CN115323374A - 一种钢带表面铌-钨合金镀层的制备方法 - Google Patents

一种钢带表面铌-钨合金镀层的制备方法 Download PDF

Info

Publication number
CN115323374A
CN115323374A CN202210981162.2A CN202210981162A CN115323374A CN 115323374 A CN115323374 A CN 115323374A CN 202210981162 A CN202210981162 A CN 202210981162A CN 115323374 A CN115323374 A CN 115323374A
Authority
CN
China
Prior art keywords
steel strip
niobium
plating layer
tungsten alloy
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210981162.2A
Other languages
English (en)
Inventor
黄菲
马振雄
成焕仁
肖伽励
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Polytechnic Institute
Original Assignee
Yangzhou Polytechnic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Polytechnic Institute filed Critical Yangzhou Polytechnic Institute
Priority to CN202210981162.2A priority Critical patent/CN115323374A/zh
Publication of CN115323374A publication Critical patent/CN115323374A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemically Coating (AREA)

Abstract

一种钢带表面铌‑钨合金镀层的制备方法:以IF钢冷轧钢带作为基材,常规的碱液脱脂除油;常规水洗并烘干至钢带表面无水分;在H2保护气氛下进行第一次退火;镀覆。本发明钢带表面生成一层厚度为20~27µm的Ti‑Cr/Mo/Nb‑W复合镀层,孔隙率不超过1个/cm2,镀层表面质量良好;镀层表面硬度为290~310 HV,抗拉强度为1000~1020 MPa,延伸率为8.0~9.5%,应变硬化指数为0.25~0.28,塑性应变比为2.3~2.6;在1×104 N压力下,反复擦拭1×105次后,镀层硬度值变化率不超过0.04%,磨损率不超过0.02%,耐磨性能良好,抗高温氧化及耐热性能、抗热震性能均良好。整个复合镀层性能完全满足行业要求。

Description

一种钢带表面铌-钨合金镀层的制备方法
技术领域
本发明属于材料表面处理技术领域,具体地涉及一种钢带表面铌-钨合金镀层的制备方法。
背景技术
铌(Nb)和钨(W)均属于难熔金属,具有熔点高、硬度大、强度高、耐蚀性好、耐热性强、资源储量丰富、价格适中等特点。其组成的铌-钨合金更是广泛用于制造航天航空飞行器的零部件、电光源及硬质合金等,尤其适用于长时间在高温环境下服役。但是,单纯铌-钨合金的缺点也很明显:质地坚硬、脆性大、塑性低、延展性差、不易进行变形加工。特别是大尺寸、大规格的固态成品制备过程中往往需要大量的原料金属,极大增加了冶炼、轧制、热处理及冲压成型等诸多工序的制造难度与生产成本,污染了环境,从而限制了铌-钨合金的进一步推广与应用。
经检索:
中国专利公开号为CN106435317A的文献,公开了《一种铌钨合金及其制备方法》。其合金中的各组分重量份数配比如下:铌:100~102份,碳化钨粉:14~16份,锆:5~7份,锡:1~3份,铱:1~3份,碳化铪:5~7份,碳化钛:1~3份,碳化钽:2~4份,氧化镱:2~4份,烧结铝:1~3份,氮化铝:1~3份,氮化镁:1~3份,二氧化硅:1~3份,氧化钇:1~3份,碳化硼2~4份。其制备方法为:将铌、碳化钨粉、锆、锡、铱、碳化铪、碳化钛、碳化钽和氧化镱一起倒入到金属熔炼炉中,然后加热至900℃,待所有原料完全熔化后进行搅拌,制得液体金属,备用。再将烧结铝、氮化铝、氮化镁、二氧化硅、氧化钇和碳化硼一起倒入到纳米粉碎机中进行粉碎处理,制得纳米粉末,备用。将制得的纳米粉末倒入到前面所得到的液体混合金属中,充分搅拌,制得混合液体金属,并将其再倒入到压铸机中进行压铸,即得铌钨合金。产品硬度为88HRC,抗拉强度为455MPa。尽管如此,该文献的不足在于:一是合金成分数量众多、极其复杂,包括纯金属、碳化物、氮化物、氧化物等,各组分理化性质差别巨大,因而进行完整、单纯的合金化反应十分困难,产物纯度不高;二是原料中碳化物、氮化物、氧化物的比例太高,造成产物过于坚硬,达到88HRC,脆性很大;但是强度却很低,仅为455MPa,难以长时间应用于高温环境,因而产品的综合使用性能不足;三是上述原料均为高熔点的金属或化合物,进行熔炼时能耗较高,制得的纳米粉末易形成粉尘污染环境,环保性不足;四是上述原料中包含矿藏储量极少、价格昂贵的贵金属铱,加之成分过于复杂,因而原料成本较高。
综上所述,现有铌-钨合金的生产工艺存在成本高、环保性差、产品性能不足等缺点。因此,有必要发展新的合金制备方法,以显著提高产品的性价比和环保性。
发明内容
本发明在于克服现有技术存在的生产成本高、环保性低、产品性能差等不足,提供一种能显著降低成本、减少污染、提高产品性能的钢带表面铌-钨合金镀层的制备方法。
实现上述目的的措施:
一种钢带表面铌-钨合金镀层的制备方法,其步骤如下:
1)以IF钢冷轧钢带作为基材,进行常规的碱液脱脂除油;
2)常规水洗并烘干至钢带表面无水分;
3)在H2保护气氛下进行第一次退火,控制退火温度为760~790℃,保温时间为32~42min;
4)进行镀覆:
A、物理气相沉积Ti-Cr合金,控制Ti的质量百分比为78~84%,Cr的质量百分比为22~16%,控制沉积速率为0.15~0.35μm/min,沉积时间为35~45min;
B、热喷涂Mo,其间:采用Ar作为保护气体;控制Mo的平均粒径为0.45~0.55μm,喷涂速度为120~220m/s,沉积率为0.055~0.085kg/h;
C、双离子注入Nb与W,控制注入能量为340~350KeV,Nb的注入剂量为(5.5~6.3)×1022/cm2,W的注入剂量为(4.3~5.1)×1022/cm2
D、在Ar保护气氛下进行第二次退火,控制退火温度为790~810℃,保温时间为7~13min;
E、自然空冷至室温。
进一步地:物理气相沉积Ti-Cr合金过程中,Ti的质量百分比为80~84%,Cr的质量百分比为20~16%,沉积速率为0.18~0.32μm/min,沉积时间为37~42min。
进一步地:热喷涂Mo过程中,喷涂速度为125~213m/s。
进一步地:在双离子注入Nb与W过程中,Nb的注入剂量为(5.7~6.1)×1022/cm2,W的注入剂量为(4.5~4.9)×1022/cm2
进一步地:在Ar保护气氛下进行第二次退火过程中,退火温度为796~803℃。
本发明为了实现上述目的,针对行业需要,以IF钢冷轧钢带作为基材,进行了大量的试验及分析,经过优化选择,采用“碱液脱脂除油+第一次退火(H2气氛)+物理气相沉积Ti-Cr合金+热喷涂金属Mo(Ar气氛)+双离子注入Nb-W+第二次退火(Ar气氛)”工艺进行表面处理。
之所以这样选择,是因为:
第一,总的来说,在钢带表面制备一薄层Nb-W合金镀层,与单纯的大尺寸、大规格固态Nb-W合金相比,在能保证合金本体优异性能的前提下,有利于大幅降低Nb、W等金属原料的消耗,有利于控制生产成本。
第二,选择IF钢(无间隙原子钢)冷轧钢带作为基材,是因为这种钢的C含量≤0.005%,N含量≤0.003%,钢中加入了一定量的Nb或Ti,使钢中的C、N原子被固定为碳化物和氮化物,从而使钢中没有间隙原子的存在。同时,冶炼过程中采用RH真空处理等先进技术,IF钢的钢质非常洁净,夹杂物极少。加之其超低的C、N含量,且添加的Nb或Ti能细化晶粒,提高组织的均匀性,故IF钢具有较好的表面质量及优异的延展性和冲压性能,材质相对柔软,有利于后续的镀覆及成型工序。因此,将Nb-W合金沉积在IF钢冷轧钢带表面,既可以维持合金本体的优异性能,又能借助基材良好的塑性进行后续加工,克服其本体脆性大的缺点,所以是一种两全其美的合理选择。
第三,冷轧钢带在进行镀覆前,必须保证其表面是洁净的,要进行适当的前处理。其中,碱液脱脂主要用来除去钢带表面的油污,而在H2保护气氛下进行退火有三个作用:一是将钢带表面残存的极少量油脂全部高温挥发掉;二是强还原性的H2可将钢带表面少量的氧化物全部去除;三是适当软化钢带,降低钢带的内应力,减少产生裂纹的概率,提高复合镀层的稳定性。
第四,冷轧钢带在完成前处理后,在钢带表面物理气相沉积一层Ti-Cr合金作为内镀层。这里有三个原因:一是Ti-Cr合金是一种高强度、高硬度的耐热及耐蚀合金,将其覆盖在钢带表面,有利于防止后续镀覆工序所带来的冲击或热量传导至钢带表面使基材软化,保护钢基不被氧化和腐蚀,从而提高整个复合镀层的稳定性;二是Ti-Cr合金中,Ti元素与钢中的Fe元素亲和性较强,两相界面间可形成稳定牢固的Ti-Fe合金;而Cr元素与钢中的Fe元素同样具有较强的亲和性,两相界面之间的原子可以发生合金化反应,形成稳定的连续固溶体,即Cr-Fe单相合金;Ti-Cr合金本身是一种连续固溶体,也是单相合金。这三点使内镀层牢固地附着在基材表面,整个复合镀层的稳定性得到显著提高;三是Ti和Cr均属于无害物质,因而Ti-Cr合金的环保性较好。之所以选择物理气相沉积工艺,是因为:一是作为内镀层一般要求致密、平整、缺陷少、均匀性好,采用成膜速度相对较慢的物理气相沉积工艺,可以保证内镀层具有较高的表面质量和较强的附着力;二是其在真空条件下进行合金沉积,没有空气、水和其它杂质的存在,保证了合金的纯净度和表面质量;三是镀层厚度可以精确控制,可以减少原料浪费,控制成本;四是Ti-Cr合金不能从水溶液中进行电沉积,故无法采用电镀工艺。
第五,物理气相沉积Ti-Cr合金完成后,继续在Ar保护气氛下热喷涂一层金属Mo作为中间镀层。这里有六个原因:一是Nb与Cr,W与Ti很难形成稳定的连续固溶体,原子间结合力不足,因而不能直接将Nb-W合金镀覆在Ti-Cr内镀层上,必须要添加中间镀层作为衔接内外镀层的过渡;二是以Mo作为中间镀层,是因为Mo元素和内镀层中的Ti元素具有良好的亲和性,两相界面之间的原子可以发生合金化反应,形成稳定的连续固溶体,即Ti-Mo单相合金;而Cr和Mo又同属于VIB族,是同族元素,化学性质相似,相互间亲和性比较强,同样也可以形成稳定的连续固溶体。因此,这两点可以使中间镀层牢固地附着在内镀层表面,整个复合镀层的稳定性得到显著提高;三是高纯度Mo具有一定的延展性,可以提高整个合金镀层的塑性;四是Mo是一种难熔金属,其熔点高、硬度大、强度高、耐蚀性好、耐热性强,有利于保证整个复合镀层的使用性能,适合作为中间镀层;五是Mo属于无害物质,环保性好;六是Mo的矿藏储量比较丰富,价格比较适中,不会显著增加生产成本。之所以选择在Ar保护气氛下进行热喷涂工艺,是因为:一是Mo的沸点为5560℃,采用真空气态镀膜的物理气相沉积工艺会导致能耗大幅增加。而Mo的熔点为2620℃,如果采用熔融液态镀膜的热喷涂工艺,从能耗的角度而言,则会大幅下降;二是中间镀层需要有一定厚度,物理气相沉积工艺成膜速度慢,膜层薄,不易满足使用要求,而热喷涂工艺成膜速度快,所形成的膜层相对较厚,可以保证镀层性能;三是Mo不能从水溶液中进行单质电沉积,因而无法采用电镀工艺;四是Mo在高温下容易和O2、N2等物质发生化学反应,生成氧化物、氮化物等,导致硬度增加,脆性变大。以惰性气体Ar为保护气体,就可以避免这些杂质的干扰,保证Mo的纯度,进而确保镀层质量。
第六,热喷涂Mo完成后,继续双离子注入Nb-W作为外镀层。之所以采用离子注入的方式,是因为:一是Nb的熔点为2468℃,沸点为4742℃;W的熔点为3410℃,沸点为5660℃,两者的熔、沸点过高,属于难熔金属。若采用真空气态镀膜的物理气相沉积工艺或熔融液态镀膜的热喷涂工艺,能耗将急剧增加,成本会显著上升;二是Nb-W合金不能从水溶液中进行电沉积,因而无法采用电镀工艺。而离子注入则可以有效克服上述三种方式的缺点,其优点在于:可精确控制掺杂离子种类、数量和深度,工作效率高;所形成的镀层均匀性好,没有其它离子的干扰,纯度高;不改变钢件尺寸,方便后续工序处理。尤其是在真空条件下,其通过离子束轰击金属固体,使金属电离出离子,经电场加速后获得很高的速度,从而打入或沉积在钢件表面。整个过程能耗较低,且金属固体使用量极少,因而极大地降低了生产成本,避免了环境污染。这里,中间镀层中的Mo与外镀层中的W同属于VIB族,是同族元素,化学性质相似,相互间亲和性比较强,可以形成稳定的连续固溶体,即Mo-W单相合金;而Mo和Nb属于第5周期的相邻元素(原子序数分别为42和41),且均为难熔金属,化学性质相似,相互间亲和性也比较强,可以形成稳定的连续固溶体。而Nb-W合金本身也是连续固溶体,是一种单相合金。因此,这三点可以使外镀层牢固地附着在中间镀层表面,整个复合镀层的稳定性得到显著提高。
第七,双离子注入Nb-W完成后,继续在Ar保护气氛下进行第二次退火。这是因为:一是Ti-Cr合金、金属Mo、Nb-W合金都是高硬度物质,整个复合镀层构建完成后,再进行一次退火处理,有利于适当降低整个镀层的内应力,提高镀层的塑性和延展性;二是在高温下进行退火热处理,可以促进各镀层两相界面之间的原子继续发生合金化反应,进一步增强各镀层之间的结合力,从而提高整个镀层的稳定性。之所以选择Ar而不是H2或N2作保护气,是因为在高温下,Ti、Cr、Mo、Nb、W等组分容易和H2或N2发生化学反应,生成高硬度的间隙化合物,导致镀层脆性增加,故而放弃H2或N2
总体来看,本发明所构建的Ti-Cr/Mo/Nb-W复合镀层,具有如下优点:一是所采用的IF冷轧钢带作基材,既可以保证整个合金镀层具有较好的塑性和延展性,克服了单纯块状合金脆性大的缺点,加工性能好,冲压制件时不会出现脱落和裂纹,整个复合镀层的稳定性极高。而且在维持合金本体优异性能的前提下,可以大幅减少金属原料的用量,降低生产成本,是一种两全其美的选择;二是内镀层、中间镀层和外镀层的力学及加工性能、耐蚀性能、耐热性能、抗高温氧化性能都较强,保证了产品性能完全满足使用要求。整个复合镀层所采用的Ti、Cr、Mo、Nb、W等均属于难熔金属,物理和化学性质十分相似,因此整个复合镀层的性能接近于单纯的Nb-W合金,产品成色很足;三是各个镀层中的合金元素大多彼此无限互溶,形成连续固溶体,呈现单相合金的性质,性能均匀性好。且各镀层之间的金属元素彼此亲和性强,容易在界面处发生合金化反应。这说明整个复合镀层的构建是基于很强的金属原子内部作用力,而不是较弱的外部环境,因而就保证了整个镀层具有很高的稳定性。整个复合镀层的设计合理有序,流程简单高效,能耗低。四是内镀层和中间镀层所使用的Ti、Cr、Mo等金属均为无害物质,显著降低了对环境的污染。因此,整个复合镀层做到了性能、成本、环保三者的完美结合。
与现有技术相比,本发明钢带表面生成一层厚度为20~27μm的Ti-Cr/Mo/Nb-W复合镀层,孔隙率不超过1个/cm2,镀层表面质量良好;镀层表面硬度为290~310HV,抗拉强度为1000~1020MPa,延伸率为8.0~9.5%,应变硬化指数为0.25~0.28,塑性应变比为2.3~2.6,力学及加工性能良好;在1×104N压力下,反复擦拭1×105次后,镀层硬度值变化率不超过0.04%,磨损率不超过0.02%,耐磨性能良好;常温下,在10M HCl、10M NaOH溶液、正常海水及大气环境中连续放置9.6×104h后,镀层表面不发生任何腐蚀,耐蚀性能良好;在1×103℃下连续放置7.2×103h,镀层表面氧化面积不超过0.6%,无裂纹及脱落情况产生,硬度值变化率不超过0.2%,强度值变化率不超过0.4%,抗高温氧化及耐热性能良好;置于
Figure BDA0003800496770000071
水冷循环试验条件下,循环次数为415~425次,无裂纹及脱落情况产生,抗热震性能良好;在200KHz超声波环境下连续放置1×104h后,镀层厚度没有明显变化,无裂纹及脱落情况产生,稳定性高。整个复合镀层性能完全满足行业要求。
具体实施方式
下面对本发明予以详细描述:
表1为本发明各实施例及对比例的主要工艺参数列表;
表2为本发明各实施例及对比例的性能检测情况列表。
本发明各实施例按照以下步骤生产:
1)以IF钢冷轧钢带作为基材,进行常规的碱液脱脂除油;
2)常规水洗并烘干至钢带表面无水分;
3)在H2保护气氛下进行第一次退火,控制退火温度为760~790℃,保温时间为32~42min;
4)进行镀覆:
A、物理气相沉积Ti-Cr合金,控制Ti的质量百分比为78~84%,Cr的质量百分比为22~16%,控制沉积速率为0.15~0.35μm/min,沉积时间为35~45min;
B、热喷涂Mo,其间:采用Ar作为保护气体;控制Mo的平均粒径为0.45~0.55μm,喷涂速度为120~220m/s,沉积率为0.055~0.085kg/h;
C、双离子注入Nb与W,控制注入能量为340~350KeV,Nb的注入剂量为(5.5~6.3)×1022/cm2,W的注入剂量为(4.3~5.1)×1022/cm2
D、在Ar保护气氛下进行第二次退火,控制退火温度为790~810℃,保温时间为7~13min;
E、自然空冷至室温。
表1本发明各实施例及对比例的工艺参数
Figure BDA0003800496770000091
续表1
Figure BDA0003800496770000101
表2本发明各实施例及对比例的镀层性能
Figure BDA0003800496770000102
Figure BDA0003800496770000111
续表2-1
Figure BDA0003800496770000112
续表2-2
Figure BDA0003800496770000121
从表2可以看到,按照本发明提出的方法制备铌-钨合金镀层,钢带表面生成一层厚度为20~27μm的Ti-Cr/Mo/Nb-W复合镀层,孔隙率不超过1个/cm2,镀层表面质量良好;镀层表面硬度为290~310HV,抗拉强度为1000~1020MPa,延伸率为8.0~9.5%,应变硬化指数为0.25~0.28,塑性应变比为2.3~2.6,力学及加工性能良好;在1×104N压力下,反复擦拭1×105次后,镀层硬度值变化率不超过0.04%,磨损率不超过0.02%,耐磨性能良好;常温下,在10M HCl、10M NaOH溶液、正常海水及大气环境中连续放置9.6×104h后,镀层表面不发生任何腐蚀,耐蚀性能良好;在1×103℃下连续放置7.2×103h,镀层表面氧化面积不超过0.6%,无裂纹及脱落情况产生,硬度值变化率不超过0.2%,强度值变化率不超过0.4%,抗高温氧化及耐热性能良好;置于
Figure BDA0003800496770000131
水冷循环试验条件下,循环次数为415~425次,无裂纹及脱落情况产生,抗热震性能良好;在200KHz超声波环境下连续放置1×104h后,镀层厚度没有明显变化,无裂纹及脱落情况产生,稳定性高。整个复合镀层性能完全满足行业要求。
上述实施例仅为最佳例举,而并非是对本发明实施方式的限定。

Claims (5)

1.一种钢带表面铌-钨合金镀层的制备方法,其特征在于步骤如下:
1) 以IF钢冷轧钢带作为基材,进行常规的碱液脱脂除油;
2) 常规水洗并烘干至钢带表面无水分;
3) 在H2保护气氛下进行第一次退火,控制退火温度为760~790 ℃,保温时间为32~42min;
4) 进行镀覆:
A、物理气相沉积Ti-Cr合金,控制Ti的质量百分比为78~84%,Cr的质量百分比为22~16%,控制沉积速率为0.15~0.35 µm/min,沉积时间为35~45 min;
B、热喷涂Mo,其间:采用Ar作为保护气体;控制Mo的平均粒径为0.45~0.55 μm,喷涂速度为120~220 m/s,沉积率为0.055~0.085 kg/h;
C、 双离子注入Nb与W,控制注入能量为340~350 KeV,Nb的注入剂量为(5.5~6.3)×1022/cm2,W的注入剂量为(4.3~5.1)×1022/cm2
D、在Ar保护气氛下进行第二次退火,控制退火温度为790~810 ℃,保温时间为7~13min;
E、自然空冷至室温。
2.如权利要求1所述的一种钢带表面铌-钨合金镀层的制备方法,其特征在于:物理气相沉
积Ti-Cr合金过程中,Ti的质量百分比为80~84%,Cr的质量百分比为20~16%,沉积速率为0.18~0.32 µm/min,沉积时间为37~42 min。
3.如权利要求1所述的一种钢带表面铌-钨合金镀层的制备方法,其特征在于:热喷涂Mo
过程中,喷涂速度为125~213 m/s。
4.如权利要求1所述的一种钢带表面铌-钨合金镀层的制备方法,其特征在于:在双离子注
入Nb与W过程中,Nb的注入剂量为(5.7~6.1)×1022/cm2,W的注入剂量为(4.5~4.9)×1022/cm2
5.如权利要求1所述的一种钢带表面铌-钨合金镀层的制备方法,其特征在于:在Ar保护气氛下进行第二次退火过程中,退火温度为796~803 ℃。
CN202210981162.2A 2022-08-16 2022-08-16 一种钢带表面铌-钨合金镀层的制备方法 Withdrawn CN115323374A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210981162.2A CN115323374A (zh) 2022-08-16 2022-08-16 一种钢带表面铌-钨合金镀层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210981162.2A CN115323374A (zh) 2022-08-16 2022-08-16 一种钢带表面铌-钨合金镀层的制备方法

Publications (1)

Publication Number Publication Date
CN115323374A true CN115323374A (zh) 2022-11-11

Family

ID=83924285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210981162.2A Withdrawn CN115323374A (zh) 2022-08-16 2022-08-16 一种钢带表面铌-钨合金镀层的制备方法

Country Status (1)

Country Link
CN (1) CN115323374A (zh)

Similar Documents

Publication Publication Date Title
WO2021046927A1 (zh) 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法
CN103556070A (zh) 一种高耐磨不锈钢咖啡壶材料及其制备方法
CN108611529B (zh) 一种微晶高强耐蚀的钛合金管材及其制备方法
CN104561657B (zh) 一种钛铝合金材料及其制备工艺
CN109750239A (zh) 一种0.01~0.05mm超薄N6纯镍箔的制备工艺
CN115029632B (zh) 高耐蚀镀锌热成形硬化钢及其零部件以及制备方法
CN112874058B (zh) 一种建筑用铜钢固液复合双金属材料及其制备方法
JP6209175B2 (ja) めっき表面外観およびバーリング性に優れた溶融Zn−Al−Mg系めっき鋼板の製造方法
CN107287543A (zh) Al‑Si系合金镀层材料、其制备方法和应用
WO2018072392A1 (zh) 一种光电倍增管倍增极用高铍铜合金制备方法
EP2149617B1 (en) Method and article for improved adhesion of fatigue-prone components
CN112877564B (zh) 一种热挤压模具用铜钢固液复合双金属材料及制备方法
CN102294484A (zh) 18-8型奥氏体不锈钢-碳钢覆层钢板的制造方法
CN109732087B (zh) 一种粉末冶金Ti-Ta二元金属-金属基层状复合材料的制备方法
CN111321356B (zh) 一种激光增材制造沉没辊复合轴套及其制备方法
JP5282098B2 (ja) 延性かつ耐食性の表面層を有する物体
CN115323375A (zh) 一种钢带表面钽-铪合金镀层的制备方法
CN115323374A (zh) 一种钢带表面铌-钨合金镀层的制备方法
CN114855092B (zh) 一种增材制造高强韧不锈钢及其制备工艺
CN114959508B (zh) 一种不锈钢及其制备方法
CN106287053B (zh) 一种扣压套管接头
CN106119726B (zh) 一种扣压套管接头的制备方法
CN105887145B (zh) 一种传动机械零部件用复合镀层钢带的生产方法
CN111304654B (zh) 一种钢带表面镀铂方法
CN115341214A (zh) 一种钢带表面钨-钼合金镀层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20221111

WW01 Invention patent application withdrawn after publication