CN115323135A - 一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法 - Google Patents

一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法 Download PDF

Info

Publication number
CN115323135A
CN115323135A CN202210971656.2A CN202210971656A CN115323135A CN 115323135 A CN115323135 A CN 115323135A CN 202210971656 A CN202210971656 A CN 202210971656A CN 115323135 A CN115323135 A CN 115323135A
Authority
CN
China
Prior art keywords
strength
manganese steel
product
steel
medium manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210971656.2A
Other languages
English (en)
Other versions
CN115323135B (zh
Inventor
王明明
刘帅
李冬冬
冯晓勇
郭广顺
张福成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Science and Technology
Original Assignee
North China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Science and Technology filed Critical North China University of Science and Technology
Priority to CN202210971656.2A priority Critical patent/CN115323135B/zh
Publication of CN115323135A publication Critical patent/CN115323135A/zh
Application granted granted Critical
Publication of CN115323135B publication Critical patent/CN115323135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,步骤包括:1)计算并确定退火温度:首先通过计算确定钢平衡态相含量,并确定残余奥氏体体积分数在25~45%时的退火温度区间;2)锻造冷却:对中锰钢进行锻造处理并冷却到室温;3)热轧:将试样再加热至1100~1200℃保温30~60min,然后在900~1100℃热轧,热轧量在30~80%;4)淬火:热轧试样快速淬火至室温;5)退火:淬火试样再移至600~700℃马弗炉中保温60~300min,随后取出试样进行淬火处理。本发明结合Si和Al含量的成分设计,结合热轧、淬火和退火工艺,显著提升了热轧中锰钢的力学性能,抗拉强度≥1100MPa,强塑积≥45GPa%,完全达到第三代超高强塑积汽车钢的性能指标。

Description

一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法
技术领域
本发明涉及汽车用钢技术领域,具体是一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法。
背景技术
第三代超高强塑积汽车钢的研发是实现汽车轻量化同时,提升汽车安全性的重要途径。目前超高强塑积汽车钢主要有无碳化物贝氏体钢、孪晶诱导塑性钢、淬火配分钢和中锰钢,其中,中锰钢主要以C、Mn合金化,合金含量低;以轧制、临界退火为主要制备工艺,制备工艺简单。经轧制和退火处理后,中锰钢组织由超精细铁素体、奥氏体或部分马氏体组成,组织中奥氏体通过相变诱导塑性机制和孪晶诱导塑性机制实现其强度与塑性的提升,可获得高达20~60GPa%的强塑积。钢铁研究总院董翰指出,这种在单一均匀的铁素体基体上引入亚稳、多尺度相,使组织结构复杂化,是获得良好的强度与韧塑性匹配的可选途径,并能够突破超细晶粒钢理论极限,是中锰钢获得超高强塑积的关键因素,因此中锰钢被认为是实现汽车轻量化最有前景的材料之一。中锰钢中残余奥氏体含量是控制中锰钢强塑积的关键因素,主要受合金元素含量和热加工制度影响。
公开号为CN111363902A的中国专利申请公开了一种促进热轧中锰钢板残余奥氏体形成的方法。其通过两次盐浴等温处理和两次配分工艺,显著促进了热轧中锰钢残余奥氏体形成及其稳定性,拉伸试验后强塑积大于31GPa%。但该工艺制备工艺中采用了盐浴等温处理,且可调整温度范围窄,不利于工业生产,并且盐浴工艺易对环境产生污染。
公开号为CN113502382A的中国专利申请公开了一种980MPa级超高延展性冷轧高强钢的制备方法。其通过调控冷轧退火钢的初始组织以及退火温度,获得了抗拉强度≥980MPa,强塑积30GPa%的冷轧带钢。该工艺中采用双阶加热二次退火和双阶冷却过时效处理,增加了高强钢的制备难度,并且该工艺中的残余奥氏体体积含量在10~20%之间,不能充分发挥奥氏体的TRIP效应。
公开号为CN112410681A的中国专利申请公开了一种高强塑积中锰钢及其制备方法,该方法通过循环温轧+临界退火工艺制备出具有粗晶奥氏体和细晶奥氏体的中锰钢。专利中所述钢中合金元素含Al、Si综合达到6.0wt%,因此其强塑积虽高达60GPa%,但其屈服强度较低。
公开号为CN104694816A的中国专利申请公开了一种强塑积大于30GPa%的高Al中锰钢的制备方法。该专利将高Al中锰钢进行冷轧并退火处理,获得强塑积高于30GPa%的高强塑积低密度钢,但该钢的屈服强度仅在780~810MPa之间。
上述专利中获得的高强塑积汽车钢的强塑积虽然能够达到30GPa%,但是制备工艺复杂,不利于工业生产,或是含有较高含量的Al和Si,钢的屈服强度较低。通过调整中锰钢中Si、Al元素含量,并配合轧制和退火工艺,可以有效控制中锰钢的残余奥氏体含量,进而影响超高强塑积中锰钢强韧化机制,为超高强塑积中锰钢化学成分和制备工艺设计提供新的思路。
发明内容
本发明的目的在于提供一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,以解决上述背景技术中提出的问题。
为解决上述技术问题,本发明提供的技术方案为:一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,具体包括以下步骤:
1)计算并确定退火温度:首先通过计算确定钢平衡态相含量,并确定残余奥氏体体积分数在25~45%时的退火温度区间;
2)锻造冷却:对中锰钢进行锻造处理并冷却到室温;
3)热轧:将试样再加热至1100~1200℃保温30~60min,然后在900~1100℃热轧,热轧量在30~80%;
4)淬火:热轧试样快速淬火至室温;
5)退火:将淬火试样再移至600~700℃马弗炉中保温60~300min,随后取出试样进行淬火处理。
作为一种优选方案,利用Si、Al含量调控中锰钢的成分,其中1wt%≤Si+Al≤3wt%,且Si≥0.5wt%、Al≥0.5wt%。
作为一种优选方案,通过添加Si和Al以抑制中锰钢退火过程中碳化物析出,中锰钢中主要元素范围是C0.1~0.4wt%,Mn5~9wt%,1wt%≤Si+Al≤3wt%,且Si≥0.5wt%、Al≥0.5wt%,同时,钢中含有Cr、Ni、Mo合金元素中的一种或多种。
作为一种优选方案,中锰钢中含有25~45%体积含量的逆相变奥氏体。
作为一种优选方案,中锰钢的抗拉强度≥1100MPa,强塑积≥45GPa%。
本发明优点在于:
1.应用价值高:本发明基于调控Si、Al含量来调控中锰钢退火工艺,其强塑韧性得到大幅度提高,在汽车钢制备领域具有重要的应用价值。
2.制备工艺简单,生产成本低:本发明中不用添加贵重金属元素,只是对中锰钢制备工艺进行调整,生产成本低。
附图说明
图1为本发明实施例3中所制备的中锰钢的拉伸曲线图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:
一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,其化学成分(wt%)为:
C:0.13、Si:1.04、Mn:6.62、Al:1.06、Cr:0.11,其余为Fe和少量杂质元素。这个成分钢的具体制备工艺是:通过电弧炉冶炼上述成分的钢锭,将钢锭加热到1200℃进行锻造,终锻温度不低于900℃,锻后空冷至室温。将该钢在1100℃奥氏体化60min,在900~1100℃热轧50%,随后淬火至室温。将该钢再次加热至650℃保温60min,随后淬火至室温。
经过这个工艺方法制备的含硅铝中锰钢含残余奥氏体44.4%,屈服强度为750MPa、抗拉强度为1144MPa、延伸率为40.2%、强塑积为46.0GPa%。
实施例2:
一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,其化学成分(wt%)为:
C:0.25、Si:1.24、Mn:6.79、Al:1.14、Cr:0.04,其余为Fe和少量杂质元素。这个成分钢的具体制备工艺是:通过电弧炉冶炼上述成分的钢锭,将钢锭加热到1200℃进行锻造,终锻温度不低于900℃,锻后空冷至室温。将该钢在1100℃奥氏体化60min,在900~1100℃热轧70%,随后淬火至室温。将该钢再次加热至650℃保温300min,随后淬火至室温。
经过这个工艺方法制备的含硅铝中锰钢含残余奥氏体49.5%,屈服强度为795MPa、抗拉强度为1207MPa、延伸率为39.4%、强塑积为47.5GPa%。
实施例3:
一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,其化学成分(wt%)为:
C:0.27、Si:1.00、Mn:7.43、Al:1.51、Cr:0.14,其余为Fe和少量杂质元素。这个成分钢的具体制备工艺是:通过电弧炉冶炼上述成分的钢锭,将钢锭加热到1200℃进行锻造,终锻温度不低于900℃,锻后空冷至室温。将该钢在1100℃奥氏体化60min,在900~1000℃热轧40%,随后淬火至室温。将该钢再次加热至620℃保温120min,随后淬火至室温。
经过这个工艺方法制备的含硅铝中锰钢含残余奥氏体40.5%,屈服强度为720MPa、抗拉强度为1120MPa、延伸率为45.9%、强塑积为51.4GPa%,拉伸曲线见图1。
以上对本发明及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (5)

1.一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,其特征在于,具体包括以下步骤:
1)计算并确定退火温度:首先通过计算确定钢平衡态相含量,并确定残余奥氏体体积分数在25~45%时的退火温度区间;
2)锻造冷却:对中锰钢进行锻造处理并冷却到室温;
3)热轧:将试样再加热至1100~1200℃保温30~60min,然后在900~1100℃热轧,热轧量在30~80%;
4)淬火:热轧试样快速淬火至室温;
5)退火:将淬火试样再移至600~700℃马弗炉中保温60~300min,随后取出试样进行淬火处理。
2.根据权利要求1所述的一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,其特征在于:利用Si、Al含量调控中锰钢的成分,其中1wt%≤Si+Al≤3wt%,且Si≥0.5wt%、Al≥0.5wt%。
3.根据权利要求1所述的一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,其特征在于:通过添加Si和Al以抑制中锰钢退火过程中碳化物析出,中锰钢中主要元素范围是C0.1~0.4wt%,Mn5~9wt%,1wt%≤Si+Al≤3wt%,且Si≥0.5wt%、Al≥0.5wt%,同时,钢中含有Cr、Ni、Mo合金元素中的一种或多种。
4.根据权利要求1所述的一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,其特征在于:中锰钢中含有25~45%体积含量的逆相变奥氏体。
5.根据权利要求1所述的一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法,其特征在于:中锰钢的抗拉强度≥1100MPa,强塑积≥45GPa%。
CN202210971656.2A 2022-08-12 2022-08-12 一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法 Active CN115323135B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210971656.2A CN115323135B (zh) 2022-08-12 2022-08-12 一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210971656.2A CN115323135B (zh) 2022-08-12 2022-08-12 一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法

Publications (2)

Publication Number Publication Date
CN115323135A true CN115323135A (zh) 2022-11-11
CN115323135B CN115323135B (zh) 2023-05-23

Family

ID=83924894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210971656.2A Active CN115323135B (zh) 2022-08-12 2022-08-12 一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法

Country Status (1)

Country Link
CN (1) CN115323135B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115710668A (zh) * 2022-11-15 2023-02-24 山东建筑大学 一种强塑积48GPa%级中锰钢成分设计及制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943169A (zh) * 2012-12-10 2013-02-27 北京科技大学 一种汽车用超高强薄钢板的淬火退火制备方法
US20170130291A1 (en) * 2014-07-30 2017-05-11 Arcelormittal A Method for Producing a High Strength Steel Piece
WO2017092104A1 (zh) * 2015-12-04 2017-06-08 重庆哈工易成形钢铁科技有限公司 用于冲压成形的钢材及其成形构件与热处理方法
US20170306429A1 (en) * 2014-12-01 2017-10-26 Voestalpine Stahl Gmbh Method of heat treating a manganese steel product and manganese steel product with a special alloy
CN108655354A (zh) * 2018-06-07 2018-10-16 东北大学 一种高强塑积中锰钢薄带的短流程制备方法
CN109666862A (zh) * 2018-12-13 2019-04-23 北京科技大学 一种强塑积大于60GPa·%的高强韧热轧中锰钢及制备方法
CN109680130A (zh) * 2019-02-27 2019-04-26 河北工程大学 一种高强塑积冷轧中锰钢及其制备方法
CN110055465A (zh) * 2019-05-16 2019-07-26 北京科技大学 一种中锰超高强度钢及其制备方法
CN111363902A (zh) * 2020-03-23 2020-07-03 唐山钢铁集团有限责任公司 一种促进热轧中锰钢板残余奥氏体形成的方法
CN111575580A (zh) * 2020-05-08 2020-08-25 钢铁研究总院 一种高强韧和高强塑积汽车钢及其制备方法
US20210207236A1 (en) * 2017-11-10 2021-07-08 Arcelormittal Cold rolled heat treated steel sheet and a method of manufacturing thereof
CN113502382A (zh) * 2021-06-28 2021-10-15 东北大学 一种980MPa级超高延展性冷轧高强钢的制备方法
CN114231853A (zh) * 2021-12-08 2022-03-25 华北理工大学 一种强塑积大于98GPa%的TWIP钢及制备方法
CN114807524A (zh) * 2022-04-29 2022-07-29 哈尔滨工业大学(深圳) 一种基于部分奥氏体化的高强韧中锰钢及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943169A (zh) * 2012-12-10 2013-02-27 北京科技大学 一种汽车用超高强薄钢板的淬火退火制备方法
US20170130291A1 (en) * 2014-07-30 2017-05-11 Arcelormittal A Method for Producing a High Strength Steel Piece
US20170306429A1 (en) * 2014-12-01 2017-10-26 Voestalpine Stahl Gmbh Method of heat treating a manganese steel product and manganese steel product with a special alloy
WO2017092104A1 (zh) * 2015-12-04 2017-06-08 重庆哈工易成形钢铁科技有限公司 用于冲压成形的钢材及其成形构件与热处理方法
US20210207236A1 (en) * 2017-11-10 2021-07-08 Arcelormittal Cold rolled heat treated steel sheet and a method of manufacturing thereof
CN108655354A (zh) * 2018-06-07 2018-10-16 东北大学 一种高强塑积中锰钢薄带的短流程制备方法
CN109666862A (zh) * 2018-12-13 2019-04-23 北京科技大学 一种强塑积大于60GPa·%的高强韧热轧中锰钢及制备方法
CN109680130A (zh) * 2019-02-27 2019-04-26 河北工程大学 一种高强塑积冷轧中锰钢及其制备方法
CN110055465A (zh) * 2019-05-16 2019-07-26 北京科技大学 一种中锰超高强度钢及其制备方法
CN111363902A (zh) * 2020-03-23 2020-07-03 唐山钢铁集团有限责任公司 一种促进热轧中锰钢板残余奥氏体形成的方法
CN111575580A (zh) * 2020-05-08 2020-08-25 钢铁研究总院 一种高强韧和高强塑积汽车钢及其制备方法
CN113502382A (zh) * 2021-06-28 2021-10-15 东北大学 一种980MPa级超高延展性冷轧高强钢的制备方法
CN114231853A (zh) * 2021-12-08 2022-03-25 华北理工大学 一种强塑积大于98GPa%的TWIP钢及制备方法
CN114807524A (zh) * 2022-04-29 2022-07-29 哈尔滨工业大学(深圳) 一种基于部分奥氏体化的高强韧中锰钢及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱延山;廖岳太;张继明;曲锦波;: "9Mn热轧钢临界退火过程中的微观组织演变" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115710668A (zh) * 2022-11-15 2023-02-24 山东建筑大学 一种强塑积48GPa%级中锰钢成分设计及制备方法

Also Published As

Publication number Publication date
CN115323135B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
JP6475861B2 (ja) ホットスタンピングに使用される鋼板、ホットスタンピングプロセスおよびホットスタンピングコンポーネント
CN109371317B (zh) 一种1000MPa级超快冷冷轧双相钢板及其制备方法
CN108486494B (zh) 钒微合金化1300MPa级别高强热轧钢板和冷轧双相钢板的生产方法
CN106191390B (zh) 一种中锰trip钢及其制备方法
CN111349771B (zh) 一种具有优异塑性的980MPa级冷轧Q&P钢及其制造方法
EP4317512A1 (en) Low-carbon, low-alloy and high-formability dual-phase steel having tensile strength of greater than or equal to 590 mpa, hot-dip galvanized dual-phase steel, and manufacturing method therefor
EP4317511A1 (en) Low-carbon low-alloy q&p steel or hot-dip galvanized q&p steel with tensile strength greater than or equal to 1180 mpa, and manufacturing method therefor
CN110408861B (zh) 一种具较低Mn含量的冷轧高强塑积中锰钢及其制备方法
CN102605240A (zh) 一种具有高强度和高塑性的双相钢及其生产方法
CN104593675A (zh) 一种同时具有twip与trip效应金属材料制备方法
CN107012398B (zh) 一种铌微合金化trip钢及其制备方法
CN110343970B (zh) 一种具较低Mn含量的热轧高强塑积中锰钢及其制备方法
CN113652612B (zh) 非均质片层结构中锰钢及其制备方法
CN101403076B (zh) 一种复合强化高韧性超高强度二次硬化钢
CN102031459A (zh) 一种含w高强高韧二次硬化不锈钢
EP4317515A1 (en) Dual-phase steel and hot-dip galvanized dual-phase steel having tensile strength greater than or equal to 980mpa and method for manufacturing same by means of rapid heat treatment
CN110964882B (zh) 一种基于碳配分工艺的一钢两用冷轧高强钢及其制造方法
CN115323135B (zh) 一种强塑积不低于45GPa%的超高强塑积中锰钢的制备方法
CN115181913A (zh) 一种低锰含量中锰钢的制备方法
CN100392132C (zh) 一种低温高韧性结构用钢及其制造方法
CN110157864A (zh) 一种1300MPa级低氢致延迟开裂敏感性热成形钢及生产方法
JPH058255B2 (zh)
CN107779783B (zh) 一种低碳低合金高强塑钢及其制备方法
CN111394650A (zh) 具有优良成形性的高r值800MPa级冷轧钢及生产方法
CN113930675B (zh) 一种2200MPa级低碳无B热成形钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant