmax、长度L和深度H。Preferably, the orthogonal analysis method adopts a four-factor three-level orthogonal design table, and the four factors include the front width W min , the rear width W max , the length L and the depth H.
优选的,前端宽度Wmin、后端宽度Wmax、长度L和深度H的范围如下:0.05mm≤Wmin≤0.2mm,0.1mm≤Wmax≤0.5mm;0.03D≤L≤0.2D,D表示锥度球头铣刀底刃直径;0.2mm ≤H≤1mm。Preferably, the ranges of front-end width W min , rear-end width W max , length L and depth H are as follows: 0.05mm≤Wmin≤0.2mm , 0.1mm≤Wmax≤0.5mm ; 0.03D≤L≤0.2D, D Indicates the diameter of the bottom edge of the tapered ball end mill; 0.2mm ≤ H ≤ 1mm.
优选的,基于分屑槽结构参数的最佳匹配结果,采用单因素分析法和有限元仿真法获得 分屑槽结构参数的公差,包括:Preferably, based on the best matching result of the structural parameters of the chip splitting flute, the tolerance of the structural parameters of the chip splitting flute is obtained by single factor analysis and finite element simulation method, including:
基于分屑槽结构参数的最佳匹配结果,采用单因素分析法,将其中三个参数设为定值, 另一个参数取均分五个值,进行有限元仿真,验证参数应力变化;Based on the best matching results of the structural parameters of the chip splitter, the single factor analysis method is used to set three of the parameters as fixed values, and the other parameter is divided into five values, and the finite element simulation is carried out to verify the parameter stress change;
以参数均分五个值的中值的切削刃应力最大值为基准,确定可接受的应力变化范围,最 终将应力变化范围内的参数取值作为该参数的公差。Based on the maximum value of the cutting edge stress which is the median of the five values of the parameter, determine the acceptable stress variation range, and finally take the parameter value within the stress variation range as the tolerance of the parameter.
另一方面,一种锥度球头立铣刀分屑槽的设计方法,包括:On the other hand, a method for designing a chip splitter of a tapered ball-nose end mill includes:
采用正交分析法和有限元仿真法获得分屑槽结构参数的最佳匹配;Orthogonal analysis method and finite element simulation method are used to obtain the best matching of the structural parameters of the chip splitter;
基于分屑槽结构参数的最佳匹配结果,采用单因素分析法和有限元仿真法获得分屑槽结 构参数的公差。Based on the best matching results of the structural parameters of the chip splitter, the tolerance of the structural parameters of the chip splitter is obtained by single factor analysis and finite element simulation.
优选的,采用正交分析法和有限元仿真法获得分屑槽结构参数的最佳匹配,具体包括:Preferably, orthogonal analysis and finite element simulation are used to obtain the best matching of structural parameters of the chip splitter, specifically including:
根据分屑槽结构参数的个数和参数间的关联情况,采用正交设计表确定试验方案;According to the number of structural parameters of the chip splitter and the relationship between the parameters, the test plan is determined by using an orthogonal design table;
采用有限元仿真方法,将一个完整的分屑槽的芯径/刃径值最小的部分截取作为仿真模型, 根据确定的试验方案进行铣削仿真,以切削刃应力作为判定基准;Using the finite element simulation method, the part with the smallest core diameter/blade diameter of a complete chip splitter is intercepted as the simulation model, and the milling simulation is carried out according to the determined test plan, and the cutting edge stress is used as the judgment standard;
根据正交试验极差分析,确定分屑槽结构参数对切削刃应力的影响程度,找出最显著影 响结构参数,并根据结构参数-应力曲线得到分屑槽结构参数的最佳匹配结果。According to the range analysis of the orthogonal test, the degree of influence of the structural parameters of the chip splitter on the stress of the cutting edge is determined, the most significant influencing structural parameters are found, and the best matching result of the structural parameters of the chip splitter is obtained according to the structural parameter-stress curve.
优选的,基于分屑槽结构参数的最佳匹配结果,采用单因素分析法和有限元仿真法获得 分屑槽结构参数的公差,包括:Preferably, based on the best matching result of the structural parameters of the chip splitting flute, the tolerance of the structural parameters of the chip splitting flute is obtained by single factor analysis and finite element simulation method, including:
基于分屑槽结构参数的最佳匹配结果,采用单因素分析法,将其中三个参数设为定值, 另一个参数取均分五个值,进行有限元仿真,验证参数应力变化;Based on the best matching results of the structural parameters of the chip splitter, the single factor analysis method is used to set three of the parameters as fixed values, and the other parameter is divided into five values, and the finite element simulation is carried out to verify the parameter stress change;
以参数均分五个值的中值的切削刃应力最大值为基准,确定可接受的应力变化范围,最 终将应力变化范围内的参数取值作为该参数的公差。Based on the maximum value of the cutting edge stress which is the median of the five values of the parameter, determine the acceptable stress variation range, and finally take the parameter value within the stress variation range as the tolerance of the parameter.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
(1)本发明的锥度球头立铣刀的分屑槽的宽度从刃口沿垂直刃口方向不断增大,避免 分屑槽后端干涉前端,造成刀具振动;(1) The width of the chip splitter of the tapered ball end mill of the present invention increases continuously from the cutting edge along the direction vertical to the cutting edge, avoiding the interference of the chip splitter rear end with the front end, causing tool vibration;
(2)本发明的分屑槽设计以刀具强度为判定标准,采用正交分析法,并利用仿真分析, 得出分屑槽前端宽度、后端宽度、长度和深度的最佳匹配参数,使分屑槽对刀具性能提升更 显著;(2) The design of the chip splitting flute of the present invention takes the tool strength as the judgment standard, adopts the orthogonal analysis method, and utilizes simulation analysis to obtain the best matching parameters of the front end width, rear end width, length and depth of the chip splitting flute, so that The chip splitter improves the performance of the tool more significantly;
(3)本发明的分屑槽设计以刀具强度为判定标准,采用单因素分析法,并利用仿真分 析,分别得出分屑槽前端宽度、后端宽度、长度和深度的加工公差范围,在保证球头立铣刀 刀具性能稳定的同时,不会精度过剩,以此提高球头立铣刀生产效率,并降低成本。(3) The design of the chip splitting flute of the present invention takes the tool strength as the judgment standard, adopts the single factor analysis method, and utilizes simulation analysis to obtain the processing tolerance range of the front end width, rear end width, length and depth of the chip splitting flute respectively. While ensuring the stable performance of the ball end mill tool, there will be no excess precision, so as to improve the production efficiency of the ball end mill and reduce the cost.
上述说明仅是本发明技术方案的概述,为了能够更清楚地了解本发明的技术手段,从而 可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明 显易懂,以下列举本发明的具体实施方式。The above description is only an overview of the technical solution of the present invention. In order to understand the technical means of the present invention more clearly, it can be implemented according to the contents of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and easy Understand, enumerate the specific embodiment of the present invention below.
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发 明的上述及其他目的、优点和特征。According to the following detailed description of specific embodiments of the present invention in conjunction with the accompanying drawings, those skilled in the art will be more aware of the above and other objects, advantages and features of the present invention.
附图说明Description of drawings
图1为本发明实施例的锥度球头立铣刀的结构示意图;Fig. 1 is the structural representation of the taper ball end mill of the embodiment of the present invention;
图2为本发明实施例的锥度球头立铣刀周刃的结构示意图;Fig. 2 is a schematic structural view of a peripheral edge of a tapered ball end mill according to an embodiment of the present invention;
图3为本发明实施例的锥度球头立铣刀后刀面与分屑槽的结构示意图;Fig. 3 is a schematic structural view of the flank and the chip splitting groove of the tapered ball nose end mill according to the embodiment of the present invention;
图4为本发明实施例的分屑槽公切面结构示意图;Fig. 4 is a schematic diagram of the structure of the common cutting surface of the chip splitter according to the embodiment of the present invention;
图5为本发明实施例的分屑槽的第一后刀面投影示意图;Fig. 5 is a schematic diagram of the first flank projection of the chip splitter according to the embodiment of the present invention;
图6为本发明实施例的分屑槽的C-C剖面示意图;Fig. 6 is a schematic cross-sectional view of C-C of the chip splitter of the embodiment of the present invention;
图7为本发明实施例的锥度球头立铣刀分屑槽的设计方法的流程图;Fig. 7 is a flow chart of the design method of the chip dividing groove of the tapered ball end mill according to the embodiment of the present invention;
图8为本发明实施例的锥度球头立铣刀刃径和芯径示意图;Fig. 8 is a schematic diagram of the blade diameter and core diameter of the tapered ball end mill according to the embodiment of the present invention;
图9为本发明实施例的锥度球头立铣刀的仿真示意图;Fig. 9 is a simulation schematic diagram of a tapered ball end mill according to an embodiment of the present invention;
图10为本发明实施例的锥度球头立铣刀切削应力仿真示意图;Fig. 10 is a schematic diagram of cutting stress simulation of a tapered ball end mill according to an embodiment of the present invention;
图11为本发明实施例的分屑槽的前端宽度Wmin与应力变化关系曲线图;Fig. 11 is a graph showing the relationship between the front width W min of the chip splitter and the stress change in the embodiment of the present invention;
图12为本发明实施例的分屑槽的后端宽度Wmax与应力变化关系曲线图;Fig. 12 is a graph showing the relationship between the width W max of the rear end of the chip splitting flute and the stress change according to the embodiment of the present invention;
图13为本发明实施例的分屑槽的长度L与应力变化关系曲线图;Fig. 13 is a graph showing the relationship between the length L of the chip splitting flute and the stress change in the embodiment of the present invention;
图14为本发明实施例的分屑槽的深度H与应力变化关系曲线图;Fig. 14 is a graph showing the relationship between the depth H of the chip splitter and the stress change in the embodiment of the present invention;
图15为本发明实施例的切削刃最大应力变化曲线图。Fig. 15 is a curve diagram of the maximum stress variation of the cutting edge according to the embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述;显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明 中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention in conjunction with the accompanying drawings in the embodiments of the present invention; obviously, the described embodiments are only part of the embodiments of the present invention, not all embodiments, based on The embodiments of the present invention and all other embodiments obtained by persons of ordinary skill in the art without making creative efforts all belong to the protection scope of the present invention.
在本发明的描述中,需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。In the description of the present invention, it should be noted that the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion, so that a process, method, article or device comprising a series of elements not only includes those elements, but also other elements not expressly listed, or elements inherent in the process, method, article, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
参见图1至图4所示,一种锥度球头立铣刀,包括底刃1、周刃2和柄部3;所述周刃2包括容屑槽4、第一后刀面5、第二后刀面6和分屑槽8;所述容屑槽4与所述第一后刀面5 的相交处构成切削刃7;所述分屑槽8设置于所述第一后刀面5和第二后刀面6之间;所述 分屑槽8的轴对称线垂直于刀具中心线方向,所述分屑槽8的宽度沿分屑槽8轴对称线,从 所述第一后刀面5到第二后刀面6方向不断增大,在垂直于所述第一后刀面5的平面内,分 屑槽8的槽内深度不变。Referring to Figures 1 to 4, a tapered ball end mill includes a
具体的,参见图2所示,分屑槽8结构参数以该分屑槽8前后两段第一后刀面5的公切 面的投影为基准,分屑槽8轴对称线垂直于刀具中心线A-A。当加工过程中,切削刃7磨损时,分屑槽8前端宽度会变大,若采用常规分屑槽8定槽宽设计,分屑槽8后端存在与加工 余量干涉的风险,使刀具产生振动,降低刀具寿命,并降低加工表面质量。Specifically, as shown in Figure 2, the structural parameters of the
因此,分屑槽8的宽度采用变宽度设计,具备自动补偿功能。参见图5和图6所示,分屑槽8的宽度W从刃口沿分屑槽8轴对称线B-B从第一后刀面5到第二后刀面6方向不断增大,令前端宽度为Wmin,后端宽度为Wmax,分屑槽8长度为L。在垂直于第一后刀面5的 平面内,分屑槽8深度为H,槽内深度不变。其中,F1为第一后刀面5的投影宽度,F2为第 二后刀面6的投影宽度。Therefore, the width of the
参见图7所示,进一步的,为了使分屑槽对刀具性能提升更显著,以及保证球头立铣刀 刀具性能稳定的同时,提高球头立铣刀生产效率并降低成本,所述分屑槽采用如下设计方法:As shown in Figure 7, further, in order to improve the performance of the tool by the chip splitter more significantly, and ensure the stability of the tool performance of the ball end mill, improve the production efficiency of the ball end mill and reduce the cost, the chip splitter The groove adopts the following design method:
S701,采用正交分析法和有限元仿真法获得分屑槽结构参数的最佳匹配;S701, using the orthogonal analysis method and the finite element simulation method to obtain the best matching of the structural parameters of the chip splitter;
S702,基于分屑槽结构参数的最佳匹配结果,采用单因素分析法和有限元仿真法获得分 屑槽结构参数的公差。S702. Based on the optimal matching result of the structural parameters of the chip splitter, the tolerance of the structural parameters of the chip splitter is obtained by using the single factor analysis method and the finite element simulation method.
具体的,采用正交分析法和有限元仿真法获得分屑槽结构参数的最佳匹配,具体包括:Specifically, use orthogonal analysis and finite element simulation to obtain the optimal match of the structural parameters of the chip splitter, including:
根据分屑槽结构参数的个数和参数间的关联情况,采用正交设计表确定试验方案;According to the number of structural parameters of the chip splitter and the relationship between the parameters, the test plan is determined by using an orthogonal design table;
采用有限元仿真方法,将一个完整的分屑槽的芯径/刃径值最小的部分截取作为仿真模型, 根据确定的试验方案进行铣削仿真,以切削刃应力作为判定基准;Using the finite element simulation method, the part with the smallest core diameter/blade diameter of a complete chip splitter is intercepted as the simulation model, and the milling simulation is carried out according to the determined test plan, and the cutting edge stress is used as the judgment standard;
根据正交试验极差分析,确定分屑槽结构参数对切削刃应力的影响程度,找出最显著影 响结构参数,并根据结构参数-应力曲线得到分屑槽结构参数的最佳匹配结果。According to the range analysis of the orthogonal test, the degree of influence of the structural parameters of the chip splitter on the stress of the cutting edge is determined, the most significant influencing structural parameters are found, and the best matching result of the structural parameters of the chip splitter is obtained according to the structural parameter-stress curve.
本实施例中,为得到分屑槽的结构参数的最佳匹配,采用正交分析法分析刀具参数改变 对刀具使用寿命的影响。本实施例所述的分屑槽的结构参数包括前端宽度Wmin、后端宽度 Wmax、长度L和深度H四个参数,且为独立变量,因此故采用四因素三水平正交设计表。In this embodiment, in order to obtain the best match of the structural parameters of the chip splitter, the orthogonal analysis method is used to analyze the impact of tool parameter changes on the tool life. The structural parameters of the chip splitter described in this embodiment include four parameters of the front width W min , the rear width W max , the length L and the depth H, and they are independent variables. Therefore, four factors and three levels of orthogonal design tables are used.
根据实际生产需求,预先对前端宽度Wmin、后端宽度Wmax、长度L和深度H的范围进行如下设定:According to the actual production demand, the ranges of the front width W min , the rear width W max , the length L and the depth H are set as follows:
(1)0.05mm≤Wmin≤0.2mm,Wmin<0.05mm时,分屑槽宽度过小,降低断屑效果,易 造成堵屑;Wmin>0.2mm时,分屑槽宽度过大,降低刀具强度,使刀具易产生振动;(1) 0.05mm≤W min ≤0.2mm, when W min <0.05mm, the width of the chip splitter is too small, which reduces the chip breaking effect and easily causes chip blocking; when W min >0.2mm, the width of the chip splitter is too large, Reduce the strength of the tool and make the tool easy to vibrate;
(2)0.1mm≤Wmax≤0.5mm,Wmax<0.1mm时,分屑槽宽度过小,降低断屑效果,易造 成堵屑;Wmax>0.5mm时,分屑槽宽度过大,降低刀具强度,使刀具易产生振动;(2) 0.1mm≤W max ≤0.5mm, when W max <0.1mm, the width of the chip dividing groove is too small, which reduces the chip breaking effect and easily causes chip blocking; when W max >0.5mm, the width of the chip dividing groove is too large, Reduce the strength of the tool and make the tool easy to vibrate;
(3)0.03D≤L≤0.2D,L<0.03D时,第一后刀面或第二后刀面易和分屑槽产生的加工 余量发生干涉;因L不会大于第二后刀面宽度,L>0.2D时,刀具第二后刀面宽度过大,第二后刀面易发生干涉,同时降低刀具容屑槽,不易排屑;参见图8所示,D为锥度球头铣刀 底刃直径;(3) 0.03D≤L≤0.2D, when L<0.03D, the first flank or the second flank is easy to interfere with the machining allowance generated by the chip divider; because L will not be greater than the second flank Face width, when L>0.2D, the width of the second flank of the tool is too large, the second flank is prone to interference, and at the same time the chip pocket of the tool is reduced, and it is not easy to remove chips; see Figure 8, D is a tapered ball head Milling cutter bottom edge diameter;
(4)0.2mm≤H≤1mm,因分屑槽深度需大于刀具最大每齿进给量,H<0.2mm时,刀具最大每齿进给量过小,降低刀具加工效率;H>1mm时,刀具强度过低,易产生振动,降 低刀具寿命。(4) 0.2mm≤H≤1mm, because the depth of the chip splitter needs to be greater than the maximum feed per tooth of the tool, when H<0.2mm, the maximum feed per tooth of the tool is too small, which reduces the processing efficiency of the tool; when H>1mm , The tool strength is too low, it is easy to generate vibration, and the tool life is reduced.
基于结构参数的上述范围,本实施例以硬质合金D10锥度球头铣刀为例,生成正交设计 表,具体如表1所示。利用有限元仿真模拟侧铣试验,以切削刃应力为判定基准,应力越小 刀具强度越高。Based on the above range of structural parameters, this embodiment takes cemented carbide D10 taper ball end milling cutter as an example to generate an orthogonal design table, specifically as shown in Table 1. The side milling test is simulated by finite element simulation, and the stress of the cutting edge is used as the criterion. The smaller the stress, the higher the tool strength.
表1分屑槽结构参数正交设计表Table 1 Orthogonal design table of structure parameters of chip splitter
由于锥度球头铣刀存在锥度角α,锥度球头铣刀的刃径和芯径均非定值,故芯径/刃径在 不断变化。参见图9所示,为降低仿真计算量,取芯径/刃径值最小的部分,同时具有完整的 分屑槽结构。Due to the taper angle α of the tapered ball-end milling cutter, the blade diameter and core diameter of the tapered ball-end milling cutter are not constant, so the core diameter/blade diameter is constantly changing. As shown in Figure 9, in order to reduce the amount of simulation calculation, the part with the smallest core diameter/blade diameter value is selected, and at the same time it has a complete chip splitter structure.
参见图10所示,以该模型进行进行模拟仿真,根据切削刃应力变化,得到结构参数对刀 具强度的显著程度排名顺序,并根据刀具应力数值得到分屑槽结构参数的最佳匹配方案。As shown in Figure 10, the simulation is carried out with this model. According to the stress change of the cutting edge, the ranking order of the significance of the structural parameters to the tool strength is obtained, and the best matching scheme of the structural parameters of the chip breaker is obtained according to the stress value of the tool.
各参数与应力曲线分别如图11、图12、图13和图14所示。The parameters and stress curves are shown in Fig. 11, Fig. 12, Fig. 13 and Fig. 14 respectively.
由图11至图14可知,Wmax对刀具应力影响最显著,即是分屑槽设计最重要的结构参数。 刀具应力随着Wmax增加逐渐变大,但Wmax≥Wmin,Wmin大于0.125mm后对刀具应力影响较小,同时刀具应力同样随着L增加逐渐变大,在H=0.6mm时刀具应力最小。因此,硬质合 金D10锥度球头铣刀分屑槽最佳参数为Wmin=0.125mm,Wmax=0.3mm,L=0.3mm,H=0.6mm。It can be seen from Fig. 11 to Fig. 14 that W max has the most significant influence on tool stress, which is the most important structural parameter for chip splitter design. The tool stress increases gradually with the increase of W max , but W max ≥ W min , and W min greater than 0.125mm has little effect on the tool stress. At the same time, the tool stress also gradually increases with the increase of L. When H=0.6mm, the tool stress Minimal stress. Therefore, the best parameters of chip splitting groove of cemented carbide D10 taper ball end milling cutter are W min = 0.125mm, W max = 0.3mm, L = 0.3mm, H = 0.6mm.
进一步的,基于分屑槽结构参数的最佳匹配结果,采用单因素分析法和有限元仿真法获 得分屑槽结构参数的公差,包括:Further, based on the best matching result of the structural parameters of the chip flute, the tolerance of the structural parameters of the chip flute is obtained by using the single factor analysis method and the finite element simulation method, including:
基于分屑槽结构参数的最佳匹配结果,采用单因素分析法,将其中三个参数设为定值, 另一个参数取均分五个值,进行有限元仿真,验证参数应力变化;Based on the best matching results of the structural parameters of the chip splitter, the single factor analysis method is used to set three of the parameters as fixed values, and the other parameter is divided into five values, and the finite element simulation is carried out to verify the parameter stress change;
以参数均分五个值的中值的切削刃应力最大值为基准,确定可接受的应力变化范围,最 终将应力变化范围内的参数取值作为该参数的公差。Based on the maximum value of the cutting edge stress which is the median of the five values of the parameter, determine the acceptable stress variation range, and finally take the parameter value within the stress variation range as the tolerance of the parameter.
根据硬质合金D10锥度球头铣刀分屑槽参数的最佳匹配结果,为得到前端宽度Wmin、后 端宽度Wmax、长度L和深度H的参数公差,采用单因素分析法,将其中三个参数设为定值, 另一个参数取均分五个值,进行有限元仿真,验证参数应力变化。以参数取值的中值切削刃 应力最大值为基准,并确定可接受的应力变化范围,最终将应力变化范围内的参数取值作为 该参数的公差。According to the best matching result of the parameters of the chip splitting groove of the cemented carbide D10 taper ball end milling cutter, in order to obtain the parameter tolerances of the front width W min , the rear end width W max , the length L and the depth H, a single factor analysis method is adopted, among which Three parameters are set to fixed values, and the other parameter is divided into five values equally, and the finite element simulation is carried out to verify the change of parameter stress. Based on the maximum value of the median cutting edge stress of the parameter value, the acceptable stress variation range is determined, and finally the parameter value within the stress variation range is used as the tolerance of the parameter.
具体的,本实施例以Wmax为例,根据上文分析,Wmax不得小于0.125mm,且Wmax>0.3mm后刀具切削刃应力显著提高,故参数数值选择如表2所示。Specifically, this embodiment takes W max as an example. According to the above analysis, W max should not be less than 0.125 mm, and the stress on the cutting edge of the tool increases significantly after W max >0.3 mm, so the parameter values are selected as shown in Table 2.
表2Wmax公差单因素试验参数取值Table 2 W max tolerance single factor test parameter values
以Wmax=0.25mm时刀具切削刃应力值±0.2%,作为公差取值范围。试验仿真刀具切削刃 最大应力变化如图15所示。When W max =0.25mm, the tool cutting edge stress value ±0.2% is taken as the tolerance value range. The maximum stress change of the cutting edge of the test simulation tool is shown in Fig. 15.
由图15可知,当Wmax<0.15mm时,应力值不会小于210MPa,当Wmax>0.3mm时, 应力值将大于210.84MPa,因此,Wmax的取值为0.13mm-0.3mm。It can be seen from Fig. 15 that when W max <0.15mm, the stress value will not be less than 210MPa, and when W max >0.3mm, the stress value will be greater than 210.84MPa, therefore, the value of W max is 0.13mm-0.3mm.
本实施例仅以后端宽度Wmax为例,确定可接受的应力变化范围,最终将应力变化范围内 的参数取值作为后端宽度Wmax的公差。对其他结构参数前端宽度Wmin、长度L和深度H采用如上所述的单因素分析法和有限元仿真法即可获得对应的公差,本实施例不做一一说明。In this embodiment, the rear end width W max is taken as an example to determine the acceptable stress variation range, and finally the parameter value within the stress variation range is used as the tolerance of the rear end width W max . For other structural parameters, the front width W min , length L and depth H can be obtained by using the above-mentioned single factor analysis method and finite element simulation method to obtain corresponding tolerances, which will not be described in this embodiment.
本发明的分屑槽设计以刀具强度为判定标准,采用正交分析法,并利用仿真分析,得出 分屑槽前端宽度、后端宽度、长度和深度的最佳匹配参数,使分屑槽对刀具性能提升更显著; 进一步的,采用单因素分析法,并利用仿真分析,分别得出分屑槽前端宽度、后端宽度、长 度和深度的加工公差范围,在保证球头立铣刀刀具性能稳定的同时,不会精度过剩,以此提 高球头立铣刀生产效率,并降低成本。The design of the chip splitter of the present invention takes the tool strength as the judgment standard, adopts the orthogonal analysis method, and utilizes simulation analysis to obtain the best matching parameters of the front end width, rear end width, length and depth of the chip splitter, so that the chip splitter The performance improvement of the tool is more significant; further, the single factor analysis method and simulation analysis are used to obtain the processing tolerance range of the front width, rear end width, length and depth of the chip splitter respectively. While the performance is stable, there will be no excess precision, so as to improve the production efficiency of the ball end mill and reduce the cost.
参见图7所示,依据本发明的另一方面,一种锥度球头立铣刀分屑槽的设计方法,包括:Referring to Fig. 7, according to another aspect of the present invention, a method for designing a chip splitting groove of a tapered ball-nose end mill includes:
S701,采用正交分析法和有限元仿真法获得分屑槽结构参数的最佳匹配;S701, adopting the orthogonal analysis method and the finite element simulation method to obtain the best matching of the structural parameters of the chip splitter;
S702,基于分屑槽结构参数的最佳匹配结果,采用单因素分析法和有限元仿真法获得分 屑槽结构参数的公差。S702. Based on the optimal matching result of the structural parameters of the chip splitting flute, the tolerance of the structural parameters of the chip splitting flute is obtained by using a single factor analysis method and a finite element simulation method.
具体的,采用正交分析法和有限元仿真法获得分屑槽结构参数的最佳匹配,具体包括:Specifically, use orthogonal analysis and finite element simulation to obtain the optimal match of the structural parameters of the chip splitter, including:
根据分屑槽结构参数的个数和参数间的关联情况,采用正交设计表确定试验方案;According to the number of structural parameters of the chip splitter and the relationship between the parameters, the test plan is determined by using an orthogonal design table;
采用有限元仿真方法,将一个完整的分屑槽的芯径/刃径值最小的部分截取作为仿真模型, 根据确定的试验方案进行铣削仿真,以切削刃应力作为判定基准;Using the finite element simulation method, the part with the smallest core diameter/blade diameter value of a complete chip splitter is intercepted as a simulation model, and the milling simulation is carried out according to the determined test plan, and the cutting edge stress is used as the judgment standard;
根据正交试验极差分析,确定分屑槽结构参数对切削刃应力的影响程度,找出最显著影 响结构参数,并根据结构参数-应力曲线得到分屑槽结构参数的最佳匹配结果。According to the range analysis of the orthogonal test, the degree of influence of the structural parameters of the chip splitter on the stress of the cutting edge is determined, the most significant influencing structural parameters are found, and the best matching result of the structural parameters of the chip splitter is obtained according to the structural parameter-stress curve.
具体的,基于分屑槽结构参数的最佳匹配结果,采用单因素分析法和有限元仿真法获得 分屑槽结构参数的公差,包括:Specifically, based on the best matching result of the structural parameters of the chip splitter, the tolerance of the structural parameters of the chip splitter is obtained by using the single factor analysis method and the finite element simulation method, including:
基于分屑槽结构参数的最佳匹配结果,采用单因素分析法,将其中三个参数设为定值, 另一个参数取均分五个值,进行有限元仿真,验证参数应力变化;Based on the best matching results of the structural parameters of the chip splitter, the single factor analysis method is used to set three of the parameters as fixed values, and the other parameter is divided into five values, and the finite element simulation is carried out to verify the parameter stress change;
以参数均分五个值的中值的切削刃应力最大值为基准,确定可接受的应力变化范围,最 终将应力变化范围内的参数取值作为该参数的公差。Based on the maximum value of the cutting edge stress which is the median of the five values of the parameter, determine the acceptable stress variation range, and finally take the parameter value within the stress variation range as the tolerance of the parameter.
一种锥度球头立铣刀分屑槽的设计方法的具体实施过程参见一种锥度球头立铣刀中的 说明,本实施例不再重复说明。For the specific implementation process of the design method of the chip splitting groove of a tapered ball-nose end mill, refer to the description of a tapered ball-nose end mill, which will not be repeated in this embodiment.
以上所述,仅为本发明较佳的具体实施方式;但本发明的保护范围并不局限于此。任何 熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其改进构 思加以等同替换或改变,都应涵盖在本发明的保护范围内。The above description is only a preferred embodiment of the present invention; however, the scope of protection of the present invention is not limited thereto. Any person familiar with the technical field within the technical scope disclosed in the present invention, according to the technical scheme of the present invention and its improved concept to make equivalent replacements or changes, should be covered within the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210863049.4A CN115338463A (en) | 2022-07-21 | 2022-07-21 | Taper ball end mill and chip dividing groove design method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210863049.4A CN115338463A (en) | 2022-07-21 | 2022-07-21 | Taper ball end mill and chip dividing groove design method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115338463A true CN115338463A (en) | 2022-11-15 |
Family
ID=83949671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210863049.4A Pending CN115338463A (en) | 2022-07-21 | 2022-07-21 | Taper ball end mill and chip dividing groove design method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115338463A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116756869A (en) * | 2023-06-12 | 2023-09-15 | 哈尔滨理工大学 | Design method of discrete edge end mill with variable chip dividing groove parameters |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06335814A (en) * | 1993-05-27 | 1994-12-06 | Nisshin Kogu Kk | End mill |
JPH10263915A (en) * | 1997-03-25 | 1998-10-06 | Hitachi Tool Eng Co Ltd | Cemented carbide end mill |
CN102615324A (en) * | 2011-01-28 | 2012-08-01 | 鸿富锦精密工业(深圳)有限公司 | Milling cutter |
CN104245198A (en) * | 2012-03-21 | 2014-12-24 | 克莱斯博士玛帕精密仪器工厂两合公司 | Milling and boring tool |
US20150258616A1 (en) * | 2014-03-11 | 2015-09-17 | Frank J Stanbach | End mill |
CN107737984A (en) * | 2017-12-01 | 2018-02-27 | 常州蓝丁格尔工具有限公司 | A kind of alloy roughing milling cutter |
CN110695426A (en) * | 2019-10-25 | 2020-01-17 | 厦门金鹭特种合金有限公司 | Efficient drum-shaped profiling end milling cutter |
-
2022
- 2022-07-21 CN CN202210863049.4A patent/CN115338463A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06335814A (en) * | 1993-05-27 | 1994-12-06 | Nisshin Kogu Kk | End mill |
JPH10263915A (en) * | 1997-03-25 | 1998-10-06 | Hitachi Tool Eng Co Ltd | Cemented carbide end mill |
CN102615324A (en) * | 2011-01-28 | 2012-08-01 | 鸿富锦精密工业(深圳)有限公司 | Milling cutter |
CN104245198A (en) * | 2012-03-21 | 2014-12-24 | 克莱斯博士玛帕精密仪器工厂两合公司 | Milling and boring tool |
US20150258616A1 (en) * | 2014-03-11 | 2015-09-17 | Frank J Stanbach | End mill |
CN107737984A (en) * | 2017-12-01 | 2018-02-27 | 常州蓝丁格尔工具有限公司 | A kind of alloy roughing milling cutter |
CN110695426A (en) * | 2019-10-25 | 2020-01-17 | 厦门金鹭特种合金有限公司 | Efficient drum-shaped profiling end milling cutter |
Non-Patent Citations (2)
Title |
---|
廖湘辉, 尹麒麟, 程创, 等: "分屑槽槽型对RCF型PCB铣刀的影响.", 工具技术, no. 2019, pages 50 - 54 * |
廖湘辉, 尹麒麟: "铝合金6061-T6三维铣削加工有限元仿真及实验", 组合机床与自动化加工技术, no. 2020, pages 140 - 143 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116756869A (en) * | 2023-06-12 | 2023-09-15 | 哈尔滨理工大学 | Design method of discrete edge end mill with variable chip dividing groove parameters |
CN116756869B (en) * | 2023-06-12 | 2023-11-28 | 哈尔滨理工大学 | Design method of discrete edge end mill with variable chip dividing groove parameters |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102089106B (en) | Method and rotary cutting tool for cutting tree-shaped groove | |
CN104703737A (en) | Ball end mill and insert | |
CN115338463A (en) | Taper ball end mill and chip dividing groove design method thereof | |
WO2022089158A1 (en) | Micro-blade cutting tool and manufacturing method therefor | |
CN214321958U (en) | Composite milling cutter | |
CN103406608B (en) | The lathe tool of simultaneous manufacturing copper nut trapezoidal internal thread and using method thereof | |
JP2013233643A (en) | Radius end mill | |
CN115582573B (en) | Ball nose milling cutter that can improve the surface roughness of the machined workpiece | |
CN204867591U (en) | High Speed Rough Machining Die Steel Carbide End Mills | |
CN111604510B (en) | Combined tool for machining stainless steel deep groove | |
CN211101776U (en) | Rough skin milling cutter with chip dividing groove spiral milling blade | |
CN108465858A (en) | A kind of processing of blisk disk milling fluting side set cutter and application method two-by-two | |
CN206839309U (en) | A kind of cutter of machining piston pin-and-hole | |
CN210172626U (en) | A PCD Slot Mill with Axial Rake Angle | |
CN208214420U (en) | It is a kind of to bore milling integrated molding milling cutter | |
JP5010895B2 (en) | Longitudinal feed cutting tool for forward / return machining | |
CN208825653U (en) | Double-pole Slot shaping angle cutting tool | |
CN112719385B (en) | a milling tool | |
CN207710014U (en) | A kind of PCD niblets reamer | |
CN102615327A (en) | End mill special for single-edge forming 'V'-shaped groove | |
CN206383254U (en) | A kind of cemented carbide spiral mill | |
CN211680054U (en) | Forming cutter for left-handed cutting | |
CN220144846U (en) | Discrete edge end mill with variable chip dividing groove parameters | |
CN212526356U (en) | Integrated tool for rough and semi-finish machining of high-precision hole of iron casting | |
CN216502583U (en) | Forming milling cutter for simultaneously processing hole and groove |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |