CN115323624B - 一种具有抗菌疏水微球层的纳米纤维膜的制备方法 - Google Patents

一种具有抗菌疏水微球层的纳米纤维膜的制备方法 Download PDF

Info

Publication number
CN115323624B
CN115323624B CN202211029088.0A CN202211029088A CN115323624B CN 115323624 B CN115323624 B CN 115323624B CN 202211029088 A CN202211029088 A CN 202211029088A CN 115323624 B CN115323624 B CN 115323624B
Authority
CN
China
Prior art keywords
spinning
nanofiber
solution
temperature
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211029088.0A
Other languages
English (en)
Other versions
CN115323624A (zh
Inventor
吴金丹
许冰洁
刘磊
李颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202211029088.0A priority Critical patent/CN115323624B/zh
Publication of CN115323624A publication Critical patent/CN115323624A/zh
Application granted granted Critical
Publication of CN115323624B publication Critical patent/CN115323624B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Medical Uses (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明涉及医用材料领域,公开了一种具有抗菌疏水微球层的纳米纤维膜的制备方法。本发明运用静电纺丝及静电喷涂技术,在PAN纳米纤维表面静电喷涂一层负载了Ag纳米粒子的圆盘状PCL微球,利用圆盘状微球结构提高内部粒子的Ag+释放效率。纳米纤维膜具有单向导液性能,可以防止伤口组织的过度水化,使伤口保持干燥,从而促进快速愈合。此外,高纵横比的圆盘状微球可以防止被细胞吞噬,也提高了接触伤口一侧的疏水性,有效避免伤口与敷料的粘连而导致的二次损伤。

Description

一种具有抗菌疏水微球层的纳米纤维膜的制备方法
技术领域
本发明涉及医用材料领域,尤其涉及一种具有抗菌疏水微球层的纳米纤维膜的制备方法。
背景技术
当皮肤组织完整性遭到破坏时,创面部位极易发生细菌定植,感染部位的渗液中含有丰富的蛋白质等物质,为细菌的大量繁殖提供了适宜的生长环境,这加剧了细菌感染的程度。现有市售敷料多为亲水性敷料,依靠敷料的亲水性吸收伤口渗液。但是亲水性敷料容易和伤口粘连,在更换敷料时会对伤口造成二次损伤。因此,具有抗菌、导出渗液能力且有防组织粘连的敷料是利于伤口愈合的。
现有的临床抗菌治疗主要是基于抗生素的使用。然而,抗生素的长期滥用导致了耐药菌的产生。无机粒子稳定性强,作用时间持久,不会促使细菌产生耐药性,是治疗细菌感染的优质选择。纳米银的抗菌效果优异,作用时间长,在抗菌领域具有广泛的应用。纳米银持续产生的Ag+,其极易和细菌的细胞壁、细胞膜结合,从而进入菌体,并与氧代谢有关的硫醇结合影响代谢过程。进入菌体的Ag+还可以干扰细胞壁的合成,使细胞壁失去完整的物理结构。同时,Ag+与细胞壁结合后,会发生聚糖反应,抑制氧气的转运。然而,直接使用Ag纳米粒子粉体会使其进入人体血液系统,带来潜在的生物毒性。
近年来,静电纺丝技术成为制备伤口敷料的热点技术之一。制备出的静电纺丝纳米纤维膜具有高孔隙率,有利于伤口呼吸。将无机粒子与纳米纤维结合,既避免了无机离子进入人体,又能制备出高孔隙率的伤口敷料。然而,若将Ag纳米粒子直接与聚合物混纺,大部分Ag纳米粒子被包裹在纳米纤维内部,无法充分接触外部环境,会影响Ag纳米粒子快速发挥抗菌功能。
发明内容
为了解决上述技术问题,本发明提供了一种具有抗菌疏水微球层的纳米纤维膜的制备方法。本发明运用静电纺丝及静电喷涂技术,在亲水性PAN纳米纤维表面静电喷涂一层疏水性聚合物微球,微球中负载有Ag纳米粒子。疏水性微球层和亲水性PAN层构成了Janus膜,可以持续导出伤口渗液,避免伤口被渗液持续浸润,同时避免敷料与组织发生粘连。此外,疏水性聚合物微球呈圆盘状,具有高比表面、高纵横比,有利于Ag纳米粒子充分接触外界环境,从而快速释放Ag+。同时,圆盘状聚合物微球有利于提高敷料表面的粗糙度,从而提高接触伤口一侧的疏水性。
本发明的具体技术方案为:一种具有抗菌疏水微球层的纳米纤维膜的制备方法,包括以下步骤:
(1)纳米纤维基底膜的制备:将聚丙烯腈溶于N-N二甲基甲酰胺中,加热搅拌溶解,进行静电纺丝,得到纳米纤维基底膜。
步骤(1)为通过静电纺丝制备基底膜,基底膜主要起机械支撑和亲水作用。
(2)Ag纳米粒子的制备:将AgNO3和乙醇混合并搅拌至完全溶解,将溶液逐滴滴入到PVP(K-30)乙醇溶液中,再将混合液转入高压反应釜内,于高温下反应;将得到的产物用去离子水和无水乙醇分别洗涤离心,进行冷冻干燥,得到Ag纳米粒子。
如技术背景部分所述,抗生素滥用造成了耐药菌的产生,进而降低了药效。本发明制备了Ag纳米粒子,进行非抗生素抗菌。Ag纳米粒子可以持续产生Ag+,破坏细菌的物质结构,如细胞壁及细胞膜中的蛋白质、遗传物质脱氧核糖核酸(DNA)等,同时不会促使细菌产生耐药性,实现高效协同抗菌。
(3)微球与纳米纤维膜的复合:将聚己内酯与Ag纳米粒子溶解或分散于三氟乙醇溶剂中,室温搅拌后得到聚合物纺丝液,进行超声处理以获得均匀一致的溶液,在纳米纤维基底膜上进行静电喷雾,得到具有抗菌疏水微球层的纳米纤维膜。
步骤(3)中聚己内酯(PCL)主要作为分散及载体材料。在静电喷雾过程中,由于相同电荷的排斥作用,聚合物纺丝液以球形液滴的形式被喷出,聚合物球形液滴的外层溶剂首先挥发,形成地壳状聚合物固体外层。内部溶剂继续挥发,产生向内的压缩力,使聚合物液滴有缩小的趋势。在适当的聚合物浓度下,首先形成的聚合物地壳状外壳可以克服压缩力,维持球状结构。溶剂持续挥发,地壳状外壳向内凹陷,从而形成圆盘状的聚合物微球。
综上,本发明运用静电纺丝及静电喷涂技术,首先制备了PAN纳米纤维基底膜,之后在PAN基底膜表面静电喷涂负载Ag纳米粒子的疏水性PCL聚合物微球,得到了具有抗菌疏水微球层的纳米纤维膜。无需外界条件触发,Ag纳米粒子可以持续产生Ag+,从而以金属离子杀菌。聚合物微球呈现两面凹陷的圆盘状,直径在100-3000nm之间,具有极高的比表面积,可以增大Ag纳米粒子接触外界环境的面积,从而提高Ag+的释放效率。另外,疏水性微球层与亲水性PAN层形成了Janus结构,可以将伤口部位的渗液导出到PAN层,从而保持伤口干燥。此外,圆盘状的微球层提高了表面粗糙度,有利于提高疏水性,防止敷料与伤口粘连,避免二次损伤的发生。
本发明通过研究表明,由于微球呈现两面凹陷的圆盘状,与普通球形或其他形状的微球相比,圆盘状微球可以更大面积地接触PAN基底膜,从而提高微球与基底膜的复合性。另外,相比于普通球形或其他形状的微球,圆盘状微球具有更高的纵横比,避免了PCL微球被伤口部位的吞噬细胞吞噬,有利于微球的稳定性,从而延长使用寿命。
在现有技术中,已有文献报道了圆盘状结构的聚(4-苯乙烯磺酸盐)、聚乳酸-羟基乙酸共聚物微球,此类微球具有高弹性模量,并且微球可以顺利通过直径比自身小的毛细血管,因此被用作物质(例如氧气、药物及磁性粒子)的载体,从而应用于氧气输送、药物输送及医学成像等医学领域。然而,并未将类似结构应用于伤口敷料的报道,尤其是利用类似结构提高Ag+的释放效率及膜表面的粗糙度。并且,若将聚(4-苯乙烯磺酸盐)微球直接应用于本发明,则微球层接触到伤口渗液时会溶化,不能进行渗液管理,同时Ag纳米粒子会被完全暴露,增大了进入人体并危害人体健康的可能性。若将聚乳酸-羟基乙酸共聚物微球直接应用于本发明,会显著提高制备伤口敷料的成本,不适于大量生产及市场需求。
作为优选,步骤(1)中,所述聚丙烯腈溶解后的浓度为7-10wt%,加热温度为50-55℃。
作为优选,步骤(1)中,所述静电纺丝的参数为,速度0.002~0.003mm/s,针头18-20G,距离10~15cm,电压12~15kV,温度25~35℃,湿度30~50%,纺丝时间3-10h。
本发明团队发现,聚合物的浓度若过低,纺丝时间过短,则难以形成有效的机械支撑,导致力学性能不好;若浓度过高,则会使基底膜的孔隙率过大,影响步骤(3)中复合微球在基底膜上的分布。若纺丝时间过长,则纳米纤维膜过厚,透气性下降,不利于伤口呼吸。因此,步骤(1)中PAN的浓度和纺丝时间需要严格控制。
作为优选,步骤(2)中,所述AgNO3、乙醇、PVP(K-30)乙醇溶液的用量比为0.05-0.1g∶40-50mL∶90-100mL,PVP(K-30)乙醇溶液的浓度为4-6g/L,反应温度为170-200℃,反应时间为17-20h,离心转速为10000-12000r/min,离心时间为10-15min,干燥时间30-40h。
作为优选,步骤(3)中,所述聚合物纺丝液中聚己内酯的浓度为0.5-5wt%。所述Ag纳米粒子与聚己内酯的质量比为0.1∶1-1.5∶1。
聚己内酯的浓度对微球形貌的影响具有决定性。若浓度适宜,在静电喷雾过程中,首先形成的聚合物地壳状外壳可以克服压缩力,维持球状结构。溶剂持续挥发,地壳状外壳向内凹陷,从而形成圆盘状结构的聚合物微球。若浓度过低,会导致Ag纳米粒子团聚且复合性差,易脱落不稳定。若过高,则无法形成圆盘状复合微球,而形成普通的纳米纤维结构,使Ag纳米粒子包裹过度,不能快速且大量产生Ag+,降低PCL层的疏水性。
作为优选,步骤(3)中,所述室温搅拌的时间为4-8h。
作为优选,步骤(3)中,所述超声处理的时间为10-30min。
作为优选,步骤(3)中,所述静电纺丝的参数为:电压为5~30kV,推进速度为0.0003~0.006mm/s,接收距离为8~15cm,纺丝温度为20~40℃,纺丝湿度为40%~60%。
与现有技术对比,本发明的有益效果是:本发明运用静电纺丝和静电喷涂的技术,制备了具有亲水层PAN和疏水层PCL微球的纳米纤维膜,微球呈现圆盘状,并负载了Ag纳米粒子。圆盘状疏水微球具有优异的抗菌效果,无需外界条件触发,粒子可以持续快速释放大量Ag+,从而进行高效杀菌。高比表面积的圆盘状微球提高了Ag+的释放效率,同时圆盘状聚合物微球提高了与基底膜的复合稳定性,还可以有效避免被细胞吞噬,延长使用寿命。圆盘状微球结构也提高了接触伤口侧的粗糙度,提高疏水性,避免敷料对伤口的二次损伤。该纳米纤维膜可以用于伤口渗液的单向导出,有效避免伤口的过度水化。本发明所述的纳米纤维膜在生物医学材料领域具有较高的应用前景。
附图说明
图1为实施例1制备得到的Ag纳米粒子的透射电镜图。
图2为实施例1制备得到的PCL层的扫描电镜图。
图3为实施例2制备得到的PCL层的扫描电镜图。
具体实施方式
下面结合实施例对本发明作进一步的描述。
实施例1
(1)纳米纤维基底膜的制备:将聚丙烯腈(PAN)溶于N-N二甲基甲酰胺中配制浓度为8wt%的纺丝溶液,在50℃加热条件下搅拌至溶解,纺丝参数为:速度0.002mm/s,针头20G,距离13cm,电压13kV,温度25℃,湿度30%,得到纳米纤维基底膜。
(2)Ag纳米粒子的制备:将0.085g AgNO3和50mL乙醇混合并搅拌至完全溶解,将溶液逐滴滴入到100mL浓度为5g/L的PVP(K-30)乙醇溶液中,再将混合液转入高压反应釜内,于180℃高温下反应18h。将得到的产物用去离子水和无水乙醇分别洗涤,以12000r/min离心10min,冷冻干燥30h,得到Ag纳米粒子。
(3)微球与纳米纤维膜的复合:将2.5g聚己内酯(PCL)与0.4gAg纳米粒子溶解/分散于100mL三氟乙醇溶剂中,室温搅拌6h后得到混合的纺丝液,超声20min,使其形成均匀一致的溶液,在基底膜上进行静电喷雾,静电纺丝参数为:电压为10.8kV,推进速度为0.0054mm/s,接收距离为13cm,纺丝温度为25℃,纺丝湿度为50%,得到具有抗菌疏水微球层的纳米纤维膜。
实施例2
(1)纳米纤维基底膜的制备:将聚丙烯腈(PAN)溶于N-N二甲基甲酰胺中配制浓度为7wt%的纺丝溶液,在50℃加热条件下搅拌至溶解,纺丝参数为:速度0.002mm/s,针头20G,距离13cm,电压13kV,温度25℃,湿度30%,得到纳米纤维基底膜。
(2)Ag纳米粒子的制备:将0.085g AgNO3和50mL乙醇混合并搅拌至完全溶解,将溶液逐滴滴入到100mL浓度为5g/L的PVP(K-30)乙醇溶液中,再将混合液转入高压反应釜内,于180℃高温下反应18h。将得到的产物用去离子水和无水乙醇分别洗涤,以12000r/min离心10min,冷冻干燥40h,得到Ag纳米粒子。
(3)微球与纳米纤维膜的复合:将1.25g聚己内酯(PCL)与0.4g Ag纳米粒子溶解/分散于100mL三氟乙醇溶剂中,室温搅拌4h后得到混合的纺丝液,超声20min,使其形成均匀一致的溶液,在基底膜上进行静电喷雾,静电纺丝参数为:电压为9.3kV,推进速度为0.0054mm/h,接收距离为13em,纺丝温度为25℃,纺丝湿度为50%,得到具有抗菌疏水微球层的纳米纤维膜。
实施例3
(1)纳米纤维基底膜的制备:将聚丙烯腈(PAN)溶于N-N二甲基甲酰胺中配制浓度为8wt%的纺丝溶液,在50℃加热条件下搅拌至溶解,纺丝参数为:速度0.002mm/s,针头20G,距离13cm,电压13kV,温度25℃,湿度30%,得到纳米纤维基底膜。
(2)Ag纳米粒子的制备:将0.085g AgNO3和50mL乙醇混合并搅拌至完全溶解,将溶液逐滴滴入到90mL浓度为6g/L的PVP(K-30)乙醇溶液中,再将混合液转入高压反应釜内,于180℃高温下反应18h。将得到的产物用去离子水和无水乙醇分别洗涤,以12000r/min离心10min,冷冻干燥30h,得到Ag纳米粒子。
(3)微球与纳米纤维膜的复合:将2.5g聚己内酯(PCL)和0.5gAg纳米粒子溶解/分散于100mL三氟乙醇溶剂中,室温搅拌6h后得到混合的纺丝液,超声10min,使其形成均匀一致的溶液,在基底膜上进行静电喷雾,静电纺丝参数为:电压为12.5kV,推进速度为0.003mm/s,接收距离为12cm,纺丝温度为25℃,纺丝湿度为40%,得到具有抗菌疏水微球层的纳米纤维膜。
实施例4
(1)纳米纤维基底膜的制备:将聚丙烯腈(PAN)溶于N-N二甲基甲酰胺中配制浓度为8wt%的纺丝溶液,在50℃加热条件下搅拌至溶解,纺丝参数为:速度0.002mm/s,针头20G,距离13cm,电压13kV,温度25℃,湿度30%,得到纳米纤维基底膜。
(2)Ag纳米粒子的制备:将0.09g AgNO3和50mL乙醇混合并搅拌至完全溶解,将溶液逐滴滴入到95mL浓度为4g/L的PVP(K-30)乙醇溶液中,再将混合液转入高压反应釜内,于180℃高温下反应18h。将得到的产物用去离子水和无水乙醇分别洗涤,以12000r/min离心10min,冷冻干燥30h,得到Ag纳米粒子。
(3)微球与纳米纤维膜的复合:将1.25g聚己内酯(PCL)和0.5gAg纳米粒子溶解/分散于100mL三氟乙醇溶剂中,室温搅拌6h后得到混合的纺丝液,超声20min,使其形成均匀一致的溶液,在基底膜上进行静电喷雾,静电纺丝参数为:电压为11.2kV,推进速度为0.0054mm/s,接收距离为12cm,纺丝温度为25℃,纺丝湿度为50%,得到具有抗菌疏水微球层的纳米纤维膜。
对比例1(仅有PAN基底膜)
(1)纳米纤维基底膜的制备:将聚丙烯腈(PAN)溶于N-N二甲基甲酰胺中配制浓度为8wt%的纺丝溶液,在50℃加热条件下搅拌至溶解,纺丝参数为:速度0.002mm/s,针头20G,距离13cm,电压13kV,温度25℃,湿度30%,得到纳米纤维基底膜。
对比例2(仅有PCL微球层)
(1)Ag纳米粒子的制备:将0.085g AgNO3和50mL乙醇混合并搅拌至完全溶解,将溶液逐滴滴入到100mL浓度为6g/L的PVP(K-30)乙醇溶液中,再将混合液转入高压反应釜内,于180℃高温下反应18h。将得到的产物用去离子水和无水乙醇分别洗涤,以12000r/min离心10min,冷冻干燥35h,得到Ag纳米粒子。
(2)微球与纳米纤维膜的复合:将2.5g聚己内酯(PCL)与0.4gAg纳米粒子溶解/分散于100mL三氟乙醇溶剂中,室温搅拌6h后得到混合的纺丝液,超声20min,使其形成均匀一致的溶液,在锡箔纸上进行静电喷雾,静电纺丝参数为:电压为10.8kV,推进速度为0.0054mm/s,接收距离为13cm,纺丝温度为25℃,纺丝湿度为50%,得到复合纳米纤维膜。
对比例3(微球中没有负载粒子)
(1)纳米纤维基底膜的制备:将聚丙烯腈(PAN)溶于N-N二甲基甲酰胺中配制浓度为8wt%的纺丝溶液,在50℃加热条件下搅拌至溶解,纺丝参数为:速度0.002mm/s,针头20G,距离13cm,电压13kV,温度25℃,湿度30%,得到纳米纤维基底膜。
(2)微球与纳米纤维膜的复合:将2.5g聚己内酯(PCL)溶解于100mL三氟乙醇溶剂中,室温搅拌6h后得到纺丝液,超声20min,使其形成均匀一致的溶液,在基底膜上进行静电喷雾,静电纺丝参数为:电压为10.8kV,推进速度为0.0054mm/s,接收距离为13cm,纺丝温度为25℃,纺丝湿度为50%,得到复合纳米纤维膜。
对比例4(PCL浓度过低)
(1)纳米纤维基底膜的制备:将聚丙烯腈(PAN)溶于N-N二甲基甲酰胺中配制浓度为8wt%的纺丝溶液,在50℃加热条件下搅拌至溶解,纺丝参数为:速度0.002mm/s,针头20G,距离13cm,电压13kV,温度25℃,湿度30%,得到纳米纤维基底膜。
(2)Ag纳米粒子的制备:将0.1g AgNO3和50mL乙醇混合并搅拌至完全溶解,将溶液逐滴滴入到90mL浓度为6g/L的PVP(K-30)乙醇溶液中,再将混合液转入高压反应釜内,于180℃高温下反应18h。将得到的产物用去离子水和无水乙醇分别洗涤,以12000r/min离心10min,冷冻干燥30h,得到Ag纳米粒子。
(3)微球与纳米纤维膜的复合:将0.2g聚己内酯(PCL)与0.5gAg纳米粒子溶解/分散于100mL三氟乙醇溶剂中,室温搅拌6h后得到混合的纺丝液,超声20min,使其形成均匀一致的溶液,在基底膜上进行静电喷雾,静电纺丝参数为:电压为11.2kV,推进速度为0.0054mm/s,接收距离为12cm,纺丝温度为25℃,纺丝湿度为50%,得到具有抗菌疏水微球层的纳米纤维膜。
对比例5(PCL浓度过高)
(1)纳米纤维基底膜的制备:将聚丙烯腈(PAN)溶于N-N二甲基甲酰胺中配制浓度为8wt%的纺丝溶液,在50℃加热条件下搅拌至溶解,纺丝参数为:速度0.002mm/s,针头20G,距离13cm,电压13kV,温度25℃,湿度30%,得到纳米纤维基底膜。
(2)Ag纳米粒子的制备:将0.085g AgNO3和50mL乙醇混合并搅拌至完全溶解,将溶液逐滴滴入到100mL浓度为6g/L的PVP(K-30)乙醇溶液中,再将混合液转入高压反应釜内,于180℃高温下反应18h。将得到的产物用去离子水和无水乙醇分别洗涤,以12000r/min离心10min,冷冻干燥30h,得到Ag纳米粒子。
(3)微球与纳米纤维膜的复合:将19g聚己内酯(PCL)与0.4g Ag纳米粒子溶解/分散于100mL三氟乙醇溶剂中,室温搅拌6h后得到混合的纺丝液,超声20min,使其形成均匀一致的溶液,在基底膜上进行静电喷雾,静电纺丝参数为:电压为13kV,推进速度为0.0054mm/s,接收距离为13cm,纺丝温度为25℃,纺丝湿度为50%,得到具有抗菌疏水微球层的纳米纤维膜。
对比例6(PCL中Ag比例过高)
(1)纳米纤维基底膜的制备:将聚丙烯腈(PAN)溶于N-N二甲基甲酰胺中配制浓度为8wt%的纺丝溶液,在50℃加热条件下搅拌至溶解,纺丝参数为:速度0.002mm/s,针头20G,距离13cm,电压13kV,温度25℃,湿度30%,得到纳米纤维基底膜。
(2)Ag纳米粒子的制备:将0.08g AgNO3和50mL乙醇混合并搅拌至完全溶解,将溶液逐滴滴入到100mL浓度为6g/L的PVP(K-30)乙醇溶液中,再将混合液转入高压反应釜内,于180℃高温下反应18h。将得到的产物用去离子水和无水乙醇分别洗涤,以12000r/min离心10min,冷冻干燥30h,得到Ag纳米粒子。
(3)微球与纳米纤维膜的复合:将2.5g聚己内酯(PCL)与5gAg纳米粒子溶解/分散于100mL三氟乙醇溶剂中,室温搅拌6h后得到混合的纺丝液,超声20min,使其形成均匀一致的溶液,在基底膜上进行静电喷雾,静电纺丝参数为:电压为13kV,推进速度为0.0054mm/s,接收距离为13cm,纺丝温度为25℃,纺丝湿度为50%,得到具有抗菌疏水微球层的纳米纤维膜。
性能测试
对各实施例以及对比例所得的材料进行测试。其中微球结构通过SEM测定,Ag在PCL层中的状态通过SEM和TEM综合测定,亲疏水性通过水接触角测定,单向导液性能通过模拟实验测定,抗菌效果通过稀释涂板法测定,具体测试方法如下:
单向导液性能测试:将敷料剪成3*5cm的矩形,在PAN侧及PCL侧分别滴加50微升蓝色墨水,记录现象。若墨水可以从PCL测渗透到PAN测,而从PAN侧不能渗透到PCL侧,则敷料具有单向导液性能。
抗菌效果的测试方法:将上述各例中的材料放进含5mL含金黄色葡萄球菌的试管中(金黄色葡萄球菌的含量为107CFU/mL),然后将试管放进震荡培养箱中,于37℃温度下以150rpm震荡4h,取出菌液稀释至不同的梯度浓度在固体培养基上进行涂板。然后放入恒温恒湿培养箱中,于37℃的温度下培养24h,选取合适的培养板对细菌计数。计算出抗菌率。
测试结果如下:
由表中结果可知,在PAN膜表面复合负载Ag纳米粒子的圆盘状PCL微球(实施例1-4),在Ag+的快速释放作用下,可以实现90%以上的抗菌率,同时能够单向导出伤口渗液,从而保持伤口干燥。其中,图1为实施例1制备得到的Ag纳米粒子的透射电镜图;图2为实施例1制备得到PCL层的扫描电镜图;图3为实施例2制备得到的PCL层的扫描电镜图。
若敷料结构中仅有PAN基底膜(对比例1),则不具备疏水性圆盘状微球结构,无法构建Janus结构,不具备单向导液性能、协同抗菌性能,而根据实验计算出的抗菌率可能是归因于有极少部分细菌吸附于纳米纤维膜上,从而导致对照组和实验组的菌落数有差异。
若敷料结构中仅有PCL层(对比例2),则缺少亲水层,无法构成Janus结构的敷料进行单向导液。
若PCL微球中没有负载粒子(对比例3),则敷料无法快速释放Ag+,而根据实验计算出的抗菌率可能是归因于有极少部分细菌吸附于纳米纤维膜上,从而导致对照组和实验组的菌落数有差异。
若PCL浓度过低(对比例4),则圆盘状微球无法形成,PCL侧疏水性下降,粒子暴露。
若PCL浓度过高(对比例5),则形成了纳米纤维结构,疏水性下降,不利于防止敷料与伤口粘连,另外,纤维结构完全包裹了Ag纳米粒子,降低了粒子与外界环境的接触,不利于Ag+的快速释放,抗菌率明显下降。
若PCL中Ag比例过高(对比例6),则PCL无法正常负载Ag纳米粒子,微球结构无法形成,粒子裸露,PCL侧疏水性下降。
本发明中所用原料、设备,若无特别说明,均为本领域的常用原料、设备;本发明中所用方法,若无特别说明,均为本领域的常规方法。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围。

Claims (6)

1.一种具有抗菌疏水微球层的纳米纤维膜的制备方法,其特征在于包括以下步骤:
(1)纳米纤维基底膜的制备:将聚丙烯腈(PAN)溶于N-N二甲基甲酰胺中,加热搅拌溶解,进行静电纺丝,得到纳米纤维基底膜;
(2)Ag纳米粒子的制备:将AgNO3和乙醇混合并搅拌至完全溶解,将溶液逐滴滴入到PVP乙醇溶液中,再将混合液转入高压反应釜内,于高温下反应;将得到的产物用去离子水和无水乙醇分别洗涤离心,进行冷冻干燥,得到Ag纳米粒子;
(3)微球与纳米纤维膜的复合:将聚己内酯与Ag纳米粒子溶解或分散于三氟乙醇溶剂中,室温搅拌后得到聚合物纺丝液,进行超声处理以获得均匀一致的溶液,在纳米纤维基底膜上进行静电喷雾,得到具有抗菌疏水微球层的纳米纤维膜;
所述抗菌疏水微球层呈两面凹陷圆盘状;
所述聚合物纺丝液中聚己内酯的浓度为0.5-5wt%;
所述Ag纳米粒子与聚己内酯的质量比为0.1:1-1.5:1。
2.如权利要求1所述的制备方法,其特征在于:步骤(1)中,所述聚丙烯腈溶解后的浓度为7-10wt%,加热温度为50-55℃。
3.如权利要求1或2所述的制备方法,其特征在于:步骤(1)中,所述静电纺丝的参数为,速度0.002~0.003 mm/s,针头18-20G,距离10~15cm,电压12~15 kV,温度25~35℃,湿度30~50%,纺丝时间3-10h。
4. 如权利要求1所述的制备方法,其特征在于:步骤(2)中,所述AgNO3、乙醇、PVP 乙醇溶液的用量比为0.05-0.1g:40-50mL:90-100mL,PVP乙醇溶液的浓度为4-6g/L,反应温度为170-200℃,反应时间为17-20h,离心转速为10000-12000r/min,离心时间为10-15min,干燥时间30-40h。
5.如权利要求1所述的制备方法,其特征在于:步骤(3)中,
所述室温搅拌的时间为4-8 h;
所述超声处理的时间为10-30 min。
6.如权利要求1所述的制备方法,其特征在于:步骤(3)中,所述静电纺丝的参数为:电压为5~30 kV,推进速度为0.0003~0.006 mm/s,接收距离为8~15 cm,纺丝温度为20~40 ℃,纺丝湿度为40~60%。
CN202211029088.0A 2022-08-23 2022-08-23 一种具有抗菌疏水微球层的纳米纤维膜的制备方法 Active CN115323624B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211029088.0A CN115323624B (zh) 2022-08-23 2022-08-23 一种具有抗菌疏水微球层的纳米纤维膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211029088.0A CN115323624B (zh) 2022-08-23 2022-08-23 一种具有抗菌疏水微球层的纳米纤维膜的制备方法

Publications (2)

Publication Number Publication Date
CN115323624A CN115323624A (zh) 2022-11-11
CN115323624B true CN115323624B (zh) 2024-02-13

Family

ID=83928813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211029088.0A Active CN115323624B (zh) 2022-08-23 2022-08-23 一种具有抗菌疏水微球层的纳米纤维膜的制备方法

Country Status (1)

Country Link
CN (1) CN115323624B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005737A1 (en) * 2022-12-20 2024-01-04 Bursa Uludağ Üni̇versi̇tesi̇ Nanofiber wound dressing with uridine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422255A (zh) * 2012-05-17 2013-12-04 五邑大学 一种可用于医用敷料含纳米银的复合纤维膜的制备方法
CN103586020A (zh) * 2013-11-22 2014-02-19 吉林大学 一种柔性纳米纤维基硼烷氨水解制氢催化剂及其制备方法
CN104153120A (zh) * 2014-06-26 2014-11-19 浙江理工大学 一种负载纳米银-纤维素纳米晶杂化材料的抗菌医用敷料膜及其制备方法
CN106012297A (zh) * 2016-06-30 2016-10-12 吉林大学 一种医用复合纤维三维结构敷料的制备方法
WO2018090925A1 (zh) * 2016-11-16 2018-05-24 华南理工大学 一种皮肤烧伤修复材料及其制备方法
CN108785728A (zh) * 2017-05-05 2018-11-13 国家纳米科学中心 含药物中间体修饰的纳米金的抗菌敷料、其制备方法及应用
CN109367165A (zh) * 2018-09-10 2019-02-22 中原工学院 一种LiNbO3/PAN复合纳米纤维驻极体防雾霾窗纱及其制备方法
CN110894677A (zh) * 2019-11-08 2020-03-20 东华大学 一种导电纳米纤维膜及其制备方法
CN111939307A (zh) * 2020-08-21 2020-11-17 滨州医学院 一种医用复合纳米纤维敷料及其制备方法与应用
CN114318680A (zh) * 2022-01-18 2022-04-12 郑州大学 一种抗菌可降解薄膜材料及其制备方法和应用
CN114438605A (zh) * 2020-11-06 2022-05-06 中国科学院理化技术研究所 一种Janus纤维湿态粘附剂及其制备方法
CN114558163A (zh) * 2022-03-07 2022-05-31 华南农业大学 一种负载中药微球纳米纤维敷料的制备方法和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422255A (zh) * 2012-05-17 2013-12-04 五邑大学 一种可用于医用敷料含纳米银的复合纤维膜的制备方法
CN103586020A (zh) * 2013-11-22 2014-02-19 吉林大学 一种柔性纳米纤维基硼烷氨水解制氢催化剂及其制备方法
CN104153120A (zh) * 2014-06-26 2014-11-19 浙江理工大学 一种负载纳米银-纤维素纳米晶杂化材料的抗菌医用敷料膜及其制备方法
CN106012297A (zh) * 2016-06-30 2016-10-12 吉林大学 一种医用复合纤维三维结构敷料的制备方法
WO2018090925A1 (zh) * 2016-11-16 2018-05-24 华南理工大学 一种皮肤烧伤修复材料及其制备方法
CN108785728A (zh) * 2017-05-05 2018-11-13 国家纳米科学中心 含药物中间体修饰的纳米金的抗菌敷料、其制备方法及应用
CN109367165A (zh) * 2018-09-10 2019-02-22 中原工学院 一种LiNbO3/PAN复合纳米纤维驻极体防雾霾窗纱及其制备方法
CN110894677A (zh) * 2019-11-08 2020-03-20 东华大学 一种导电纳米纤维膜及其制备方法
CN111939307A (zh) * 2020-08-21 2020-11-17 滨州医学院 一种医用复合纳米纤维敷料及其制备方法与应用
CN114438605A (zh) * 2020-11-06 2022-05-06 中国科学院理化技术研究所 一种Janus纤维湿态粘附剂及其制备方法
CN114318680A (zh) * 2022-01-18 2022-04-12 郑州大学 一种抗菌可降解薄膜材料及其制备方法和应用
CN114558163A (zh) * 2022-03-07 2022-05-31 华南农业大学 一种负载中药微球纳米纤维敷料的制备方法和应用

Also Published As

Publication number Publication date
CN115323624A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
Fahimirad et al. Naturally-derived electrospun wound dressings for target delivery of bio-active agents
AU2019101531A4 (en) Nano-oxide/kaolin composite hemostatic antibacterial material, hemostatic healing-promoting dressing and preparation method thereof
Guo et al. Sequential release of drugs form a dual-delivery system based on pH-responsive nanofibrous mats towards wound care
CN115475272B (zh) 一种具有抗菌抗粘连功能的纳米纤维膜的制备方法
CN113499474B (zh) Zif-67修饰的中空二氧化钒壳核结构微纳米复合物及其制备方法和应用
KR20190021205A (ko) 방출가능한 도펀트를 갖는 세라믹 입자들을 함유하는 나노섬유질 매트
US20210162090A1 (en) Composite fiber
CN115323624B (zh) 一种具有抗菌疏水微球层的纳米纤维膜的制备方法
Li et al. Silk fibroin/polycaprolactone-polyvinyl alcohol directional moisture transport composite film loaded with antibacterial drug-loading microspheres for wound dressing materials
CN109276577B (zh) 一种一氧化氮纳米复合水凝胶及其制备方法和应用
Liu et al. An asymmetric wettable chitosan–silk fibroin composite dressing with fixed silver nanoparticles for infected wound repair: in vitro and in vivo evaluation
Yang et al. Marine polymers-alginate/chitosan composited microcapsules for wound healing
Du et al. Dual drug-loaded hydrogels with pH-responsive and antibacterial activity for skin wound dressing
TWI714373B (zh) 一種複合纖維
Cui et al. A chitosan-based self-healing hydrogel for accelerating infected wound healing
Mirjalili et al. Controlled release of protein from gelatin/chitosan hydrogel containing platelet-rich fibrin encapsulated in chitosan nanoparticles for accelerated wound healing in an animal model
Liu et al. Fabrication of antimicrobial multilayered nanofibrous scaffolds-loaded drug via electrospinning for biomedical application
Li et al. Dissolving microneedles based on ZnO nanoparticles and an ionic liquid as synergistic antibacterial agents
CN115105629B (zh) 一种抗菌水凝胶及其制备方法和应用
Chung et al. Incorporating chitosan (CS) and TPP into silk fibroin (SF) in fabricating spray-dried microparticles prolongs the release of a hydrophilic drug
CN116077709A (zh) 一种抗菌性敷料及其制备方法和应用
CN113694247B (zh) 一种多功能性复合止血海绵的制备方法
CN113144271B (zh) 一种具有载药功能的医用敷料的制备方法
Hou et al. Versatile Bioactive Glass/Zeolitic Imidazolate Framework-8-Based Skin Scaffolds toward High-Performance Wound Healing
Asadian et al. Nanotechnology-based therapies for skin wound regeneration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant