CN115337903B - 一种改性生物质制备多孔纳米碳吸附材料的方法 - Google Patents

一种改性生物质制备多孔纳米碳吸附材料的方法 Download PDF

Info

Publication number
CN115337903B
CN115337903B CN202210865896.4A CN202210865896A CN115337903B CN 115337903 B CN115337903 B CN 115337903B CN 202210865896 A CN202210865896 A CN 202210865896A CN 115337903 B CN115337903 B CN 115337903B
Authority
CN
China
Prior art keywords
biomass
carbon adsorption
modified
adsorption material
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210865896.4A
Other languages
English (en)
Other versions
CN115337903A (zh
Inventor
赵钰琼
廉鹤
李琨杰
高燕
王莉萍
尚志宏
陈智远
张国杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Huaxin Gas Energy Research Institute Co ltd
Taiyuan University of Technology
Original Assignee
Shanxi Huaxin Gas Energy Research Institute Co ltd
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Huaxin Gas Energy Research Institute Co ltd, Taiyuan University of Technology filed Critical Shanxi Huaxin Gas Energy Research Institute Co ltd
Priority to CN202210865896.4A priority Critical patent/CN115337903B/zh
Publication of CN115337903A publication Critical patent/CN115337903A/zh
Application granted granted Critical
Publication of CN115337903B publication Critical patent/CN115337903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/485Plants or land vegetals, e.g. cereals, wheat, corn, rice, sphagnum, peat moss
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

本发明公开了一种改性生物质制备多孔纳米碳吸附材料的方法,以生物质为原料,通过改性处理将其结构进行控变,然后在常压下催化热解得到改质多孔纳米碳吸附材料,最后经过酸洗的方法分离出多孔纳米碳吸附材料。本方法主要通过打断了生物质有机大分子中糖类与芳香类结构的连接键,提高了结构单元间的流动性,降低了氧含量,使材料中碳元素得到了富集。本方法利用可循环再生的生物质为碳源,显著降低了多孔纳米碳吸附材料生产成本;碳材料中富含碳纳米管使比表面积和总孔体积增加,平均孔径减小,微孔率增大,有利于气体的吸附分离;并且碳纳米管表面的羟基结构能够与阳离子键合,极大提高了碳材料的吸附容量和吸附能力;制备过程简单,制备出了高附加值的纳米碳吸附材料。

Description

一种改性生物质制备多孔纳米碳吸附材料的方法
技术领域
本发明涉及一种改性生物质制备多孔纳米碳吸附材料的方法,属于碳吸附材料制备领域。
背景技术
生物质能是指通过植物的光合作用将太阳辐射的能量以生物质形式固定下来的能源。天然生物质具有来源广泛、价格低廉等优势,但是传统的生物质通常被焚烧掉,不仅造成环境污染,而且不会产生任何附加值。因此,对生物质进行高值化利用,不仅能解决规模化生产的原料来源和成本问题,实现资源的有效利用,同时还能缓解环境污染问题。
中国专利CN109046266A公开了“一种改性生物质吸附材料及其制备方法以及应用”,首先对生物质预处理,然后加入至少一种烯酸类及其衍生物或烯醇类及其衍生物单体,利用聚合反应接枝含特征官能团的聚合物,其制备的吸附材料主要应用于提取海水中的核燃料以及去除废水、废气中的放射性核素和有机物等。但是,此方法采用的烯酸、烯醇类试剂结构复杂、价格昂贵。
发明内容
本发明针对现有生物质制备多孔纳米碳吸附材料生产成本高且吸附性能差等问题,提供一种采用生物质碳源制备多孔纳米碳吸附材料的方法。
本发明先利用反应釜内体系对生物质结构进行控变,然后常压下催化热解制备优质多孔纳米碳吸附材料,既实现了废弃生物质资源的合理利用,又降低了多孔纳米碳吸附材料的制备成本。而且,本发明中生成了CNT(碳纳米管),由于CNT独特的一维结构,在吸附方面有着优异的特性,其表面的羟基结构能够与阳离子键合,碳材料中含有CNT比表面积和孔体积增加,微孔率增大,使得甲烷分子更容易进入孔隙空间,可以提高碳材料的吸附选择性与吸附容量。本发明通过将生物质结构控变再经过催化活化,制备了一种富含CNT的碳吸附材料,用于气体的吸附分离。
本发明通过以下技术方案实现:
一种改性生物质制备多孔纳米碳吸附材料的方法,包括如下步骤:
(1)生物质的改性处理:将生物质洗净破碎后研磨至80-150目,然后将生物质粉、水、改性催化剂按比例放入反应釜中,冲入富含CO的原料气,调节反应釜的压力为:1-4MPa,温度设定为:200-310℃,恒温反应10-60min,反应结束后,待反应釜冷却至室温后,将反应后的混合物烘干后得到改性生物质。
上述步骤(1)中的改性催化剂为Ca-Fe复合催化剂。该催化剂通过将钙铁盐溶液按一定的比例混合制成,其活性组分Ca和Fe质量比为30-60:40-70。
(2)改性生物质负载催化剂:将改性生物质放在活化催化剂的复合溶液中充分搅拌(改性生物质:活化催化剂质量比:1-2:1),于常温常压下浸渍6-12 h,然后在 70-90 ℃烘干至恒重,得到负载活化催化剂的改性生物质材料。
上述步骤(2)中的活化催化剂为Fe-Ni复合催化剂。该催化剂通过将铁镍盐溶液按一定的比例混合制成,其活性组分Fe和Ni的质量比为11.67-33.33:66.67-88.33。
(3)活化热解:将步骤(2)所得的产物于常压下放置于热解炉中,控制热解温度为600-1200 ℃,恒温反应 1-2 h,得到纳米碳吸附材料的粗产物。
(4)将步骤(3)得到的纳米碳吸附材料的粗产物加入去离子水后,放在磁力搅拌器上滴加稀酸洗涤至中性,然后取上层清液干燥,即得到纯净的纳米碳吸附材料。
步骤(1)中所述的生物质为松木类硬木、桦木类软木、木质素和夏威夷果壳中的一种或几种。
步骤(1)中生物质粉和水的质量比为26.3-52.6:47.4-73.7,改性催化剂的添加质量为生物质粉的0.011-0.25倍。
步骤(1)中钙铁盐溶液中的钙盐溶液包括硝酸钙、氯化钙中的任意一种,铁盐溶液包括硝酸铁、氯化铁中的任意一种。
步骤(1)中所述富含CO的原料气为工业合成气,其中CO体积分数大于50vol%。
步骤(2)中铁镍盐溶液中的铁盐溶液包括硝酸铁、氯化铁中的任意一种,镍盐溶液包括硝酸镍、氯化镍中的任意一种。
步骤(4)中所述的稀酸包括稀硝酸和稀盐酸的混合物,稀酸的浓度为0.5-1 mol/L。
本发明的原理如下:
步骤(1)中的生物质粉经过改性处理,在上述反应条件下,有更多的水合氢离子的生成,可以使得生物质中的纤维素、半纤维素等有机大分子中糖类与芳香类结构的连接键键能减弱而断裂,促进了生物质分子发生水解反应,形成疏松多孔的三维网状结构,提高了结构单元间流动性,降低原料中O元素的含量,使得C元素得到了富集,为第三步活化热解阶段CNT的生长提供了更多优质碳源,减少后续处理的时间。
步骤(3)中的改性生物质在活化催化剂的作用下活化热解生成生物油、生物炭和热解气,热解气的主要成分为H2、CO2、CH4、CO以及其他小分子碳氢化合物,这些小分子含碳气体会参与到CNT的合成中。并且,H2 能够影响CNT生长催化位点的形成,少量的CO2和水气也会促进CNT的生长。
与现有技术相比,本发明的优点和有益效果如下:
(1)本发明通过改性,打断了生物质中有机大分子中糖类和芳香类结构的连接键,提高了结构单元间的流动性,降低了O元素的含量,使材料中碳元素得到了富集。使得生物质经简单的催化热解即可制备出富含CNT的高附加值吸附碳材料,具有可再生、可循环、含碳量丰富并且廉价易得的特点,因此可以实现批量生产,显著降低了多孔纳米碳吸附材料生产成本。
(2)本发明所制备的含CNT的碳吸附材料,因CNT的生成会促进微孔的生成,平均孔径变小,微孔率增加,可以限制较大分子的进入,有利于气体的吸附分离。而且吸附材料中因富含CNT,使比表面积和总孔体积明显增加,平均孔径减小,微孔率增大,有利于气体的吸附分离,并且碳纳米管表面的羟基结构能够与阳离子键合,可明显提高碳材料的吸附容量和吸附能力。
(3)本发明制备方法简单,污染性低,可控性强并且不依赖精密的生产设备,反应条件温和、耗能低,安全环保。
附图说明
图1为本发明实施例1的250℃改性松木制得的含CNT的碳吸附材料SEM图;
图2为本发明实施例1所制备的碳吸附材料中所含CNT的管径分布图;
图3为本发明实施例1所制备的碳吸附材料的N2吸脱附等温线图;
图4为本发明实施例1所制备的碳吸附材料的孔径分布图。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
本实施例1以松木为原料进行实验。
(1)Ca-Fe复合催化剂(Fe:Ca=1:1)的制备方法:称取2.36g四水合硝酸钙、4.04g九水合硝酸铁、5.76g柠檬酸,加水溶解,搅拌30min后,放在烘箱于120℃烘12h,然后将其碾碎,在马弗炉里于550℃焙烧4h。
将松木洗净后破碎研磨至100目左右,取2gCa-Fe复合催化剂(Fe:Ca=1:1),20g松木粉,40ml的水搅拌均匀放入反应釜中,通入N2检查反应釜的气密性良好后,充入体积分数为90vol%、10vol%的CO、N2,确保反应釜内的压力为3.5MPa后,设置加热速率为10℃/min升温至250℃后恒温50min。反应结束后,待釜冷却至室温取出釜内混合物,烘干后将釜内产物磨至100目,得到改性松木碳材料;
(2)Fe-Ni复合催化剂(Fe:Ni=5:1)的制备方式:称取2.91g六水合硝酸镍、4.04g九水合硝酸铁、7.69g柠檬酸,加水溶解,搅拌40min后,放在烘箱于120℃烘12h,然后将其碾碎,在马弗炉里于600℃焙烧4h。
取5 g改性松木碳材料、5 g Fe-Ni复合催化剂(Fe:Ni=5:1)、20 mL水混合后搅拌共浸渍12h,然后在80℃下烘干8 h至恒重,粉碎至100目,得到负载 Fe-Ni复合催化剂的改性松木碳材料;
(3)将(2)中得到的负载 Fe-Ni复合催化剂的改性生物碳材料平铺于反应釜中,拧紧反应釜使其隔绝空气,在常压下以10℃/min的加热速率加热至1000℃,维持反应终温2h,即可生成含CNT的碳吸附材料粗产物;
(4)将(3)中得到的粗产物用浓度为1 mol/L的稀盐酸、稀硝酸混合物20ml(比例为2:1)反复洗涤至中性,再用去离子水反复洗涤,取出上层悬浮部分,干燥后即分离出纯净的含CNT的吸附碳材料。
采用SEM对本实施例所得的吸附碳材料进行分析并作出管径分布图,结果如图1图2所示,可见本实施例产品所含的CNT结构完整,形貌优良。管径分布均匀,主要在167.1nm左右。
对本实施例所得的吸附碳材料进行了氮吸附分析,结果如图3所示,吸附曲线均带有H4回滞环的IV型等温线,说明其为微介孔混合材料。在非常低的相对压力 P/P0 < 0.01范围时,其氮气吸附量随着相对压力的增加急剧增加,表明所制备的吸附碳材料中含有大量的微孔。随着相对压力的提高,逐渐形成吸附平台,在相对压力为0.45左右形成H4回滞环,这主要归因于介孔的吸附。结合图4所示的孔径分布图可知样品中主要具有0.5~1.2nm的微孔和3.5~ 4.2 nm的介孔。
根据图3中氮吸脱附等温线计算得到吸附碳材料的比表面积为1023.75m2/g、总孔体积为0.72cm3/g、微孔体积为0.42cm3/g和平均孔径为2.81nm。可以看出,碳材料中含有CNT,微孔数目大量增加,平均孔径减小,更有利于气体的吸附分离,因此以改性生物质制备多孔纳米碳吸附材料在气体分离方面具有广阔的应用前景。
实施例2
本实施例2以桦木为原料进行实验。
(1)将桦木洗净后破碎研磨至120目左右,取1g上述实例1中的Ca-Fe复合催化剂,15g桦木粉,35ml的水搅拌均匀放入反应釜中,通入N2检查反应釜的气密性良好后,充入体积分数为80vol%、20vol%的CO、N2,确保反应釜内的压力为3.0MPa后,设置加热速率为10℃/min升温至310℃后恒温1h。反应结束后,待釜冷却至室温取出釜内混合物,烘干后将釜内产物磨至120目,得到改性桦木碳材料;
(2)取5 g改性桦木碳材料、5 g 上述实例1中的Fe-Ni复合催化剂、30mL水混合后搅拌共浸渍10h,然后在80℃下烘干7h至恒重,粉碎至120目,得到负载 Fe-Ni复合催化剂的改性桦木碳材料;
(3)将(2)中得到的负载 Fe-Ni复合催化剂的改性桦木碳材料平铺于反应釜中,拧紧反应釜使其隔绝空气,在常压下以10℃/min的加热速率加热至900℃,维持反应终温2h,即可生成含CNT的碳吸附材料粗产物;
(4)将(3)中得到的粗产物用浓度为1 mol/L的稀硝酸、稀盐酸混合物(比例为2:1)反复洗涤至中性,再用去离子水反复洗涤,取出上层悬浮部分,干燥后即分离出纯净的含CNT的碳吸附材料。
对步骤(4)所得的吸附炭材料进行了氮吸附分析,结果证明其为微介孔混合材料。样品中主要具有0.5-1.2nm的微孔和3.7~ 4.5 nm的介孔。
根据氮吸脱附等温线计算得到吸附碳材料的比表面积为1282.37m2/g、总孔体积为0.75cm3/g、微孔体积为0.5cm3/g和平均孔径为2.54nm。
实施例3:
本实施例3以夏威夷果壳为原料进行实验。
(1)将夏威夷果壳洗净后破碎研磨至100目左右,取2g上述实例1中的Ca-Fe复合催化剂,20g夏威夷果壳粉,50ml的水搅拌均匀放入反应釜中,通入N2检查反应釜的气密性良好后,充入体积分数为80vol%、20vol%的CO、N2,确保反应釜内的压力为3.0MPa后,设置加热速率为10℃/min升温至300℃后恒温50min。反应结束后,待釜冷却至室温取出釜内混合物,烘干后将釜内产物磨至100目,得到改性夏威夷果壳碳材料;
(2)取10 g改性夏威夷果壳碳材料、5 g上述实例1中的 Fe-Ni复合催化剂、30mL水混合后搅拌共浸渍10h,然后在90℃下烘干8h至恒重,粉碎至100目,得到负载 Fe-Ni复合催化剂的改性夏威夷果壳碳材料;
(3)将(2)中得到的负载 Fe-Ni复合催化剂的改性生物质粉平铺于反应釜中,拧紧反应釜使其隔绝空气,在常压下以10℃/min的加热速率加热至1000℃,维持反应终温2h,即可生成含CNT的碳吸附材料粗产物;
(4)将(3)中得到的粗产物用浓度为1 mol/L的稀硝酸、稀盐酸混合物(比例为3:1)反复洗涤至中性,再用去离子水反复洗涤,并超声震荡1 h后,干燥后即分离出纯净的含CNT的碳吸附材料。
对步骤(4)所得的吸附炭材料进行了氮吸附分析,结果证明其为微介孔混合材料。样品中主要具有0.5~1.6m的微孔和4~ 4.5nm的介孔。
根据氮吸脱附等温线计算得到吸附碳材料的比表面积为1188.42m2/g、总孔体积为0.69cm3/g、微孔体积为0.48cm3/g和平均孔径为1.91nm。

Claims (6)

1.一种改性生物质制备多孔纳米碳吸附材料的方法,其特征在于包括如下步骤:
(1)生物质的改性处理:将生物质洗净破碎后研磨至80-150目,然后将生物质粉、水、改性催化剂按比例放入反应釜中,冲入富含CO的原料气,调节反应釜的压力为:1-4MPa,温度设定为:200-310℃,恒温反应10-60min,反应结束后,待反应釜冷却至室温后,将反应后的混合物烘干后得到改性生物质;
改性催化剂为Ca-Fe复合催化剂;该催化剂通过将钙铁盐溶液按比例混合制成,其活性组分Ca和Fe质量比为30-60:40-70;
(2)改性生物质负载催化剂:将改性生物质放在活化催化剂的复合溶液中充分搅拌,于常温常压下浸渍6-12 h,然后在 70-90 ℃烘干至恒重,得到负载活化催化剂的改性生物质材料;改性生物质:活化催化剂质量比:1-2:1;
Fe-Ni复合催化剂的制备方式:称取2.91g六水合硝酸镍、4.04g九水合硝酸铁、7.69g柠檬酸,加水溶解,搅拌40min后,放在烘箱于120℃烘12h,然后将其碾碎,在马弗炉里于600℃焙烧4h;
(3)活化热解:将步骤(2)所得的产物于常压下放置于热解炉中,控制热解温度为 600-1200 ℃,恒温反应 1-2 h,得到纳米碳吸附材料的粗产物;
(4)将步骤(3)得到的纳米碳吸附材料的粗产物加入去离子水后,放在磁力搅拌器上滴加稀酸洗涤至中性,然后取上层清液干燥,即得到纯净的纳米碳吸附材料。
2.根据权利要求1所述的改性生物质制备多孔纳米碳吸附材料的方法,其特征在于:步骤(1)中所述的生物质为松木类硬木、桦木类软木、木质素和夏威夷果壳中的一种或几种。
3.根据权利要求1所述的改性生物质制备多孔纳米碳吸附材料的方法,其特征在于:步骤(1)中生物质粉和水的质量比为26.3-52.6:47.4-73.7,改性催化剂的添加质量为生物质粉的0.011-0.25倍。
4.根据权利要求1所述的改性生物质制备多孔纳米碳吸附材料的方法,其特征在于:步骤(1)中钙铁盐溶液中的钙盐溶液包括硝酸钙、氯化钙中的任意一种,铁盐溶液包括硝酸铁、氯化铁中的任意一种。
5.根据权利要求1所述的改性生物质制备多孔纳米碳吸附材料的方法,其特征在于:步骤(1)中所述富含CO的原料气为工业合成气,其中CO体积分数大于50vol%。
6.根据权利要求1所述的改性生物质制备多孔纳米碳吸附材料的方法,其特征在于:步骤(4)中所述的稀酸包括稀硝酸和稀盐酸的混合物,稀酸的浓度为0.5-1 mol/L。
CN202210865896.4A 2022-07-22 2022-07-22 一种改性生物质制备多孔纳米碳吸附材料的方法 Active CN115337903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210865896.4A CN115337903B (zh) 2022-07-22 2022-07-22 一种改性生物质制备多孔纳米碳吸附材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210865896.4A CN115337903B (zh) 2022-07-22 2022-07-22 一种改性生物质制备多孔纳米碳吸附材料的方法

Publications (2)

Publication Number Publication Date
CN115337903A CN115337903A (zh) 2022-11-15
CN115337903B true CN115337903B (zh) 2024-03-12

Family

ID=83949834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210865896.4A Active CN115337903B (zh) 2022-07-22 2022-07-22 一种改性生物质制备多孔纳米碳吸附材料的方法

Country Status (1)

Country Link
CN (1) CN115337903B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101264879A (zh) * 2008-04-22 2008-09-17 东南大学 一种生物质导电炭的制取方法
CN103736446A (zh) * 2014-01-24 2014-04-23 太原理工大学 一种磁响应性膨润土水处理剂的方法
CN108865316A (zh) * 2017-09-28 2018-11-23 华北理工大学 应用于铁矿烧结的生物质燃料的制备方法
CN111408348A (zh) * 2020-04-28 2020-07-14 南阳师范学院 一种秸秆基多孔生物炭纳米球的制备方法
CN112723340A (zh) * 2021-01-29 2021-04-30 太原理工大学 一种调变低阶煤制备碳纳米管的方法
CN113816359A (zh) * 2021-10-20 2021-12-21 长春工业大学 一种生物质低温水热与低温碳化制备多孔碳材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101264879A (zh) * 2008-04-22 2008-09-17 东南大学 一种生物质导电炭的制取方法
CN103736446A (zh) * 2014-01-24 2014-04-23 太原理工大学 一种磁响应性膨润土水处理剂的方法
CN108865316A (zh) * 2017-09-28 2018-11-23 华北理工大学 应用于铁矿烧结的生物质燃料的制备方法
CN111408348A (zh) * 2020-04-28 2020-07-14 南阳师范学院 一种秸秆基多孔生物炭纳米球的制备方法
CN112723340A (zh) * 2021-01-29 2021-04-30 太原理工大学 一种调变低阶煤制备碳纳米管的方法
CN113816359A (zh) * 2021-10-20 2021-12-21 长春工业大学 一种生物质低温水热与低温碳化制备多孔碳材料的方法

Also Published As

Publication number Publication date
CN115337903A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
Tan et al. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage
Hou et al. Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal
CN110064367B (zh) 一种生物质基活性炭微球及其制备方法和应用
CN102335592B (zh) 金属有机骨架-氧化石墨纳米复合吸附材料及其制备方法
Shi et al. High-performance biochar derived from the residue of Chaga mushroom (Inonotus obliquus) for pollutants removal
Brazil et al. A statistical approach to optimize the activated carbon production from Kraft lignin based on conventional and microwave processes
CN105688871A (zh) 一种载纳米粒子发泡颗粒炭除磷吸附剂的制备方法及应用
Liu et al. Carboxyl-functionalized lotus seedpod: A highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb2+ ions from aqueous solution
Mashhadimoslem et al. Adsorption equilibrium, thermodynamic, and kinetic study of O2/N2/CO2 on functionalized granular activated carbon
Lin et al. Nitrogen-doped hydrochar prepared by biomass and nitrogen-containing wastewater for dye adsorption: effect of nitrogen source in wastewater on the adsorption performance of hydrochar
Qian et al. A delicate method for the synthesis of high-efficiency Hg (II) The adsorbents based on biochar from corn straw biogas residue
CN101698477A (zh) 一种聚苯乙烯基层次孔炭材料及其制备方法和应用
Zhu et al. The effects of autohydrolysis pretreatment on the structural characteristics, adsorptive and catalytic properties of the activated carbon prepared from Eucommia ulmoides Oliver based on a biorefinery process
Mergbi et al. Valorization of lignocellulosic biomass into sustainable materials for adsorption and photocatalytic applications in water and air remediation
Bu et al. Enhancement of bio-oil quality over self-derived bio-char catalyst via microwave catalytic pyrolysis of peanut shell
CN101428794A (zh) 椰纤维基高比表面积活性炭的制备方法
Wang et al. Precise preparation of biomass-based porous carbon with pore structure-dependent VOCs adsorption/desorption performance by bacterial pretreatment and its forming process
Zhou et al. Sustainable production of value-added sulfonated biochar by sulfuric acid carbonization reduction of rice husks
Nazir et al. Towards a sustainable conversion of biomass/biowaste to porous carbons for CO2 adsorption: recent advances, current challenges, and future directions
Inkoua et al. Co-hydrothermal carbonization of fruit peel with sugars or furfural impacts structural evolution of hydrochar
Liu et al. Hierarchical porous biochar fabricated by Aspergillus tubingensis pretreatment coupling with chemical activation for Pb (II) removal
CN104445188A (zh) 一种利用溶液浸洗脱灰制备稻壳基活性炭的方法
CN115337903B (zh) 一种改性生物质制备多孔纳米碳吸附材料的方法
CN106744949A (zh) 一种以芝麻秸秆为原料制备活性炭的方法
Yu et al. Towards negative emissions: Hydrothermal carbonization of biomass for sustainable carbon materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant