CN115323425A - 空心钌铜合金纳米电催化材料及其制备方法 - Google Patents

空心钌铜合金纳米电催化材料及其制备方法 Download PDF

Info

Publication number
CN115323425A
CN115323425A CN202210963944.3A CN202210963944A CN115323425A CN 115323425 A CN115323425 A CN 115323425A CN 202210963944 A CN202210963944 A CN 202210963944A CN 115323425 A CN115323425 A CN 115323425A
Authority
CN
China
Prior art keywords
ruthenium
hollow
copper alloy
copper
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210963944.3A
Other languages
English (en)
Inventor
李婉
孙莹莹
徐江
白洪海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Testing International Group Co ltd
Original Assignee
Centre Testing International Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Testing International Group Co ltd filed Critical Centre Testing International Group Co ltd
Priority to CN202210963944.3A priority Critical patent/CN115323425A/zh
Publication of CN115323425A publication Critical patent/CN115323425A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0549Hollow particles, including tubes and shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种空心钌铜合金纳米电催化材料,用于电解水析氢反应;所述空心钌铜合金纳米电催化材料包括有多个空心纳米颗粒,所述空心纳米颗粒呈球状,所述空心纳米颗粒的壳层结构为钌铜合金。所述空心纳米颗粒的直径为15至50nm。本发明先将钴盐中的钴离子还原形成钴单质纳米颗粒作为模板,再通过钌、铜金属离子与钴之间的置换反应合成钌铜合金纳米电催化材料。本发明公开的空心钌铜合金纳米催化材料中的纳米颗粒呈空心球状,增加了材料的层次结构和比表面积,提供了更多的活性位点,提升了材料的催化性能;本发明公开的制备方法的操作温度为室温,合成工艺简单,原料及操作成本低廉,便于生产制造。

Description

空心钌铜合金纳米电催化材料及其制备方法
技术领域
本发明涉及材料科学和电催化技术领域,尤其涉及一种空心钌铜合金纳米电催化材料及其制备方法。
背景技术
凭借高热值、可再生、二氧化碳零排放等特点,氢气逐渐成为公认的极具发展潜力的理想清洁能源。目前,工业上主要采用的制氢方法包括:甲烷重整、醇裂解和煤炭气化,但是这些方法的碳排放量都很高,也不具备可持续性。相比较而言,可持续生产高纯度氢气和氧气的电催化分解水技术具有极大的应用优势,是环保、高效制氢的有效途径。析氢反应(HER)和析氧反应(OER)是电解水技术的核心组成,而其中高效的催化剂是突破反应动力学惰性引起的过高电位这一瓶颈的关键所在。铂基贵金属材料被认为是最先进的析氢反应催化剂,然而其昂贵的价格和有限的存储量大大限制了氢能源的商业化应用。因此,开发经济、高效且稳定的新型电解水催化剂对实现高效电解水制氢至关重要。
发明内容
为了解决现有技术中,铂基贵金属析氢反应催化剂材料价格昂贵,成本高昂的问题,本发明提出一种价格低廉,用以代替铂基贵金属析氢反应催化剂的空心钌铜合金纳米电催化材料,本发明还公开了所述电催化剂材料的制备方法。
本发明是通过以下技术方案实现的:
空心钌铜合金纳米电催化材料,用于电解水析氢反应;
所述空心钌铜合金纳米电催化材料包括有多个空心纳米颗粒,所述空心纳米颗粒呈球状,所述空心纳米颗粒的壳层为钌铜合金。
进一步的,所述空心纳米颗粒的直径为15至50nm。
空心钌铜合金纳米电催化材料制备方法,包括:
将钴盐与柠檬酸钠溶于水中,在氮气保护下搅拌至完全溶解且混合均匀;
将硼氢化钠溶液加入至钴盐与柠檬酸钠溶液中,充分反应生成纳米钴胶体;
将钌盐溶液和铜盐溶液混合均匀后滴加至纳米钴胶体中,搅拌至充分反应得到纳米钌铜胶体;
离心纳米钌铜胶体获得沉淀,并用无水乙醇清洗沉淀,获取如上述的空心钌铜合金纳米电催化材料。
进一步的,所述将钴盐与柠檬酸钠溶于水中具体包括:
所述钴盐为氯化钴,所述钴盐的质量为9-18mg;
所述柠檬酸钠的质量为20-40mg;
所述水为除气水,体积为50mL。
进一步的,所述钴盐与所述柠檬酸钠的物质的量的比为0.45:1。
进一步的,所述硼氢化钠溶液为冰水溶液。
进一步的,所述钌盐溶液与所述铜盐溶液混合前的浓度相同,且范围均为5-10mmol/L;
所述钌盐溶液混合前的体积范围为0.8-6.4mL;
所述铜盐溶液混合前的体积范围为0.8-6.4mL。
进一步的,所述钌盐溶液与所述铜盐溶液混合前的浓度为5mmol/L;所述钌盐溶液的体积为1.6mL,所述铜盐溶液的体积为6.4mL。
进一步的,所述钌盐溶液与所述铜盐溶液混合前的浓度为10mmol/L;所述钌盐溶液的体积为0.8mL,所述铜盐溶液的浓度为3.2mL。
进一步的,所述离心纳米钌铜胶体获得沉淀,并用无水乙醇清洗沉淀具体包括:
离心纳米钌铜胶体,移出上层清液保留沉淀;
向沉淀中加入无水乙醇,并使沉淀分散在无水乙醇内;
重复离心和无水乙醇清洗,至无水乙醇清洗空心钌铜合金纳米颗粒三次。
本发明的有益效果在于:
本发明公开的空心钌铜合金纳米催化材料中的纳米颗粒呈空心球状,空心结构形貌增加了材料的层次结构和比表面积,提供了更多的活性位点,提升了材料的催化性能;同时,本发明中所用的钌与铜的市场价格低廉,相较于铂,可以有效降低催化材料的生产制作成本;此外,本发明采用的将金属合金化的方法,有效调节催化材料表面的电子和结构性质,钌铜间的协同效应提升了材料的催化性能;
本发明公开的制备方法的操作温度为室温,实验操作简单,易于重复,原料及操作成本低,便于生产制造。
附图说明
图1是本发明以实施例1制备获取的空心钌铜合金纳米电催化材料的透射电镜图;
图2是本发明以实施例2制备获取的空心钌铜合金纳米电催化材料的透射电镜图;
图3是本发明分别以实施例1和实施例2制备得到的空心钌铜合金纳米电催化材料的析氢反应极化曲线;
图4是图3中两例实施例在电流密度为10mA·cm-2和50mA·cm-2时的过电位。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明做进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明公开了一种空心钌铜合金纳米电催化材料,应用于电解水的析氢反应。空心钌铜合金纳米电催化材料由多个空心纳米颗粒组成。请参考图1和图2,空心纳米颗粒呈球状,空心纳米颗粒的壳层为钌铜合金。进一步的,空心纳米颗粒的直径范围15至50nm。
本发明公开的空心钌铜合金纳米电催化材料作为铂的低价替代品,金属钌(市场价格仅为铂价格的4%)具有与铂相似的氢键强度(65kcal/mol),因此氢气解吸能垒低,HER催化性能优异,在电解水析氢领域具有广阔的发展前景,本发明公开的空心钌铜合金纳米电催化材料,旨在提供一种廉价的、催化性能有望替代铂的电催化剂。
本发明还公开了制备上述空心钌铜合金纳米电催化材料的制备方法,制备方法包括如下步骤:
步骤一:将9-18mg的钴盐与20-40mg的柠檬酸钠溶于50mL的除气水中,在氮气保护下搅拌至完全溶解且均匀混合,搅拌转速为200-400rpm,搅拌时间30-60min。在本发明的一个可实现的实施例中,以氯化钴为例,氯化钴与柠檬酸钠的物质的量比为0.45:1,所述柠檬酸钠的使用量为40mg,所述氯化钴的使用量为18mg。氮气主要起到保护作用,也可以选择用氩气等化学性质呈惰性的气体,氮气或惰性气体通入反应环境的目的,主要是排除反应环境外的氧气和水蒸气,避免影响后续钴纳米颗粒的合成,同时避免氧化钌离子,干扰最终合金产物的形成。
步骤二:将浓度为1mg/mL,体积为40mL的硼氢化钠溶液加入到钴盐与柠檬酸钠溶液中,充分反应生成钴纳米颗粒。硼氢化钠具有很强的还原性,在常温下会与水反应缓慢生成氢气,因而,本发明中的硼氢化钠溶液为冰水溶液,用于降低硼氢化钠与水反应的速率,保证其还原性,使其在加入到混合液中时,能将钴盐还原成钴单质。
钴离子被还原成单质后,在液体环境中以钴纳米颗粒形式存在,钴纳米颗粒的直径在1-100nm之间,钴与液体环境形成纳米钴胶体形式的分散系。
步骤三:将钌盐溶液和铜盐溶液混合均匀后滴加至纳米钴胶体中,充分反应得到纳米钌铜胶体。钌离子与铜离子氧化钴单质,使钴再次以离子的形式分散在液体环境中,钌离子和铜离子则获得电子后逐渐附着在钴颗粒的外围,直至形成以钌铜合金为壳,内部中空的多个空心钌铜合金纳米颗粒,形成的钌铜合金纳米颗粒的直径范围同样在1-100nm之间,因而在反应完成后,合金颗粒与液体环境形成纳米钌铜胶体形式的分散系。
本发明的步骤三有两种实施方式,以下将分别进行介绍:
实施例1,将1.6mL浓度为5mmol/L的氯化钌和6.4mL浓度为5mmol/L的氯化铜混合均匀后滴加到纳米钴胶体中,搅拌60min,得到纳米钌铜胶体;
实施例2,将0.8mL浓度为10mmol/L的氯化钌和3.2mL浓度为10mmol/L的氯化铜混合均匀后滴加到纳米钴胶体中,搅拌60min,得到纳米钌铜胶体。
在上述的实施方式中,氯化钌和氯化铜的总物质的量不变,只是更改了溶液的浓度及使用体积。
在上述的反应中,钴单质纳米颗粒为反应模板,溶液中的钌离子与铜离子与钴单质发生置换反应,钌和铜逐渐在钴纳米颗粒外形成壳层结构,颗粒内部的钴单质逐渐释放至溶液中,最后形成钌铜合金纳米颗粒。
步骤四:
以10000转/分钟离心纳米钌铜胶体10分钟,移出上层清液后保留沉淀;
向沉淀中加入无水乙醇,并超声震荡使沉淀分散在无水乙醇内,以实现清洗沉淀的目的;
重复执行“离心-移出上层清液-无水乙醇清洗”的操作,直至沉淀第三次分散在无水乙醇内,此时无水乙醇内即分散有获取的空心钌铜合金纳米电催化材料。
经过上述制备后,运用透射电镜观察制备的空心钌铜合金纳米电催化材料的结构,本发明公开的制备方法中,步骤三有两种实施方式,最终获取材料的透射电镜图分别如图1和图2所示。其中,图1的纳米颗粒直径分布在20-40nm范围,图2的纳米颗粒直径分布范围为15-35nm。
制备的电催化材料需验证其电催化性能,本发明公开的验证方法是通过三电极体系测试系统实现的:其中参比电极采用饱和甘汞电极,对电极为碳棒,工作电极为涂布在玻碳电极表面的空心钌铜合金纳米电催化材料,玻碳电极的直径为3mm,工作电极的制备方法为:
将一定质量的空心钌铜合金纳米电催化材料分散在3mL的无水乙醇中,用移液枪分次量取共10μL滴在玻碳电极表面,至自然干燥;随后,用移液枪量取1μL Nafion(5%)溶液滴在玻碳电极表面,至自然干燥。之后进行LSV测试,测试在0.5M的硫酸溶液中进行,其中,线性扫描速度为5mV/s。
图3为本发明中用实施例1和实施例2两种方法制备的空心钌铜合金纳米电催化材料各自的LSV曲线,从图中可以看出,两种直径的空心钌铜合金纳米电催化材料均表现出了良好的HER析氢性能,其中可见,如步骤三以实施例2操作制作的空心钌铜合金纳米电催化材料催化性能更好。图4列举了图3中实施例1和实施例2驱动10mA·cm-2和50mA·cm-2所需要的电势分别为252.0mV、307.5mV和201.8mV、344.3mV。
在本发明其他的可实现的实施例中,本发明公开的所述空心钌铜合金纳米电催化材料还被用于实时监测催化反应过程,操作人员利用铜本身的SERS增强性能对催化过程中钌铜表面物种的拉曼信号加以收集,通过分析其变化,了解其反应过程或推知其反应机理。本发明公开的空心钌铜合金纳米电催化材料中的纳米颗粒呈空心球状,空心结构形貌增加了材料的层次结构和比表面积,提供了更多的活性位点,提高了材料的催化效率;同时,本发明中所用的钌与铜的市场价格低廉,相较于铂,可以有效降低催化材料的生产制作成本;此外,本发明中采用的将金属合金化的方法,能有效调节催化材料表面的电子和结构性质,钌铜间的协同效应有效提升材料的催化性能;
本发明公开的制备方法的操作温度为室温,实验操作简单,易于重复,原料及操作成本低,便于生产制造。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.空心钌铜合金纳米电催化材料,其特征在于,用于电解水析氢反应;
所述空心钌铜合金纳米电催化材料包括有多个空心纳米颗粒,所述空心纳米颗粒呈球状,所述空心纳米颗粒的壳层为钌铜合金。
2.根据权利要求1所述的空心钌铜合金纳米电催化材料,其特征在于,所述空心纳米颗粒的直径为15-50nm。
3.空心钌铜合金纳米电催化材料制备方法,其特征在于,包括:
将钴盐与柠檬酸钠溶于水中,在氮气保护下搅拌至完全溶解且混合均匀;
将硼氢化钠溶液加入至钴盐与柠檬酸钠溶液中,充分反应生成纳米钴胶体;
将钌盐溶液和铜盐溶液混合均匀后滴加至纳米钴胶体中,搅拌至充分反应得到纳米钌铜胶体;
离心纳米钌铜胶体获得沉淀,并用无水乙醇清洗沉淀,获取如权利要求1或2所述的空心钌铜合金纳米电催化材料。
4.根据权利要求3所述的钌铜合金纳米电催化材料制备方法,其特征在于,所述将钴盐与柠檬酸钠溶于水中具体包括:
所述钴盐为氯化钴,所述钴盐的质量为9-18mg;
所述柠檬酸钠的质量为20-40mg;
所述水为除气水,体积为50mL。
5.根据权利要求3所述的空心钌铜合金纳米电催化材料制备方法,其特征在于,所述钴盐与所述柠檬酸钠的物质的量的比为0.45:1。
6.根据权利要求3所述的空心钌铜合金纳米电催化材料制备方法,其特征在于,所述硼氢化钠溶液为冰水溶液。
7.根据权利要求3所述的空心钌铜合金纳米电催化材料制备方法,其特征在于,所述钌盐溶液与所述铜盐溶液混合前的浓度相同,且范围均为5-10mmol/L;
所述钌盐溶液混合前的体积范围为0.8-6.4mL;
所述铜盐溶液混合前的体积范围为0.8-6.4mL。
8.根据权利要求7所述的空心钌铜合金纳米电催化材料制备方法,其特征在于,所述钌盐溶液与所述铜盐溶液混合前的浓度为5mmol/L;所述钌盐溶液的体积为1.6mL,所述铜盐溶液的体积为6.4mL。
9.根据权利要求7所述的空心钌铜合金纳米电催化材料制备方法,其特征在于,所述钌盐溶液与所述铜盐溶液混合前的浓度为10mmol/L;所述钌盐溶液的体积为0.8mL,所述铜盐溶液的浓度为3.2mL。
10.根据权利要求3所述的空心钌铜合金纳米电催化材料制备方法,其特征在于,所述离心纳米钌铜胶体获得沉淀,并用无水乙醇清洗沉淀具体包括:
离心纳米钌铜胶体,移出上层清液保留沉淀;
向沉淀中加入无水乙醇,并使沉淀分散在无水乙醇内;
重复离心和无水乙醇清洗,至无水乙醇清洗空心钌铜合金纳米颗粒三次。
CN202210963944.3A 2022-08-11 2022-08-11 空心钌铜合金纳米电催化材料及其制备方法 Pending CN115323425A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210963944.3A CN115323425A (zh) 2022-08-11 2022-08-11 空心钌铜合金纳米电催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210963944.3A CN115323425A (zh) 2022-08-11 2022-08-11 空心钌铜合金纳米电催化材料及其制备方法

Publications (1)

Publication Number Publication Date
CN115323425A true CN115323425A (zh) 2022-11-11

Family

ID=83923201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210963944.3A Pending CN115323425A (zh) 2022-08-11 2022-08-11 空心钌铜合金纳米电催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115323425A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616165A (zh) * 2003-11-14 2005-05-18 中国科学院化学研究所 一种纳米金属和双金属空心球的制备方法
CN107890873A (zh) * 2017-11-06 2018-04-10 许昌学院 一种空心状铂铜钴三元合金纳米颗粒模拟酶及其制备和应用
CN111957323A (zh) * 2020-08-21 2020-11-20 中国地质大学(武汉) 硼掺杂的核壳结构催化剂及其制备方法和应用
CN112221502A (zh) * 2020-09-29 2021-01-15 清华大学 一种空心球壳载体负载镍基合金催化剂及其制备方法
CN112473691A (zh) * 2020-11-28 2021-03-12 海南大学 一种低铂中空多面体纳米结构催化剂的制备方法
US20210238755A1 (en) * 2018-06-27 2021-08-05 Oxford University Innovation Limited Hydrogen production
CN114618551A (zh) * 2022-03-01 2022-06-14 西北工业大学 一种负载型纳米合金催化剂及普适性制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616165A (zh) * 2003-11-14 2005-05-18 中国科学院化学研究所 一种纳米金属和双金属空心球的制备方法
CN107890873A (zh) * 2017-11-06 2018-04-10 许昌学院 一种空心状铂铜钴三元合金纳米颗粒模拟酶及其制备和应用
US20210238755A1 (en) * 2018-06-27 2021-08-05 Oxford University Innovation Limited Hydrogen production
CN111957323A (zh) * 2020-08-21 2020-11-20 中国地质大学(武汉) 硼掺杂的核壳结构催化剂及其制备方法和应用
CN112221502A (zh) * 2020-09-29 2021-01-15 清华大学 一种空心球壳载体负载镍基合金催化剂及其制备方法
CN112473691A (zh) * 2020-11-28 2021-03-12 海南大学 一种低铂中空多面体纳米结构催化剂的制备方法
CN114618551A (zh) * 2022-03-01 2022-06-14 西北工业大学 一种负载型纳米合金催化剂及普适性制备方法

Similar Documents

Publication Publication Date Title
Xu et al. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea
Cheng et al. Recent Progress of Sn‐Based Derivative Catalysts for Electrochemical Reduction of CO2
Wang et al. Intensified Kirkendall effect assisted construction of double-shell hollow Cu-doped CoP nanoparticles anchored by carbon arrays for water splitting
Mou et al. Enhanced electrochemical reduction of carbon dioxide to formate with in-situ grown indium-based catalysts in an aqueous electrolyte
Ren et al. Rod-like MnO2 boost Pd/reduced graphene oxide nanocatalyst for ethylene glycol electrooxidation
CN108970617B (zh) 一种负载型电解水析氧反应电催化剂及其制备方法
Wang et al. MoS2 nanosheets grown vertically on N-doped carbon nanotubes embedded CoP nanoparticles for efficient hydrogen evolution
Xin et al. Visualization of the electrocatalytic activity of three-dimensional MoSe 2@ reduced graphene oxide hybrid nanostructures for oxygen reduction reaction
Gong et al. Silk fibroin-derived carbon aerogels embedded with copper nanoparticles for efficient electrocatalytic CO2-to-CO conversion
Lv et al. Carbon-quantum-dots-involved Fe/Co/Ni phosphide open nanotubes for high effective seawater electrocatalytic decomposition
Ai et al. Carbon dioxide electroreduction into formic acid and ethylene: a review
Yu et al. Universal MOF-Mediated synthesis of 2D CoNi-based layered triple hydroxides electrocatalyst for efficient oxygen evolution reaction
Ren et al. One-pot synthesis of alloyed PdAg networks as efficient catalysts of ethylene glycol electro-oxidation in alkaline media
Su et al. Palladium nanoparticles immobilized in B, N doped porous carbon as electrocatalyst for ethanol oxidation reaction
Govindaraju et al. Solvothermal decoration of Cu3SnS4 on reduced graphene oxide for enhanced electrocatalytic hydrogen evolution reaction
CN111359613A (zh) 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料
CN110212204B (zh) 一种碳纳米片支撑型燃料电池正极材料及其制备方法和应用
He et al. Fabrication of hierarchically flower-like trimetallic coordination polymers via ion-exchange strategy for efficient electrocatalytic oxygen evolution
Fadaeifar et al. The influence of annealing temperature on the electrocatalytic performance of NiCo2O4/rGONRs in the methanol oxidation reaction
Salarizadeh et al. Comparison of methanol oxidation reaction process for NiCo2O4/X (X= rGO, MWCNTs, HCNs) nanocatalyst
Yu et al. One-step production of Pt–CeO2/N-CNTs electrocatalysts with high catalytic performance toward methanol oxidation
CN111313042B (zh) 一种双功能氧化电催化剂及其制备方法
Tai et al. Galvanic replacement-mediated synthesis of Pd–Cu alloy nanospheres as electrocatalysts for formic acid oxidation
CN107774247B (zh) 一种二氧化碳电化学还原催化剂及其制备方法
Bai et al. Rapid and facile CuCl assistant synthesis of PtCu 3 nanoframes as efficient catalysts for electroxidation of methanol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination