CN115314836A - 用于调度定位信号传输和操作自定位装置的方法和系统 - Google Patents

用于调度定位信号传输和操作自定位装置的方法和系统 Download PDF

Info

Publication number
CN115314836A
CN115314836A CN202210322236.1A CN202210322236A CN115314836A CN 115314836 A CN115314836 A CN 115314836A CN 202210322236 A CN202210322236 A CN 202210322236A CN 115314836 A CN115314836 A CN 115314836A
Authority
CN
China
Prior art keywords
positioning
signal
time
transmission
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210322236.1A
Other languages
English (en)
Inventor
L·格拉迪
R·达恩德瑞
M·D·哈梅尔
M·赫恩
M·威贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veriti Ag
Original Assignee
Veriti Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/063,104 external-priority patent/US9885773B2/en
Application filed by Veriti Ag filed Critical Veriti Ag
Publication of CN115314836A publication Critical patent/CN115314836A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radio Relay Systems (AREA)

Abstract

本公开涉及用于调度定位信号传输和操作自定位装置的方法和系统。用于根据一个或多个传输时间表从锚传输能进行时间标记的定位信号的定位系统和方法。可以生成和更新传输时间表以实现期望的定位性能。例如,一个或多个锚可以以不同于其他锚的速率来传输定位信号,可以改变锚传输顺序,并且信号可以部分重叠。此外,不同的传输参数来可以用于在没有干扰的情况下同时传输两个定位信号。自定位装置能够接收定位信号并且确定其位置。自定位装置可以具有可以选择接收多个可用定位信号中的一个的可配置接收器。自定位装置可以具有能够同时接收两个定位信号的一对接收机。可以提供桥接锚以使自定位装置能够在两个定位系统之间无缝地转换。

Description

用于调度定位信号传输和操作自定位装置的方法和系统
本申请是于2016年5月30日提交的题为“用于调度定位信号传输和操作自定位装置的方法和系统”的发明专利申请201680044509.3的分案申请。
对相关申请的交叉引用
本申请要求2015年5月29日递交的美国临时申请第62/168,704号以及2016年3月7日递交的美国非临时申请第15/063,104号的优先权权益,这两个申请的全部内容通过引用合并于此。
技术领域
本公开涉及对象定位领域。本公开还涉及使用诸如超宽带(UWB)信号之类的能进行时间标记信号的定位系统和方法。本公开还涉及操作自定位装置。
背景技术
物流和工业自动化越来越多地依赖于精确的定位,以支持和控制手动和自动的处理,并且应用的范围从“智能的事物”到诸如自动导引车(AGV)之类的对机器人的有效跟踪及辅助解决方案。
UWB技术已被提倡作为适用于资产跟踪应用的定位解决方案。这种应用涉及对资产及其在仓库、医院或工厂中的存储位置的集中式数据库进行维护。当使用UWB技术时,诸如托盘、装配之类的资产也或者是人可以装配有以规律的时间间隔发送UWB信号的标签。然后在仓库、医院或工厂中安装的UWB传感器可以检测到这些信号。然后中央服务器使用UWB传感器所检测到的UWB信号来计算标签的位置并更新集中式数据库。
移动机器人越来越多地被用来促进消费者和工业设置中的任务性能。自动式移动机器人特别提供了益处,包括:将工人从肮脏、阴暗、危险或远程的任务中解放出来;高可重复性;以及还有在越来越多的案例中的高性能。在使用一般的移动机器人以及特别的自动式移动机器人中的显著挑战是机器人定位,即,确定机器人在空间中的位置。目前的定位解决方案不是很好地适用于许多移动机器人应用,包括当移动机器人在诸如由全球导航卫星系统(GNSS)提供的定位之类的定位不可靠或无效之处的区域中操作的情况下的应用,或者需要在人附近的操作的应用。
使用目前的用于机器人定位的UWB定位解决方案将不能使移动机器人直接确定其自己的位置。而是,装配有标签的机器人将首先从其位置发送UWB信号,然后所述机器人附近的UWB传感器将检测到该UWB信号并将所述UWB信号中继到中央服务器,然后所述中央服务器将计算该移动机器人的位置,然后该位置将必须被经由无线链路传送回给所述机器人。这种类型的系统架构总是引入了用于控制移动机器人的显著的通信延迟(例如时延)。该通信架构还导致了相对较高的丢失信号的风险(例如由于无线干扰)和对应的较低的系统稳健性,这使得其不适用于许多安全关键的稳健应用(例如自动式移动机器人操作)。此外,在该架构中,最大标签数量和标签发射速率(即,定位系统的更新速率(update rate))总是相关联,因为在这些系统中多个UWB信号当前不重叠。这导致对于给定的标签发射速率的有限可伸缩性(即,系统只能并行地支持有限数目的标签)。另外,如果需要较高的标签发射速率或冗余度,则将需要使用较少数量的标签。此外,利用这样的架构,用于确定标签位置的最大更新速率与标签数量成反比。这不适用于需要以高更新速率跟踪大量对象的情况。
现有技术中提出的另一定位系统使用通过UWB信号的双向交换与固定式收发器进行通信的移动收发器。与固定式收发器之间的双向通信使得移动收发器能够计算其自身与固定式收发器之间的飞行时间。在该架构中,必须协调移动收发器与固定式收发器之间的通信,使得通信不会干扰。对三个或更多个固定式收发器的飞行时间的获知使得每个移动收发器能够使用三边测量计算所述移动收发器在环境中的相对位置。由于每个移动收发器与每个固定式收发器进行通信,因此系统的更新速率与移动收发器的数量以及固定式收发器的数量成反比。因此该架构不适用于必须以高频率定位大量对象(例如跟踪成组的机器人,其中在机器人控制循环中使用位置测量来影响机器人的动作)的情况下的系统、移动收发器的位置或身份应当保持私密(例如跟踪人)的系统、需要收发器冗余度和高更新频率两者的系统(例如,安全关键的应用,诸如车辆定位系统)、或者在需要最多的收发器来帮助区分(disambiguate)多路径信号的多路径环境(例如机器人仓库)中,在该多路径环境中需要高的更新频率和大量的跟踪对象。
附图说明
在附图的图示中以示例方式而非限定性地示出了本公开的实施例,其中相似的标记指示类似的元件,其中:
图1是根据本公开的一些实施例的示意性定位系统的框图;
图2是根据本公开的一些实施例的定位系统的自定位装置和示意性收发器的框图;
图3是根据本公开的一些实施例的定位系统的示意性收发器的详细框图;
图4是根据本公开的一些实施例的包括一对第一收发器和第二收发器的示意性收发器的框图;
图5是根据本公开的一些实施例的示意性自定位装置的框图;
图6是根据本公开的一些实施例的示意性时序图;
图7是根据本公开的一些实施例的包括一对第一和第二第一自定位装置的示意性自定位装置的框图;
图8是根据本公开的一些实施例的包括多个可选天线的示意性自定位装置的框图;
图9是根据本公开的一些实施例的包括位置更新处理的示意性定位单元的框图;
图10示出了根据本公开的一些实施例的包括自定位装置的示意性移动机器人;
图11是根据本公开的一些实施例的可以与例如图10的移动机器人一起使用的示意性控制单元的框图;
图12示出了根据本公开的一些实施例的具有大量收发器的示意性收发器网络;
图13示出了根据本公开的一些实施例的示意性的简化的收发器网络;
图14示出了根据本公开的一些实施例的具有地理上相邻的小区的示意性收发器网络;
图15示出了根据本公开的一些实施例的在由多个收发器小区服务的区域中操作的示意性移动机器人;
图16示出了根据本公开的一些实施例的可用于确定时间表的示意性输入参数地图;
图17示出了根据本公开的一些实施例的用于确定时间表的示意性动态定位性能地图;
图18示出了根据本公开的一些实施例的可以如何调整时间表的示意性示例;
图19示出了根据本公开的一些实施例的可以如何调整时间表的另一个示意性示例;
图20示出了根据本公开的一些实施例的可以如何针对两组移动机器人来调整调度的示意性示例;
图21是根据本公开的一些实施例的定位信号的示意性结构的图;
图22示出了根据本公开的一些实施例的可以用于实现更高的定位更新速率的示意性传输时间表;
图23示出了根据本公开的一些实施例的、图22的示意性传输时间表的一部分以及相应的接收器活动;
图24示出了根据本公开的一些实施例的包括两个有效载荷的定位信号的示意性传输时间表;
图25示出了根据本公开的一些实施例的示意性定位系统和相应的性能地图;
图26示出了根据本公开的一些实施例的与不同的性能地图一起使用的图25的示意性定位系统;
图27示出了根据本公开的一些实施例的示意性定位系统和相应的性能地图;
图28示出了根据本公开的一些实施例的与不同的性能地图一起使用的图25的示意性定位系统;
图29示出了根据本公开的一些实施例的定位信号的示例性传输时间表;
图30示出了根据本公开的一些实施例的定位信号的另一示意性传输时间表;
图31示出了根据本公开的一些实施例的可以在自定位装置上实现以配置其接收器的逻辑的示意性流程图;
图32示出根据本公开的一些实施例的性能地图到室内和室外环境的示意性应用;
图33示出了根据本公开的一些实施例的两个示意性定位网络;
图34是根据本公开的一些实施例的示意性桥接锚的框图;以及
图35是根据本公开的一些实施例的另一示意性桥接锚的框图。
具体实施方式
根据本公开,已经减少或消除了目前的用于定位的系统的局限性。另外,本公开提供了相对于当前定位系统的各种技术优点。
本公开的某些实施例的技术优点涉及定位二维空间或三维空间中的对象。例如,在使用自定位装置来确定轮式移动机器人的位置的实施例中,传输时间表可以被优化,使得该传输时间表考虑锚相对于机器人的操作区域或当前位置的相对位置,或者使得该传输时间表考虑机器人的移动约束(例如,所有可能的位置在2D平面中)。某些实施例的其他技术优点可以实时地或离线地针对特定用例或应用来优化定位系统的性能。例如,在某些实施例中,传输时间表可以基于预定规则(例如,基于比较自定位装置的估计位置与一个或多个预定位置、基于时间码、基于属性)或基于请求(例如,操作员命令)被动态地重新配置。
某些实施例的技术优点改进了定位精确度或精度。某些实施例的技术优点改进了可以以其获得或更新定位信息的速率或延迟。例如,在某些实施例中,可以使用重叠定位信号而不是干扰定位信号来允许自定位装置在特定区域或特定时间以更高的速率确定其位置。某些实施例的技术优点改进了定位信息的信息内容。例如,在一些实施例中,自定位装置可以选择接收定位信号,使得在特定空间方向上或沿着特定空间轴的它的位置估计的特别高的不确定性被降低。
某些实施例的另外的技术优点涉及例如由设备使用的接收无线信号以确定其自身的位置。在一些实施例中,当不能建立接收设备与足够大数量的信号发送器之间的直视视线时,对定位信号的接收并不恶化。例如,一些实施例既允许在不具有对全球卫星导航系统(GNSS)的良好视线的区域中操作,也允许在室内操作。在一些实施例中,信号不会被多路径失真,不会遭受在窄带信号中观察到的多径衰落,或者不会在室内环境中缺少直视视线时遭受降低的信号质量。例如,一些实施例在封闭环境(例如室内)中、在森林中或在密集城市环境中没有显示出性能衰减,例如那些保持对GNSS信号的跟踪变得更困难的环境。
一些实施例的技术优点可以允许多个定位信号以足够的时间间隔到达接收器天线,甚至在信号重叠的情况下也避免了信号检测的衰减和定位系统性能的降低。
一些实施例的技术优点使得它们可以被实时地使用,并且可以被无限数量的接收器使用,以确定所述接收器在拒绝全球定位系统的环境或可以期望更大的精确度或系统冗余或故障安全的操作的任何环境中的二维或三维位置。
一些实施例的技术优点可以通过启用与当前可能的相比具有较高更新速率、具有较低延迟、在较大空间中或者具有较高准确度的定位,提高当前移动机器人的性能并且允许对移动机器人新的使用,从而得到更高性能的机器人控制。
一些实施例的另外的技术优点可以允许人、移动机器人或其他机器配置有自定位装置,该自定位装置可以确定其在空间中的3D位置,而不需要发射信号。这可以提高定位性能并且允许定位技术的新使用,这通过以下来实现:通过提供调节优点;通过允许可扩展性(例如,系统可以被不限数量的自定位装置并行地使用)或者在任意大的空间中;通过允许较高的冗余(例如,非发射装置允许更多的发射锚用于给定的网络流量负荷);通过启用更有效的带宽使用(例如,较低的发射,较少的干扰);通过提高接收器的能量效率(例如,通过不需要用于发送的能量);通过增强操作的隐秘性;以及通过使得数据可以本地地用于需要的地方,从而得到提高的更新速率、更低的延迟、较高的速度和较高的系统稳健性。
一些实施例的另外的技术优点可以通过融合来自若干源(包括一个或多个定位网络(例如,UWB网络)、来自多个位置的全局属性的读数和机载运动传感器)的数据来允许改进的系统性能。
一些实施例的另外的技术优点可以被链接到提供分布式定位系统。这样的系统可以提供提高的稳健性以及机器人操作的安全性,因为它不依赖于来自单个源的传感器信号。它还可以通过提供冗余性来提供良好的性能降级;可以通过提供冗余数据来允许识别和分辨数据的不一致;并且可以通过基于从各个收发器接收的信号的比较执行定位来提供较高的性能。
一些实施例的另外还有的技术优点允许在没有收发器和自定位装置之间的直视视线的情况下进行定位。此外,另外的技术优点允许对来自射频流量的扰动的较低敏感性、安全的通信以及对干扰、噪声和拥塞(jamming)的提高的抵抗力。
对于本领域的技术人员而言,从下面的描述、附图和权利要求来看,另外的技术优点将是明显的。此外,虽然上面已经列举了具体优点,但是各个实施例可以包括所列举的优点中的全部、一些或不包括所列举的优点。所列出的优点不应被认为对于任何实施例都是必要的。
本公开使用能进行时间标记的信号(在本文有时被称为“定位信号”)。能进行时间标记的信号是射频(RF)信号,并且每个信号具有可以被检测且可以被精确地进行时间标记的特征。特征的示例包括信号波峰、信号前沿和信号前导码。能进行时间标记的信号的示例包括具有明显的良好定义的可重复的频率随时间提高或频率随时间降低的射频信号。能进行时间标记的信号的另外的示例包括信号突发、信号线性调频(signal chirp)或信号脉冲。能进行时间标记的信号的另外的示例包括具有适用于相位校正或幅度校正技术的特征的信号(例如具有有低的自相关值的码的信号)。
在一些实施例中,所述能进行时间标记的信号是在接收区域上发送的“开环的”单向射频信号。示例包括DCF77时间码信号、全球定位系统P码信号、以及地面集群无线电信号。在一些实施例中,所述装置是非发射装置(non-emitting apparatus)。
在一些实施例中,所述能进行时间标记的信号使用窄频带。在一些实施例中,使用ISM频带中的中心频率或载波频率。在一些实施例中,使用在1-48GHz范围中的中心频率或载波频率。在一些实施例中,使用在2.4-12GHz范围中的中心频率或载波频率。在一些实施例中,使用在3.1-10.6GHz范围中的中心频率或载波频率。在一些实施例中,使用较高的频率。与宽带信号(例如,超宽带(UWB)信号)相比,窄带信号趋于更多地遭受多径衰减的影响。在窄带信号中,信号持续时间通常长于信道的延迟变化(delay variance)。相反,对于UWB信号,信号持续时间通常少于信道的延迟变化。例如,在具有2纳秒的脉冲持续时间的UWB系统的情况下,脉冲持续时间明显得远小于信道延迟变化。因此,信号分量可以被容易地分辨,并且UWB信号对于多径衰减是稳健的。
在一些实施例中,所述能进行时间标记的信号是UWB信号。UWB信号在大的带宽上扩展。如在本文中使用的,UWB信号是在超过125MHz或算数中心频率的5%中的较小者的带宽上扩展的信号。在一些实施例中,UWB信号是在超过250MHz或算数中心频率的10%中的较小者的带宽上扩展的信号。在一些实施例中,UWB信号是在超过375MHz或算数中心频率的15%中的较小者的带宽上扩展的信号。在一些实施例中,UWB信号是在超过500MHz或算数中心频率的20%中的较小者的带宽上扩展的信号。在一些实施例中,使用在400-1200MHz的范围中的带宽。在一些实施例中,使用在10-5000MHz的范围中的带宽。在一些实施例中,使用在50-2000MHz的范围中的带宽。在一些实施例中,使用在80-1000MHz的范围中的带宽。UWB技术允许初始射频(RF)信号在频域中扩展,从而得到具有较宽带宽、比初始信号的频率内容通常宽的信号。UWB技术适用于定位系统,因为它可以传输非常短持续时间的脉冲,该非常短持续时间的脉冲可以被用于非常准确地测量信号的到达时间并且因此允许较大范围的应用。UWB信号可以有利地用于定位系统,因为它们具有穿过障碍物以及允许延伸数百米而不会与常规的窄带和用在相同频带中的载波相互干扰的能力。
在一些实施例中,所述能进行时间标记的信号可以被测量为处于相对于时钟的0.6纳秒内。在一些实施例中,能进行时间标记的信号的到达时间可以被测量为处于相对于时钟的1、2、3、4、5、6、7、8、9、10、11、12、13、14或15纳秒内。
在一些实施例中,传输速率被测量为每秒传输的数量的长时间平均值。在一些其他实施例中,传输速率被测量为两个后续传输之间的时间间隔的长时间平均值的倒数。在一些实施例中,典型间隔是1-500微秒、1-1000微秒、1-500毫秒、1-1000毫秒,1-5秒、1-500秒或其任何组合中的一个。在一些实施例中,不使用间隔。在一些实施例中,在1-10秒的窗口上计算长时间平均值。在一些其他实施例中,在1-10分钟的窗口上计算长时间平均值。在一些其他实施例中,在10分钟的窗口上计算长时间平均值。
在一些实施例中,信号的平均等效全向辐射功率(EIRP)密度在所有频率处小于-40dBm/MHz。在一些实施例中,信号的平均EIRP密度在所有频率处小于-80、-70、-60、-50、-30、-20、或-10dBm/MHz。
在一些实施例中,发送的信号的最大功率小于每信道0.1mW。在一些实施例中,发送的信号的最大功率小于每信道1.0mW。在一些实施例中,发送的信号的最大功率小于每信道100mW。在一些实施例中,发送的信号的最大功率小于每信道500mW。在一些实施例中,发送的信号的最大功率小于每信道10W。
在一些实施例中,应用信号的最大功率和信号的EIRP密度中的较小限值。在一些实施例中,应用信号的最大功率和信号的EIRP密度中的较大限值。在一些实施例中,应用信号的EIRP密度的限值中的一个和信号的最大功率的限值。在一些实施例中,应用信号的EIRP密度的限值以及信号的最大功率的限值两者。在一些实施例中,限值应用到窄带信号。在一些实施例中,限值应用到宽带信号。
在一些实施例中,收发器的典型有效范围在1m和50m之间。在一些实施例中,收发器的典型有效范围在1m和100m之间。在一些实施例中,收发器的典型有效范围在1m和500m之间。在一些实施例中,收发器的典型有效范围在1m和1000m之间。在一些实施例中,收发器的典型有效范围在1m和5000m之间。在一些实施例中,装置可以仅接收来自收发器子集的UWB信号。
在一些实施例中,使用50Mbps的最大数据速率。在一些实施例中,使用5Mbps的最大数据速率。在一些实施例中,使用1Mbps的最大数据速率。
在一些实施例中,使用线性扩频(CSS)信号。在一些实施例中,使用调频连续波(FMCW)信号。
一些实施例包括定位单元。在一些实施例中,定位单元可以计算以下中的至少一个:(i)朝向或朝向信息,(ii)位置,或者(iii)自定位装置的运动。
在一些实施例中,定位单元基于能进行时间标记的信号的接收时间以及收发器的已知位置来计算自定位装置的位置。在一些实施例中,使用到达时间方案。在一些实施例中,使用到达时间差方案。多点定位要求定位单元计算两个能进行时间标记的信号的接收时间之间的时间差。通过从它们的接收时间的差(也被称为“TDOA测量”)中减去已知的信号发送时间的时间差,定位单元可以计算到从其发送信号的两个收发器的距离的差(例如,因为来自收发器2的信号的接收与来自收发器1的信号相比延迟1ns,所以收发器2比收发器1远30cm)。通过计算多个收发器之间距离的差,定位单元可以能够通过求解双曲线方程组或其线性化版本来计算自定位装置的位置。求解该方程组的方法对于本领域技术人员是已知的,并且可以包括非线性最小二乘、最小二乘、牛顿迭代、梯度下降等。多点定位的方法要求信号发送时间的时间差是已知的。
在一些实施例中,自定位装置的定位单元可以迭代地计算位置。在一些实施例中,不论何时信号被接收到,定位单元迭代地更新位置估计,而不会等待能进行时间标记的信号从所有收发器被接收。在一些实施例中,当能进行时间标记的信号被接收时,依赖于其接收时间与之前接收的能进行时间标记的信号的接收时间之间的差,计算对当前位置估计的调整。在一些实施例中,已知的滤波方法(例如,卡尔曼滤波、粒子滤波)被用在计算或应用该更新。在一些实施例中,基于当前位置估计的方差来计算调整(例如,如果当前估计相对准确,则将应用较少的调整)。在一些实施例中,基于从其发送能进行时间标记的信号的两个收发器的位置来计算调整。在一些实施例中,基于测量模型来计算该调整,该测量模型描述基于当前位置估计和两个收发器的位置的TDOA测量的概率分布。在一些实施例中,这使得依赖于TDOA测量被确定为多么准确来应用或多或少的调整(例如,如果第一收发器处于连接当前位置估计和第二收发器的线上,则从两个收发器得到的TDOA测量可以被认为是不可靠的,并且因此应用较少的调整)。
在一些实施例中,定位单元基于描述自定位装置的位置的概率分布的系统模型来更新位置估计。在一些实施例中,该系统模型可以基于其他估计的状态(例如,自定位装置的速率或航向(heading))。在一些实施例中,该系统模型可以基于输入历史(例如,如果输入命令根据系统动态可能给出正x方向上的运动,那么新位置估计更可能处于正x方向,而不是负x方向)。
在一些实施例中,该系统模型可以基于来自传感器或全局属性的测量。在一些实施例中,定位单元可以基于全局属性计算自定位装置的位置。在一些实施例中,定位单元可以基于由自定位装置测量的全局属性和由一个或多个收发器测量的全局属性之间的不同来计算自定位装置的位置(例如,如果自定位装置和收发器两者测量气压,那么根据高度和气压之间已知的关系,可以计算该两者之间的相对高度差)。
在一些实施例中,定位单元可以使用位置估计的历史和系统模型来计算主体的其他动态状态,例如速度或航向。例如,如果位置估计的历史指示运动,则可以估计速度。另外的例子是,如果位置估计的历史指示在正y方向上的运动,并且系统模型指示仅仅正向运动是可能的(例如,滑动转向汽车),那么朝向可以被确定为沿正y方向朝向。
在一些实施例中,位置是一维位置、二维位置、三维位置、或六维位置(即,包括位置和朝向)。
在一些实施例中,定位单元的性能(也称为定位性能(localization performance或者positioning performance))可以表示为位置估计的平均误差。在一些实施例中,定位性能可以被表示为位置估计的方差。
在一些实施例中,可以基于精度的削减(dilution)来计算定位性能。
在一些实施例中,可以基于延迟(例如,位置单元检测自定位装置的位置的改变所需的时间)来计算定位性能。
在一些实施例中,定位单元所计算的相对位置是以1m、20cm、10cm或1cm的精确度来计算的。在一些实施例中,能进行时间标记的信号的接收和由定位单元提供的更新的位置估计的计算之间的时间延迟小于50ms、25ms、10ms、5ms、2ms或1ms。在一些实施例中,系统针对全位置更新或针对部分位置更新的更新速率大于1Hz、5Hz、10Hz、50Hz、250Hz、400Hz、800Hz、1000Hz或2000Hz。
在一些实施例中,定位系统至少包括1、2、3、5、7、10、25、50、100或250个锚。在一些实施例中,定位系统支持多于1、2、3、5、10、20、40、100、200、500、1000、5000或10000个自定位装置。
在此使用的时钟表示能够提供时间测量的电路、结构或装置。该时间测量可以以任何适当的时间单位。例如,时间的测量可以基于秒的基本单位。作为另一个例子,时间的测量可以基于以特定速率递增的计数。在一些实施例中,时钟包括用于确定时间测量的内部振荡器。在一些实施例中,时钟基于接收的信号(例如,来自外部振荡器)来确定时间测量。在一些实施例中,时钟接口提供时钟信号。
在一些实施例中,每个收发器可以使用其自身的机载时钟(onboard clock)。在一些实施例中,单个时钟可以生成经由线缆或无限地发送到每个收发器的时钟信号。在一些实施例中,时钟信号可以依赖于由无线电发送器发送的至少一次性码、或者依赖于陆地无线电时钟信号、GPS时钟信号以及时间标准中的至少一个。在一些实施例中,时钟信号可以基于遵守GPS的振荡器、基于发送器或基于从至少两个时钟计算出的时间估计,以改进时钟信号的准确度或长时间稳定性。
时钟可以例如使用晶体振荡器或温度补偿的晶体。在一些实施例中,增强的时钟精确度可以通过经由晶体恒温箱(OCXO)或经由模拟(TCXO)补偿或经由数字/微控制器(MCXO)补偿进行的温度稳定而得到。在一些实施例中,集中式同步单元被使用。在一些实施例中,原子振荡器(例如,铷)被用作时钟。
在一些实施例中,时钟被配置为具有最大(1x10-8)2或(1x10-9)2或(5x10-10)2的阿伦方差,用于平均5毫秒和10毫秒之间的间隔或用于平均5毫秒和100毫秒之间的间隔或用于平均1毫秒和1秒之间的间隔。
所述装置或收发器可以装配有模拟和数字接收电子部件。所述接收电子部件可以放大接收的信号并将接收的信号转换成基带信号,然后所述基带信号可以被解调并被传递到中央处理电子部件。接收器的重要设计方面在于最小化噪声和失真。这可以通过仔细选择接收电子部件的组件(特别是放大器的那些)并且通过相应地优化接收器的电路设计来得到。
在一些实施例中,自定位装置或自定位装置的天线、模拟接收电子部件和数字接收电子部件被配置为接收在2、10、50秒的时间窗口内的两个能进行时间标记的信号,其中该两个UWB信号的时间标记之间的时间差处于相对于装置的时钟它们在装置的天线处的实际接收时间之间的时间差的0.6、3或15纳秒内。这里使用的术语“接收器”和“接收电子部件”是指接收信号的天线、模拟接收电子部件和数字接收电子部件。
在一些实施例中,所述装置的数字接收电子部件还能够操作用于参照所述装置的时钟在小于1毫秒、100微秒或10微秒内对接收的UWB信号进行时间标记。
所述装置或收发器可以装配有模拟和数字发送电子部件。
在一些实施例中,收发器或者收发器的数字发送电子部件、模拟发送电子部件和天线被配置用于在2秒、10秒或50秒的时间窗口内发送两个能进行时间标记的信号,或者被配置用于使得:参照收发器的时钟,从收发器的天线发送两个能进行时间标记的信号之间的时间差在它们的调度发送时间之间的时间差的0.6纳秒、3纳秒或15纳秒内。这里使用的术语“发送器”和“发送电子部件”是指用于生成信号的天线、模拟发送电子部件和数字发送电子部件。
在一些实施例中,调度单元用于调度信号发送时间。对本领域技术人员而言清楚的是,由收发器造成的关于这个发送调度的任何误差都会影响定位单元计算的位置的精确度。
在一些实施例中,调度时间指的是信号的第一脉冲离开收发器的天线时的时间。在一些实施例中,调度时间指的是帧首定界符的开始(即,发送信号从前导码的重复发送变到帧首定界符的发送时的点)。在一些实施例中,所述装置被配置为比较由同一收发器发送的两个能进行时间标记的信号。
在一些实施例中,收发器在分组级协调其发送。在一些实施例中,避免了信号重叠。在一些实施例中,信号按如下方式被发射:以轮询方式;以固定间隔;按特定时间序列;或者依次。在一些实施例中,收发器同时发送信号。在一些实施例中,收发器发送部分重叠的信号。
在一些实施例中,三个或更多个收发器中的每个包括调度单元。在一些实施例中,单个调度单元可操作地耦接到三个或更多个收发器。在一些实施例中,这种可操作的耦接是有线连接。在一些实施例中,这种可操作的耦接是无线连接。在一些实施例中,这种无线的可操作的耦接是使用诸如UWB信号之类的信号来实现的。在一些实施例中,调度单元使用比定位信号速率低的更新速率。
在一些实施例中,调度单元能够操作用于确保一个收发器终结其发送和不同的收发器开始其发送之间有至少5微秒、10微秒或50微秒的时间分隔。在一些实施例中,调度单元能够操作用于监测定位信号。在一些实施例中,调度单元能够操作用于计算改进的调度。在一些实施例中,调度单元能够操作用于确保一个信号的结束和由同一收发器发射的第二信号的开始之间有至少1微秒、5微秒或10微秒的时间分隔。在一些实施例中,调度单元能够操作用于维持对介质访问控制地址和调度发送时间的分派的记忆。
在一些实施例中,所述三个或更多个收发器中的每个包括传感器。在一些实施例中,传感器物理地并可操作地耦接到收发器。在一些实施例中,传感器能够操作用于提供表示收发器的朝向、位置或移动的数据。在一些实施例中,传感器被构造为检测对收发器的位置或朝向的扰动。在一些实施例中,传感器信号是物理连接到发送器的传感器的信号,其中传感器信号作为诸如UWB定位信号之类的信号的有效载荷的一部分被传输。
在一些实施例中,所述自定位装置包括传感器,该传感器物理地并可操作地耦接到所述装置,并且能够操作用于提供表示所述装置的朝向的数据。在一些实施例中,传感器能够操作用于提供表示所述装置的朝向、位置或运动的数据。在一些实施例中,传感器被配置为提供表示自定位装置的天线的朝向的数据。
来自传感器的数据可以被定位单元或位置校准单元处理。例如,与地标相关的数据可以与其它数据(例如,与另一地标相关的数据、来自存储器的数据、传感器数据、表示位置的数据)进行比较,以改进位置估计或位置校准单元。作为另一个示例,由第一相机检测到的地标相对于收发器的位置与由第二相机检测到的同一地标相对于自定位装置的位置之间的比较可以允许定位单元改进定位估计。比较可以使用与一个或多个地标相关的数据。比较可以使用与由一个或多个视觉传感器的观测相关的数据。
可以有益地用作本公开的部分的传感器的典型示例包括光学传感器、加速计、磁力计和陀螺仪。
在一些实施例中,微机电系统(MEMS)或压电系统可以用于允许获得本公开中概述的操作特性。这种可以有益地随本公开使用的微传感器的示例包括MEMS陀螺仪、MEMS加速计、压电陀螺仪和压电加速计。在一些实施例中,微传感器的使用允许使用一个或多个惯性测量单元(IMU),每个惯性测量单元可以在每个子系统中组合多个陀螺仪或加速计,或者使用多轴陀螺仪或加速计。在一些实施例中,这种微传感器的选择允许产生或使用适合高度动态移动的自定位装置,这样的自定位装置要求低重量和低功耗,但是还要求高性能。例如,3轴MEMS陀螺仪可以用于监测自定位装置的姿态,并且允许在超出姿态阈值的情况下触发信号。作为另一示例,MEMS陀螺仪可以用于控制在附近盘旋的装配有自定位装置的小型飞行机器人,而不论其低的时间常数。光学传感器的示例包括红外传感器、线性相机、光学流量传感器和成像传感器等。
一些实施例包括全局属性传感器,即,能够操作用于提供表示全局属性的数据的传感器。
全局属性的示例包括在地区中的多个或每个点具有可确定的值的场(field),例如重力、电磁力、液压和气压。全局属性的另外的示例包括射频信号强度、全球定位系统(GPS)信号、地球的磁场、地球的重力场、空气压力、地标和无线电时间信号(例如DCF77时间码发送器发送的无线电时间信号)。地标的示例包括地平线、太阳、月亮或星星、山川、建筑和突出的环境特征。突出的环境特征可以包括诸如山川的独特自然特征,诸如纪念碑的独特建筑,以及诸如在同时定位和地图构建(SLAM)中使用的那些的其它环境特征。地标的另外的示例包括在尺度不变特征变换(SIFT)和加速稳健特征(SURF)中使用的那些特征。注意,在本公开中,GPS或GNSS可以被用作占位项来描述由诸如例如GLONASS、伽利略(Galileo)、IRNSS或北斗-2(BeiDou-2)的其它全球导航卫星系统以及它们的改进版本(比如,实时动态(RTK)GPS或DGPS)产生的任何类似信号。
在一些实施例中,装置和收发器均被配置用于检测相同的全局属性。在一些实施例中,收发器被配置用于向装置或者另一收发器传送表示在该收发器的位置处的全局属性的数据,并且该装置或另一收发器被配置用于将该数据与表示在该装置或另一收发器的位置处的同一全局属性的数据进行比较。在一些实施例中,全局属性可以与全局属性模型相关联。
在一些实施例中,全局属性传感器是方向传感器。方向传感器可以使得收发器能够测量其相对于收发器和自定位装置所共同的参考系(frame of reference)的方向。然后,收发器可以发送表示该收发器的朝向的信号,该收发器的朝向作为数据(载荷)被包括在定位信号内。在一些实施例中,收发器能够测量其朝向,并将这一朝向作为定位信号的载荷来发送。
在一些实施例中,位置校准单元可以计算对收发器的位置的估计。在一些实施例中,收发器位置被计算一次(例如,作为在定位系统的建立过程中的校准例程的一部分)。在一些实施例中,收发器位置被连续计算(例如,每次与收发器的位置相关的新数据变得可用时)。
在一些实施例中,利用已知、部分已知、估计的或者部分估计的位置信息(例如,初始收发器距离、位置或者朝向可以被手动测量或输入)来初始化收发器位置单元。
位置校准可以以各种方式实现。例如,位置校准单元可以基于从具有已知位置的其它收发器接收的进行了时间标记的信号来计算收发器的位置。例如,这可以允许向已有的收发器网络添加附加的收发器。在一些实施例中,位置校准单元与定位单元类似地操作,或者反过来。在一些实施例中,位置校准单元可操作地耦接到补偿单元。
在一些实施例中,单个位置校准单元可以用于计算多个收发器相对于彼此的位置。这可以例如允许尚未具有已知位置的收发器的网络的初始化。在一些实施例中,使用多个位置校准单元(例如,每个收发器一个位置校准单元)。
在一些实施例中,位置校准单元被实现为在收发器外(offboard)。例如,位置校准单元可以在使用线缆连接到收发器的膝上型计算机上被实现。例如,这可以允许对操作者而言更便利的接口。
在一些实施例中,同步单元能够操作用于基于第二时钟对(i)第一时钟的偏移量和(ii)第一时钟的速率中的至少一个进行同步。在一些实施例中,基于众多定位系统的时钟的平均、中值和统计特性中的至少一个来计算校正或者执行同步。在一些实施例中,使用还提供时序信息的全局属性,该时序信息诸如由GPS、DCF 77和另外的系统提供的那些信息。在一些实施例中,同步单元使用还提供时序信息的全局属性。
在一些实施例中,同步单元能够操作用于显式或隐式地考虑由以下中的至少一项引入的时序误差:(i)装置时钟的速率与第一通信收发器的时钟的速率之间的第一差别;以及(ii)装置时钟的速率与不同的第二通信收发器的时钟的速率之间的第二差别。
在一些实施例中,同步单元能够操作用于基于由补偿单元计算的补偿或在存储器中存储的数据来执行同步或计算时钟校正。
在一些实施例中,同步单元能够操作用于对机载时钟速率进行同步,使得机载时钟速率与两个其它收发器的机载时钟速率的中值之间的统计平均误差小于百万分之十或百万分之一或十亿分之一百。在一些实施例中,同步单元能够操作用于同步机载时钟的偏移量,使得机载时钟的偏移量和这两个其它收发器的机载时钟偏移量的中值之间的统计平均误差小于10纳秒或者5纳秒或者1纳秒或者10皮秒。在一些实施例中,这是通过以下来实现的:显示或隐式地考虑通过收发器的天线和收发器的模拟和数字发送电子部件中的一个或多个引入的时序误差,或者基于进行了时间标记的UWB时钟同步信号和由收发器的存储器单元提供的数据来计算对机载时钟偏移量的时钟校正,或者更改时钟速率(例如,更改时钟的电压、温度或晶体微调)。
在一些实施例中,补偿单元用于校正信号延迟。补偿单元计算对于从在收发器处调度信号的传输时间的时刻到在收发器的或装置的接收电子部件处对信号进行时间标记的时刻对能进行时间标记的信号的影响的补偿。
补偿典型地通过例如基于信号质量或组延迟来校正接收时间标记或校正发送时间信息(例如,UWB数据中包括的作为载荷的发送时间标记)而实现。该校正可以(例如通过为个体时间标记计算校正或者修改个体时间标记)被立即计算和应用或者(例如通过批量为时间标记计算校正或者批量修改时间标记)被批量计算和应用。补偿可以使用若干数据源来确定需要的校正;数据源的示例包括(i)收发器和装置的位置和朝向的数据表示;(ii)由机载传感器提供的数据;(iii)存储在存储器中的数据;(iv)由同步单元提供的数据;以及(v)由数字接收电子部件提供的质量度量。
在一些实施例中,补偿单元补偿装置的天线相对于收发器的天线的位置、朝向或移动的影响。在一些实施例中,补偿单元补偿障碍物的影响。在一些实施例中,补偿通过计算以下各项来执行:(i)对距离、时间或持续时间的校正的数据表示,(ii)对第一和第二距离、时间或持续时间的比较的校正的数据表示,或(iii)对多个距离、时间或持续时间的比较的校正的数据表示。在一些实施例中,校正的数据表示被提供给定位单元。
在一些实施例中,补偿单元还可以考虑装置的天线相对于收发器的天线的相对朝向、方向和距离的影响。由于创建用于诸如UWB信号之类的能进行时间标记的信号的全向天线的难度,因此这是重要的。还因为一些装置取决于它们相对于收发器的在空间中的位置或者取决于所使用的通信架构可能正接收来自大量收发器的信号、以较高的更新率接收信号或者接收比其它信号具有较高质量的信号,所以这是重要的。与补偿值的计算相关的对应值可以作为校准例程的一部分被确定或者在使用期间被确定(例如,由操作者提供)并且可以使用假设(例如,辐射对称性)或使用如上文所述的来自其它系统部件的数据被改进。它们然后可以被存储在存储器中以供使用,例如存储为用于相对天线朝向、方向和距离的不同成对组合的补偿值的查找表。
与上面针对补偿单元和能进行时间标记的信号所概述的策略类似的策略也可以被同步单元使用或用于时钟同步信号。
应当理解,虽然补偿及其各方面有时针对在装置和收发器之间行进的信号被解释,但是对于在两个装置之间或两个收发器之间行进的信号,解释可以是同样有效的并且可以被类似地使用。
控制单元被用于基于从定位单元接收的数据(例如,位置估计)或传感器(例如,机载传感器)或全局属性(例如,大气压)而生成用于致动器的控制信号。
控制单元可以实现现有技术中良好地建立的或广泛使用的控制规律。这种控制规律的示例包括PID控制;模型预测性控制;滑动模式控制;全状态反馈;以及后退控制。依赖于控制规律,控制单元可以使用由定位单元提供的状态估计。
控制单元可以计算用于单个致动器的控制信号。在一些实施例中,控制单元计算用于不同的致动器集合的不同的控制信号的集合。例如,控制单元可以计算用于第一模块或机器人的第一轴的两个致动器的控制信号的第一集合或者用于第二模块或机器人的第二轴的控制信号的第二集合。
致动器可以属于移动或控制机构或系统的电子发动机、磁发动机和机械发动机的组。示例包括压电致动器、无刷电机和伺服马达。
在一些实施例中,装置的致动器被配置为在该装置的三个平移自由度上移动该装置。在一些实施例中,致动器被配置为在装置的三个旋转自由度上移动该装置。在一些实施例中,致动器被配置为使装置的一部分移动,诸如天线。在一些实施例中,多个致动器被结合使用。
在一些实施例中,装置的致动器被配置为使装置的位置移动至少30cm。在一些实施例中,装置的致动器被配置为使装置的位置移动至少100cm。在一些实施例中,装置的致动器被配置为使装置的旋转移动至少30度。在一些实施例中,装置的致动器被配置为使装置的旋转移动至少90度。
图1是根据本公开的一些实施例的示意性定位系统100(在本文中有时被称为“网络”)的框图,该示意性定位系统100包括在生成和执行用于传输定位信号的时间表中涉及的部件。系统100包括调度器110、调度单元控制器120和收发器130(在本文中也被称为“锚”)。
调度器110使用一个或多个输入参数来确定时间表。如图所示,输入参数可以包括一个或多个用户要求、锚位置和锚属性。用户要求可以包括期望的定位性能。例如,用户可以指定定位区域内的最小定位性能。作为另一个例子,用户可以指定定位区域内的不同的定位性能。在一些实施例中,定位性能可以经由二维地图或三维地图输入,其中定位区域内的分区被标记有期望的定位性能。锚位置可以根据已知的坐标系来输入。在一些实施例中,用户可以输入锚位置。在一些实施例中,定位系统100可以被配置为使用定位信号来确定锚的位置。锚属性可以包括锚到彼此的连接性以及其他锚属性,诸如可用配置(例如,锚是否可以同时接收和传输)、锚可以被设置为的频率、天线辐射模式、任何其它合适的锚属性以及其任何组合。
调度器110可以包括一个或多个输入,诸如用于接收输入参数的通信输入或用户输入。用户输入可以包括例如键盘、鼠标、触摸屏、按钮、开关、触摸垫或任何其他合适的用户输入设备。通信输入可以包括例如(例如使用USB、RS-232、以太网或其它标准的)有线接口或者(例如,使用Wi-Fi、IR、WiMAX、无线蓝牙或其他标准)的无线接口。调度器110还可以包括处理器和存储器。该处理器可以适于执行存储在存储器中的计算机程序指令,其可以包括操作系统和一个或多个应用,作为执行本文描述的功能的一部分。例如,该处理器可以被配置为接收一个或多个输入参数,处理一个或多个输入,并如下面更详细地解释那样确定适当的调度。调度器110还可以包括用于将时间表输出到锚(诸如收发器130)的输出。在一些实施例中,时间表首先被输出到调度单元控制器120。该输出可以例如包括有线接口或无线接口。在一些实施例中,输出可以与通信输入相同。在一些实施例中,调度器110可以被实现为个人计算机。
调度单元控制器120便于时间表到锚的传输。在一些实施例中,调度单元控制器120可以与一个或多个锚(诸如收发器130)通信。在一些实施例中,调度单元控制器120可以处理从调度器110接收的时间表。例如,调度单元控制器120可对要传输到锚的时间表进行准备。在一个实施例中,该处理包括变换时间表和将其准备用于传输到锚。这可以涉及解析时间表文件格式(例如,XML或YAML文件)、将文件中的数据转换成特定于调度单元的格式、添加诸如唯一时间表ID之类的信息、将数据序列化、并添加诸如CRC之类的数据保护信息。调度单元控制器120可以将时间表(例如,以其经变换的格式)传输到诸如收发器130之类的锚。在一些实施例中,使用通常用于定位目的的同一类型的无线信号来执行传输。在这种情况下,调度单元控制器120包括数字传输电子器件、模拟传输电子器件、以及天线。这些部件将在下面更详细地描述。在一些实施例中,通过可用于调度单元控制器120和锚二者的单独的无线传输信道或者有线接口来执行传输。
调度单元控制器120被示为在定位系统100的单独部件。然而,将理解的是这只是说明性的。在一些实施例中,调度单元控制器120或调度单元控制器12的功能可以被集成到其它部件。例如,调度单元控制器120可以被集成到调度器110中。作为另一示例,调度单元控制器120可以被集成到一个或多个锚,诸如收发器130。
如上所述,定位系统100可以包括收发器130。收发器130被配置为从调度单元控制器120接收时间表。每个收发器130可以直接或者通过一个或多个其他收发器间接地从调度单元控制器120接收时间表。所接收到的时间表可以被存储在每个收发器内的存储器中,每个收发器的调度单元可以从这里对它进行访问。收发器130的细节被描述如下。
在一些实施例中,收发器130能够在不同的时间表之间进行切换。这可以通过在每个收发器中包括几个调度单元来实现,或者通过使用单个调度单元来实现,其中该单个调度单元被配置为接收将导致调度单元切换到不同的时间表的信号。可以从调度单元控制器120接收若干个时间表,其包括例如唯一标识符,该唯一标识符允许调度单元依据所接收的信号确定要使用哪个时间表。在一些实施例中,所接收的信号可能会导致调度单元中断当前时间表,以重新启动当前时间表,或跳转到时间表中的具体点。在一些实施例,长时间表的第一部分可以被设计成便于网络收发器之间的时钟同步,而第二部分可以被设计为优化定位性能。当网络同步误差增加超过某个阈值时,调度单元控制器可发送信号以重新启动时间表的执行。在其它一些实施例中,每当自定位装置进入由收发器的网络覆盖的空间区域时,时间表的执行可能必须从开始或者从某个时间点重新启动。在一些实施例中,该时间表从其重新开始执行的时间点可取决于自定位装置进入该空间区域的位置。在一些实施例中,默认时间表(例如,基于ALOHA协议的时间表)可以被永久地存储在收发器的存储器中,并且附加的时间表可以由调度单元控制器120传输。然后,收发器可以以(基于默认时间表的)默认模式操作,或者以(例如基于从调度单元控制器120接收到的优化时间表的)性能改进模式操作。
图2是根据本公开的一些实施例的说明性定位系统100的三个说明性收发器130和两个自定位装置140的框图。在一些实施例中,图2的定位系统100与图1的定位系统100相同。在一些实施例中,图2的定位系统100是与图1所示的定位系统100不同的定位系统。三个收发器130中的每一个发送时间标记定位信号202。在一些实施例中,三个固定收发器130相对于彼此具有已知的相对位置。在一些实施例中,三个收发器130具有同步的时钟210。收发器在本文中有时被称为“锚”或“信标”。应该理解的是,虽然图2中示出了三个收发器和两个自定位装置,在定位系统100中可以使用任何合适数量的收发器和自定位装置。
图2中的每个收发器130包括模拟电子部件214和数字电子部件216。天线212耦合到模拟传输电子器件214。模拟传输电子器件214可以从至少一个数字数据分组中生成模拟传输信号。该数字数据分组由数字传输电子器件216提供。模拟传输信号可以使用模拟脉冲发生器来生成。模拟传输信号也可以在被传递到天线212进行传输之前被放大器放大。
在图2中,传输电子器件214、216被用于将有效载荷数据(有时称为“有效载荷”)转换为可随后由发射器130传输的信号202。在一些实施例中,信号202是UWB信号。由单个收发器130传输的单个UWB信号202可以由多个装置140接收。每个装置可以使用从多个信号202中获得的信息来计算其位置,而不发射其自身的信号。
时钟210被耦接到传输电子器件214、216并提供用于传输信号202的定时信息。时钟210可包括机载时钟,或者可以具有从例如在远程位置处的非机载时钟(未示出)接收时间信息的无线连接或有线连接(未示出)。
来自三个收发器130的传输(例如,信号202)可以利用调度单元218来进行协调,调度单元218可操作以调度信号202的传输。在一些实施例中,调度单元218可以提供定位信号之间足够的时间间隔,以防止收发器消息在没有足够的时间间隔的情况下到达接收器的天线(这可以导致信号检测变差,并因此降低定位系统100的性能)。在一些实施例中,调度单元218可以实现ALOHA协议以减少或防止时间间隔不足的后果。在一些实施例中,信号传输可遵循预编程的时间表,或者可以集中执行调度和例如如图1中所述的传送到每个收发器的时间表。在一些实施例中,调度可以由每一个收发器来执行。例如,对于收发器的调度可以基于由收发器存储的关于其它收发器的信息(例如,范围中其他收发器的有序列表或传输时间表)。在一些实施例中,调度单元可进一步提供配置信号到传输电子器件。这些配置的信号可以被传输电子器件解释以调整发射器的某些设置,例如,中心频率、信号带宽、前导码、前导码长度、传输功率或天线。
模拟传输电子器件214耦接到数字传输电子器件216,并且它们一起允许UWB信号202的传输。这样的传输可以被执行,使得信号202从天线212的传输精确地在相对于时钟210的指定传输时间处发生。这可以通过使用数字传输电子器件216来实现。数字传输电子器件216可以协调其与调度单元218的操作。优选地执行在指定时间处的信号传输,使得具体的符号在指定时间处从天线212发射。对于遵循IEEE802.15.4标准的传输,让符号在该时间处被传输的通常选择是帧起始定界符(start-of-frame delimiter)的开头,即,所传输的信号在该点处从前导码的重复传输变化为帧起始定界符的传输。在指定时间处的该传输中,数字传输电子器件216可使用由时钟210提供的信号作为参考;传输时间因此可以相对于该时钟表示。
图2中所示的两个自定位装置140各自被配置为接收由收发器130传输的UWB无线电信号202。
图3是根据本公开的一些实施例的说明性收发器130的详细框图。在一些实施例中,图3的收发器130被用在图1的定位系统100或图2的定位系统100中。在一些实施例中,图3的收发器130与不同于图1和图2中描绘的定位系统的定位系统一起使用。
图3的收发器130可各自包括耦合到模拟传输电子器件214和模拟接收电子器件220的天线212。在一些实施例中,TX/RX开关用于将天线连接到电子器件214、220中的一个或另一个。模拟接收电子器件220耦合到数字接收电子器件222,并且它们一起允许接收由其他收发器130发射的信号302。模拟和数字接收电子器件220、222可以具有与图2的自定位装置130上的电子器件类似的能力。例如,模拟和数字接收电子器件220、222可以将信号302转换成数据(有效载荷)、精确地确定所传输的信号到达天线212的时间、并且可以提供与接收到的信号302有关的附加质量度量,诸如信号强度、接收时间标准偏差、以及用于确定信号是否以视线行进的度量,等等。
数字接收电子器件222可操作地耦合到同步单元224,同步单元224可用于识别和补偿与其他收发器的时钟不完全同步的任何一个收发器的时钟210。在接收到UWB无线电信号时,所接收的数据、时间标记和质量度量被发送到同步单元224。同步单元224可以将接收时间标记与先前的接收时间标记、包括在信号的数据(有效载荷)中的传输时间信息、以及包括在先前信号202中的传输时间信息进行比较。根据这个信息,同步单元224可以计算时钟210的当前行为,例如其当前时钟速率或者当前时钟速率变化的当前速率。另外,同步单元224可以通过评估本地测量的接收时间标记、本地设置的传输时间、从其他收发器报告的测量的接收时间标记、以及其他收发器的设置的传输时间之间的差异来确定固定收发器之间的信号飞行时间。通过对诸如不同的时钟偏移、时钟速率和信号传播时间之类的错误的仔细校正,同步单元224可以计算校正以允许收发器获得公共的经同步的参考时间。在一些实施例中,同步使用从其他收发器130接收到的信号302。收发器之间的时间同步例如是有益的,因为收发器定时中的任何偏移可能变换为自定位装置的定位中的错误。
图3的收发器130还可以包括传感器226和全局属性传感器228。这两个传感器都耦合到数字传输电子器件216。这使得能够将代表由传感器226和全局属性传感器228所进行的测量的信号包括在由数字传输电子器件216、模拟传输电子器件214和天线212以定位信号202的形式传输的数据中。
在一些实施例中,传感器226或全局属性传感器228可以被用于感测收发器的朝向。在知道收发器的朝向的情况下,从该收发器接收定位信号的自定位装置(例如,图2的自定位装置140)可能能够补偿由收发器的天线212相对自定位装置的天线的朝向引入的信号延迟。例如,这可以通过将收发器的检测到的朝向传送作为其传输的定位信号的一部分来实现。
每个收发器130可以配备有存储器230,其可以用于存储诸如配置数据、期望的信号放大、同步数据(例如,时钟的偏移或速率校正)或范围精度校准数据之类的数据。存储器230也可以用于在接收之后和在传输之前缓冲数据。在一些实施例中,存储器230可以被重写多次或者是非易失性存储器。在一些实施例中,存储器230被用于存储一个或多个传输时间表。
图3示出了可以接收和处理来自其他收发器的无线信号的说明性收发器(在本文有时被称为“无线收发器”或“无线UWB收发器”)。这由具有模拟接收电子器件220和数字接收电子器件222的收发器130实现,其可操作用于接收其他收发器130发送的信号。
第一收发器130可以使用来自第二收发器130或来自多个其他收发器130的一个或多个信号302来调整其传输时间表,以例如在传输之间提供更好的时间间隔。这可以例如通过调度单元218将从网络(例如,图2的网络100)中的其他收发器130接收到信号302的时间存储在存储器230中,并且随后基于这些时间来调整本地传输时间表而实现。在一些实施例中,传输之间更好的时间间隔导致定位信号202与信号302之间的干扰降低。在一些实施例中,定位信号202之间的时间间隔的测量可以是用于评估的度量或者在改善定位网络的性能时使用的度量。
在一些实施例中,收发器130可以使用信号302来指示事件的发生。在一些实施例中,信号302可以由收发器130用来触发其他收发器130的动作。在一些实施例中,该动作导致定位信号202的调度或传输时间表的改变。在一些实施例中,可以使用动态传输调度来对从系统添加或移除收发器作出反应。在一些实施例中,定位网络(例如,图2的网络100)对收发器的添加或移除(例如,由于故障)的反应可以用作评估网络的健壮性的度量。
在一些实施例中,信号302可以是由自定位装置使用的相同类型的信号(例如,信号202)。在一些实施例中,信号302可以以某种方式不同于信号202。例如,信号302可以具有不同的有效载荷。在一些实施例中,信号302可以在与信号202不同的时间被传输。例如,信号302可以在安装期间或在定位系统的校准阶段期间被传输,并且信号202可以在系统运行时被发射。信号302和202也可以以其他方式不同(例如,它们的信号强度,前导码等)。在一些实施例中,信号202和信号302的使用可以不同。例如,收发器可以以与信号302所使用的更新速率不同的更新速率发射信号202,或者信号发射可以遵循不同的时间表。
图4是根据本公开的一些实施例的包括一对第一和第二收发器130a、103b的说明性收发器的框图。收发器130a、130b使用结构元件400物理地耦合在一起。每个收发器130a、130b包括天线212a、212b,模拟传输电子器件214a、214b,数字传输电子器件216a、216b和时钟接口402a、402b。第一收发器130a还可以包括全局属性传感器228,其可以可操作地耦合到数字传输电子器件216a。
对于许多应用来说,收发器将比自定位装置具有更少的约束(例如,重量约束、大小约束、功率约束),因为收发器不必是移动的。因此,将复杂度从自定位装置向收发器转移可能是优选的。图4所示的实施例具有几个技术优点。首先,图4中所示的收发器对可以被实现为冗余接收器,以提供防止故障的附加保障。根据使用情况,可以为收发器的部件中的一些或全部实现冗余。其次,收发器130a、130b可以被配置为如图所示使用不同的天线212a、212b来提供附加的功能。例如,天线212a、212b可以在其朝向、其天线极化或其增益等因素上有所不同。这可以为接收器带来技术优势,包括改善的信噪比或者跨不同的接收器天线朝向上的信号接收的变化较小。在一些实施例中,图1-图3的收发器130可以使用多个天线212,例如,与RF开关连接。
当与类似的配对的自定位装置(例如,如图7所示)一起使用时,如图4所示使用一对收发器可具有附加的优点。在一些实施例中,收发器130a和130b可以使用不同的定位信号。例如,收发器130a可以使用第一频带,而收发器130b可以使用不同的第二频带。同时使用两个不同的定位信号可以允许更高的更新速率。它可以提供改进的抗干扰性。它也可以允许根据真正的距离差异消除信号依赖效应。例如,因为信号的速度取决于障碍物的折射率和信号的波长,所以使用具有两个不同波长的两个不同信号可以允许推断由障碍物引入的延迟。
成对的实施例也可以用于检测故障。这可以例如通过如下方式来实现:从第一收发器接收第一信号;从物理上附接到第一收发器的第二收发器接收第二信号;在考虑到两个信号的差异的同时比较与第一信号有关的数据和与第二信号有关的数据;以及将结果与阈值进行比较。被比较的数据的示例包括:信号的接收;信号到达的准确性;和信号的峰值功率。两个信号的差异的示例包括:相对天线位置;在第一和第二信号的发射之间的时间延迟;以及信号前导码。
在一些实施例中,使用故障检测单元(未示出)检测故障。在一些实施例中,故障检测单元在自定位装置上。在一些实施例中,故障检测单元不在自定位装置上。在一些实施例中,使用单个故障检测单元。在一些实施例中,可以使用成对的天线来实现多天线设置。
图4所示的收发器还包括数字接收电子器件222a、222b和模拟接收电子器件220a、220b。这允许收发器130a、130b中的每一个无线地交换信号302。在一些实施例中,收发器130a、130b不包括电子器件222a、222b、220a、220b中的一些或全部。
在一些实施例中,本公开的收发器可以与多天线设置一起使用。多天线装置包括具有已知分集(例如,空间分集、时间分集、极化分集、图案分集等)的至少两个谐振元件(有时称为“天线”)。
多天线装置的谐振元件在一个或多个特性(例如极性、频率响应、灵敏度、方向等)上可能不同。例如,天线可以间隔已知的距离。作为另一个示例,天线可以相对于彼此正交地确定朝向。多天线设置的谐振元件可以使用众所周知的射频技术(例如,双工器、功率分配器等)以各种方式使用和组合。多天线设置可以包括用于单个谐振元件的专用电子器件。
在一些实施例中,收发器的天线212a、212b可以用于实现多天线设置。多天线装置可以包括用于单独谐振元件的一些单独的电子器件214a、214b、216a、216b、220a、220b、222a或222b。例如,多天线设置可以包括用于天线的单独的接收电子器件。
在一些实施例中,收发器配备有多个天线。在一些实施例中,收发器的多个天线被用于实现多天线设置。在一些实施例中,自定位装置配备有多个天线。在一些实施例中,使用自定位装置的多个天线来实现多天线设置。在一些实施例中,收发器和自定位装置各自具有多天线设置。
在一些实施例中,相同的天线被用于传输和接收。在一些实施例中,不同的天线被用于发送和接收。例如,发射器可以使用定向天线,而自定位装置使用全向天线,或者,反之亦然。可以使用各种类型的天线并将其组合以实现给定用例的期望行为。例如,可以使用使用多个谐振元件的天线、多波束自适应天线或多输入多输出天线(MIMO)。在一些实施例中,可以使用支持多个频带的天线。在一些实施例中,多天线装置的天线可以彼此隔离。
在一些实施例中,多天线设置可以改善定位单元或位置校准单元的定位性能。在一些实施例中,这可以通过改善接收(例如,信噪比等)来实现。在一些实施例中,天线和接收电子器件被配置为检测信号强度。在一些实施例中,使用信号强度来提供到发射器的距离的相对指示。
在一些实施例中,使用定向天线。在一些实施例中,天线被配置为检测可以指示信号源的方向的信号方位。在一些实施例中,天线和接收电子器件被配置为允许检测信号的幅度或相位。在一些实施例中,发射信号的幅度或相位的知识以及信号的检测到的幅度或相位被用于提供相对于发射器的朝向或距离的相对指示。
在一些实施例中,多天线设置可以允许确定自定位装置的姿态。例如,在一些实施例中,可以使用多天线设置来检测信号的极化方向。对信号的发射极化的了解以及信号的检测到的极化可以提供发射器(例如,收发器)和接收器(例如,另一个收发器或自定位装置)的朝向的相对指示。
在一些实施例中,多天线设置的天线可以在不同的频率上操作。例如,多天线设置可以用在工作在两个不同频率上的冗余收发器网络中。作为另一个示例,多天线设置可以用在冗余收发器网络中使用的自定位装置上,其中该网络工作在两个不同的频率上。
在一些实施例中,天线、模拟接收电子器件和数字接收电子器件被配置为测量信号的多普勒频移。例如,这可以通过提供与自定位装置相对于收发器的已知位置的移动有关的数据来允许定位单元改进其定位估计。
在一些实施例中,收发器的多天线设置和自定位装置的多天线设置的优点可以被组合。例如,这可以通过将收发器的多天线装置的属性(例如,收发器的位置)的知识、所发射的信号的属性(例如,信号强度、信号极化)的知识以及对自定位装置的多天线设置的属性(例如,其天线阵列的谐振元件的相对对准及其接收特性)的知识进行组合来实现。
在一些实施例中,定位单元被用于融合来自以下中的一个或多个的数据:多天线设置;传感器;全局属性传感器;第一和第二全局属性传感器;和已知的位置。
多天线设置可能具有技术优势。在一些实施例中,多天线设置可以允许接收被优化、信噪比被改善、或数据速率增加。这可以例如通过允许在一系列接收器位置或朝向上的更好的接收来实现。作为另一个示例,可以使用多天线设置来实现MIMO系统中的空间复用以提高数据速率。
在一些实施例中,系统部件对定位信号的影响是已知的。例如,收发器的RF部件可能具有众所周知的传输属性。作为进一步的示例,自定位装置的电子器件和结构部件具有众所周知的RF响应。在一些实施例中,已知的RF效应由补偿单元补偿。在一些实施例中,天线可以使用屏蔽。
应该理解的是,尽管在不同实施例中已经将图2-图4的收发器130描述为具有无线传输和无线接收能力,但是,无线接收能力是可选的。例如,在一些实施例中,收发器130不包括无线接收部件。在一些实施例中,收发器130被配置为使用有线连接与其他收发器130、调度单元控制器120或调度器110交换同步信息和其他信息。如上所述,收发器也被称为锚。因此,还将理解的是,如本文所使用的锚可以包括无线传输部件和无线接收部件二者或者仅包括无线传输部件。
图5是根据本公开的一些实施例的说明性自定位装置140的框图。自定位装置140包括用于接收定位信号202的天线502。天线502可操作地耦合到模拟接收电子器件504,模拟接收电子器件504可以放大信号。数字接收电子器件506然后可以被用于参照时钟508对信号进行时间标记。同步单元510可以将来自时钟508的输入与来自其他时钟的输入(例如,作为同步信号或消息的一部分从定位系统的另一部分接收并且由数字接收电子器件506接收)进行比较。同步单元510可以使用该信息来计算对时钟偏移或时钟速率的时钟校正,它可以将对时钟偏移或时钟速率的时钟校正传送到定位单元512或补偿单元516或存储在存储器518中。附加地,可以使用来自补偿单元516的信息。
图5的自定位装置140可以例如与图2的定位系统100一起使用。在该实施例中,图5的自定位装置140通过其天线502、模拟接收电子器件504和数字接收电子器件506来接收由图2的收发器130发送的时间标记定位信号202。自定位装置140可以使用信号202来计算其相对于收发器130的位置。在一些实施例中,这通过对信号202加时间标记、将时间标记转换为距离、以及使用这些距离来计算相对位置而实现。该转换可以使用对信号202在传输介质中的速度的估计(例如,空气中的光速)。该转换可以使用定位单元512来完成。定位单元512可以通过三边测量或多点定位来计算自定位装置相对于收发器130的已知位置的位置。数字接收电子器件506和时钟508可以提供足够精确的时间标记。
接收电子器件504、506可以精确地确定所传输的信号到达天线502的接收时间。确定信号的接收时间(“时间标记”)可以通过确定检测到符号的时间来执行。对于遵循IEEE802.15.4标准的传输,对符号进行时间标记的通常选择是帧起始定界符的开头(即,所传输的信号在该点处从前导码的重复传输改变为帧起始定界符的传输)。数字接收电子器件506使用由装置的时钟508提供的信号作为该时间标记过程中的参考。时间标记因此可以相对于该时钟进行表示。在一些实施例中,时钟508包括机载时钟。接收电子器件504、506还可以提供与接收到的信号202有关的附加度量。
例如,质量度量可以包括信号强度、接收时间标准偏差或信号的噪声属性。可以基于绝对值(例如,绝对信号强度)或基于相对值(例如,信号强度的差异)来计算质量度量。质量度量也可以通过比较信号来计算。例如,质量度量可以基于信号相对于时间的比较、来自不同收发器的信号之间的比较、从不同方向接收的信号的比较、信号与阈值的比较,信号与其预期属性的比较等等。比较可以使用单独的信号属性(例如,峰值功率)或整个信号(例如,信号的频谱形状)。例如,可以使用质量度量来确定信号202是否在视线内行进、或者它可能穿过了什么材料、或者它可能如何被反射。
图5(和图2)的自定位装置140可以进一步包括全局属性传感器520。通过提供关于参考点(例如收发器或坐标系)的附加参考数据,全局属性可以允许更精确地计算自定位装置140的相对位置。这可以通过装备至少一个收发器130和自定位装置140来检测全局属性而实现。定位系统的准确度可以通过包括以下步骤的方法来改善:(i)将收发器的全局属性读数传输到装置;(ii)通过比较收发器在其位置处的全局属性的读数与装置在其位置处的全局属性的读数;(iii)使用全局属性的模型(“全局属性模型”)将该比较转换成与朝向、位置或移动有关的数据,以及(iv)通过使用估计器将该数据与其他传感器数据适当地融合。步骤(ii)和(iii)可以使用定位单元512(诸如被示出为图5的自定位装置140的一部分的定位单元512)来完成。全局属性模型允许将全局属性的一个或多个读数转换为可以由定位系统处理的数据(例如,将大气压力描述为海拔/高度的函数的等式)。模型可以采用各种形式,如函数或查找表。
除了由定位系统提供的其他数据(例如来自本地、机载传感器(例如,图5的机载传感器514)的数据)之外,来自一个或多个全局属性传感器(例如,图3的全局属性传感器228)在存在系统传感器错误或具有高噪声率的传感器时可能特别有用。例如,在室外安装的示例性实施例中,除了定位信号202之外,装置和多个收发器可以被配备为接收GPS信号。这可以允许自定位装置140使用定位单元512不仅确定其相对于收发器130而且还相对于全球参考系的位置。另外,定位模态的这种组合可以允许通过比较来自两个独立测量系统的读数来检测错误数据。可以通过将收发器和装置配备附加的传感器(例如气压计)来检测全局属性来进一步改进定位系统。这对于允许定位单元512在垂直方向上实现更精确、更可靠或更快的定位可以是特别有用的,由于收发器(通常全部在地面上,在装置之下)和GPS卫星(在高空,通常高于装置)的不利定位,GPS和本地定位系统对于垂直方向上的定位都可能提供较差的信息。
全局信号还可以用于确定通信收发器的天线212和自定位装置的天线502的相对朝向,其可以对信号质量或群延迟以及因此对其计算的相对位置具有重要影响。确定朝向可以例如通过检测收发器的重力矢量(例如,使用加速度计)、将该信息传送给装置(例如,作为定位信号的有效载荷的一部分)、并且将它与使用收发器的天线朝向和装置的天线朝向中的每一个相对于其加速度计的模型由装置检测的重力矢量(可能针对装置的运动的影响进行校正)进行比较。该比较可以由补偿单元(例如,图5的补偿单元516)执行。
如上所述,定位单元512使用数据来计算位置估计。数据可以包括接收到的信号202、来自一个或多个机载传感器514的数据,来自一个或多个机外传感器(例如收发器的全局属性传感器228)的数据或其他数据。与接收到的信号202有关的数据可以包括有效载荷、时间标记、信号特性(例如,信号强度、峰形状等)等。这可以通过使用估计器基于对数据的当前值和其他信息(例如,对输入历史的知识、装置的动态模型)的融合来计算对自定位装置140的位置(并且可能地,朝向或运动)的估计来实现。可以递归地使用每个单独的接收到的信号202,以通过将其与先前(在先)估计合并来提供经更新(后验)的位置估计。在一些实施例中,可以使用(扩展的)卡尔曼滤波器、互补滤波器、粒子滤波器、伦伯格(Luenberger)观测器或任何其他合适的技术来递归地计算估计。定位单元512可以通过将若干个定位信号接收存储在存储器(例如,存储器518)中并且(在接收到预定数量的信号之后,或以固定的时间间隔)对它们进行批处理来收集若干个定位信号接收(例如,3、4、5、6、7、8、9、10等)。批处理方法可以通过解决对于装置140的位置的到达时间差(TDOA)度量而基于多点定位技术。在一些实施例中,可以使用递归和批处理的组合。
存储器518可被用于存储信息(诸如来自接收到的信号202的数据以用于批处理当前位置估计)或者用于递归计算和传感器融合的参数。定位单元512也可使用来自补偿单元的数据(例如,补偿值)或由数字接收电子器件506生成的关于接收到的信号202的信息(例如,质量度量)。
信号质量或群延迟变化的原因可能是收发器和自定位装置很小并且可能彼此相对靠近地操作。这可能导致在典型应用中使用并且在典型使用期间遇到的发射器天线212相对于接收器天线502的各种相对朝向、相对距离和相对方向,诸如多个收发器位于平面上而装置高于或低于该平面操作,或者,多个收发器位于体积周围而装置在该体积的凸包内操作。
与在其他定位系统不同,这里到达自定位装置的信号202可以具有不同的质量或者可以具有不同的群延迟。在一些实施例中,定位单元512可以被用于通过使用定位信号的特性以及与所接收的定位信号有关的质量度量(诸如由接收部件提供的质量度量(例如,UWB峰值信号强度、UWB峰形)来改进现有定位系统上的位置估计。这可以例如通过将测量方差与信号度量相关联来实现,使得具有较高方差的测量对定位单元的状态估计具有较低的影响。作为另一个示例,定位单元可以更注重与定位信号无关的数据(例如,惯性传感器、全局属性)。作为另一示例,定位单元可以完全丢弃来自不符合质量度量(诸如最小信号质量或群延迟)的某些收发器的测量。
与现有系统不同,在这里,定位单元512可以位于自定位装置140上,因为从收发器行进到自定位装置的时间标记定位信号可以包含足够的信息以允许该装置进行自定位。例如,收发器可以被同步,并且它们的位置对装置是已知的。
图6是根据本公开的一些实施例的描绘所接收的定位信号(例如,UWB信号)传播通过自定位装置的天线502、模拟接收电子器件504和数字接收电子器件506的说明性时序图。这些部件的互连将被称为接收管道。这些部件中的每一个引入对所接收的信号的传播的延迟。时间在纵轴上示出,其中符号At用于指示时间t是参考自定位装置A的时钟测量的。
考虑在时间At0 Rx602处到达自定位装置的天线502的信号,该信号传播通过接收管道,此后在它的到达在时间At0 606处被数字接收电子器件506加时间标记。由管道引入的延迟(由At0 606和At0 Rx 602之间的差异给出)被表示为Aδ0 604并且被称为管道延迟。现在考虑第二信号,第二信号在时间At1 Rx 612处到达自定位装置的天线502处,并且在通过接收管道的管道延迟Aδ1614之后,在时间At1 616处被加时间标记。这两个信号之间的管道延迟的变化被给出为|Aδ1-Aδ0|。注意,该测量是关于自定位装置140的时钟的,并且因此与时钟速率偏移无关。在一些实施例中,管道延迟604与614之间的差异小于0.01、0.6、3或15纳秒,这允许实现更准确的定位。
管道延迟的变化受包括自定位装置天线502的频率响应、内部放大以及由数字接收电子器件506生成时间标记的准确性和变化等物理可测量因素的影响。由于天线是非理想的电磁设备,所以它们的频率响应由接收角度相关幅度响应以及接收角度相关相位响应来描述,接收角度相关幅度响应与无线电信号被天线放大或衰减多少对应,接收角度相关相位响应与无线电信号被天线延迟多少相对应。这些响应是信号被接收的角度的确定性函数,并且在信号通过天线502时导致信号的电延迟。在一些实施例中,通过模拟接收电子器件504和数字接收电子器件506的信号传播可以进一步被(用于不管所接收的信号强度如何都实现一致的信号电平的)信号的内部放大延迟。此外,数字接收电子器件506一致且准确地对UWB信号的到达加时间标记的能力要求其一致且准确地识别信号的“第一路径”。以下讨论的这种识别中的误差导致加时间标记过程中的非恒定误差,并因此导致通过接收管道的信号传播时间中的感知延迟。除了系统性的管道延迟之外,在一些实施例中,随机的、外部的或者未建模的过程也可能影响管道延迟,从而在接收管道中引入非系统性延迟。在一些实施例中,温度是这样的过程的示例,由此温度的改变可以影响数字接收电子器件506所需的处理时间。
非恒定管道延迟的影响是在任何信号202的接收时间中引入非恒定误差。因此,对于本领域技术人员将显而易见的是,如图6所示的非恒定管道延迟可以对应于从任何信号202的接收时间导出的任何到达时间或到达距离时间测量中的非恒定误差。在一些实施例中,补偿单元(例如,图5的补偿单元516)可以补偿这个系统性的但非恒定的误差。
图7是根据本公开的一些实施例的包括一对第一和第二自定位装置140a、140b的说明性自定位装置的框图。自定位装置140a、140b用结构元件700物理地耦合在一起。每个自定位装置140a、140b包括天线502a、502b,模拟接收电子器件504a、504b,数字接收电子器件506a、506b以及定位单元512a、512b。如图所示,一对定位单元512a、512b使用通信路径702可操作地耦合。通信路径702允许定位单元512a、512b交换与它们的位置有关的数据(例如,它们的当前位置估计)。
结构元件700提供自定位装置140a和140b之间的刚性附接或半刚性的附接。在一些实施例中,结构元件700可以包括以下中一个或多个:印刷电路板的(PCB)座、多用途封装箱、支柱或连接杆等等。因为自定位装置140A、140B在物理上连接,所以它们的相对位置是完全或部分已知的。这可以允许第一定位单元512a基于与第二定位单元512b有关的数据以及与第一和第二定位单元512a和512b的已知相对位置有关的数据来改进其位置估计。
在一些实施例中,图7中所示的一对自定位装置140a、104b可以作为冗余自定位装置进行操作,这可以提供防止故障的保障。例如,如果第一自定位装置140a中的部件发生故障,则定位系统可以依靠第二自定位装置140b。根据使用情况,可以为自定位装置的部件中的一些或全部实现冗余。
如图所示,第一和第二自定位装置130a、130b使用不同的天线502a,502b。在一些实施例中,天线502a、502b可以具有不同的特性。例如,天线502a、502b可以在它们的朝向、它们的天线极化或它们的增益等因素上不同。这可以产生技术上的优点,包括当自定位装置移动时信号接收中改善的信噪比或较小的变化。
在一些实施例中,可以使用自定位装置的天线502a、502b来实现多天线设置。多天线设置可以包括用于单个谐振元件的一些单独的电子器件504a、504b、506a、506b。例如,多天线设置可以包括用于天线的单独的接收电子器件。
在一些实施例中,自定位装置140a、140b还包括相应的传感器514a、514b。每个传感器514a、514b可操作地耦合到相应的定位单元512a、512b。传感器514a、514b可以允许对应的自定位装置改善其定位。在一些实施例中,第一定位单元512a可以将与其位置有关的数据(例如,其当前位置估计,其传感器514a读数)传送给第二定位单元512b。这可以允许第二定位单元512b改善其位置估计。
将会理解,可以使用图7的自定位装置对来代替图2和图5所示的单个自定位装置。
图8是根据本公开的一些实施例的包括多个可选择的天线502a、502b、502c的说明性自定位装置140的框图。自定位装置140还包括选择天线502a、502b、502c中特定的一个天线以供使用的射频开关(RF开关)800。在一些实施例中,RF开关800包括单刀双掷(SPDT)开关或多端口(SPnT)开关。RF开关800的参数(例如,频率范围、隔离、开关速度等)可以被优化以适应特定的使用情况。如图8中所示,RF开关800被用作多天线设置。在一些实施例中,天线502a、502b、503c可以具有不同的特性。例如,天线502a、502b、503c可以在以下特性中的一个或多个中有所不同:朝向、极化、增益、天线类型。定位单元512或自定位装置140的其他部件可以控制RF开关800以基于定位信息来选择多个天线中的一个。定位信息可以包括例如以下中的一个或多个:自定位装置的位置、自定位装置的朝向、要接收的下一个定位信号、与一个或多个天线相关联的质量、天线类型和任何其他定位信息。将理解的是,在一些实施例中,RF开关800和多个可选择的天线502a、502b、502c可以与本公开的任何其它自定位装置一起使用。
图9是根据本公开的一些实施例的包括位置更新过程的说明性定位单元512的框图。图9中描绘的定位算法采用扩展卡尔曼滤波器(EKF)的形式。定位单元512可以与本公开的任何合适的自定位装置140一起使用。在周期开始时,定位单元512执行过程更新步骤920,在步骤920中,它使用装置的先前估计的状态,以及,如果可用,则使用来自控制单元940的指示发送到一个或多个致动器的信号的数据。该步骤的结果是在先估计922(例如,不考虑任何新近进行的测量的对装置140的当前状态的估计)。然后将这个在先估计与可用的测量融合。由定位单元512使用的先验估计、测量和其他数据可以临时存储在存储器(未示出)中。
第一种类的测量是定位信号202的接收。在这种情况下,接收信号的时间标记900首先由(使用来自同步单元510的数据的)时钟校正902和(使用来自补偿单元516的数据的)效应补偿904来处理。得到的经校正的到达时间906表示对定位信号何时到达自定位装置天线212的估计,然后可以将该估计与EKF测量更新步骤中的先验估计进行融合。
如上所述,得到的经校正的到达时间906表示对定位信号202到达装置的天线212的时间的估计。在一些实施例中,传输信息被包括在所接收的定位信号的有效载荷中,其表示信号是何时传输的以及是由哪个收发器130传输的。该传输信息连同经校正的到达时间是对装置140和收发器130之间的距离的量度。在定位单元512中,经校正的到达时间和传输信息可以在EKF测量更新步骤924中与先验估计融合。
如果新数据可用,则第二种类的测量是代表全局属性的本地测量的数据(例如,来自全局属性传感器520)。然后在比较912处将该数据与(由数字接收电子器件506提供的)代表该全局属性的一个或多个远程测量的数据(例如,来自全局属性传感器228)进行比较,并且全局属性模型914提供关于该比较是如何涉及自定位装置140的位置、朝向或运动的信息。然后可以在EKF测量更新步骤924中将该信息融合到状态估计中。全局属性的示例是无线信号的信号强度。在距离d上传输的频率f的射频信号的自由空间路径损耗为:
FSPL(dB)=20log10(d)+20log10(F)+K,其中K是一个常量,其取决于d和f所用的单位。通过该等式,自定位装置到无线信号源的距离可以与(一个或多个)收发器130到同一个源的距离有关。
如果新数据可用,则第三种类的测量来自诸如传感器514的传感器。这样的测量也可以在EKF测量更新步骤924中被融合到状态估计中。
同步单元510对本地时钟行为的估计以及补偿单元516对补偿值的估计可以依赖于由定位单元512计算的估计位置。可以通过首先使用先验位置估计来计算时钟行为和补偿值并且然后计算新的后验位置估计926来解决这种依赖性。还可以通过并行地估计时钟行为或时钟校正、补偿值和位置来解决该依赖性,或者通过在以下二者之间交替来迭代地解决该依赖性:1)新时钟行为或时钟校正的计算以及使用当前位置估计的补偿值计算,以及2)使用当前时钟和补偿值进行位置估计直到所计算的值已经基本收敛。
在一些实施例中,图9中描绘的定位单元512和其他部件可以与移动机器人集成。在这样的配置中,控制单元940可以被配置为基于由定位单元512计算的位置来计算致动器命令以控制移动机器人。
图10示出了根据本公开的一些实施例的包括自定位装置140的说明性移动机器人1000。移动机器人1000还可以包括一个或多个传感器(例如,MEMS传感器和传感器514)。在一些实施例中,移动机器人1000包括加速度计1006和陀螺仪1008。在一些实施例中,移动机器人1000另外包括磁力计、气压计、GPS接收器和本体感应传感器(例如,监测电池水平和电机电流的传感器)中的一个或多个。所示出的移动机器人1000还包括用于旋转四个螺旋桨1010的致动器1004(例如,四个电机),这些螺旋桨允许移动机器人保持在空中并且控制其穿过该空间的移动。在一些实施例中,致动器1004由电池供电。在一些实施例中,收发器或装置由电池供电。
图10的自定位装置140可以与移动机器人1000的电子器件(例如中央处理电子器件1002)集成。例如,装置140可以访问移动机器人1000的传感器(例如传感器514、加速度计1006和陀螺仪1008)。例如,这对于在飞行机器人上实现特定的重量分布可以是有用的或方便的,从而允许更好的天线接收或者共置相关的电子部件。
根据应用,飞行电子器件可能比这里描述的实施例更复杂,并且可能例如包括多个电子处理单元、多个天线或多个自定位装置。
图11是根据本公开的一些实施例的可以例如与图10的移动机器人1000一起使用的说明性控制单元940的框图。控制单元940使用级联的控制器(水平控制器1102、垂直控制器1110、降低姿态控制器1120、偏航控制器1130和体速控制器1142,为了清楚,参考信号/反馈信号流被省略)。
控制单元940中所描绘的控制方案被用于遵循期望的车辆位置和偏航轨迹。机载控制包括四个单独的回路:水平位置控制1102和垂直位置控制1110回路、降低姿态控制1120回路和偏航控制1130回路。应该理解的是,用于图11的控制单元940内的控制器的附图标记也用于指代与控制器相关联的控制回路。四个控制回路的输出是对图10所示的飞行移动机器人1000的三个体速率命令,以及由移动机器人的四个螺旋桨1010产生的集体推力。
图11所示的控制策略基于级联回路整形设计策略。因此,控制器的设计被拆分为几个低阶动态系统控制器的设计。垂直控制回路1110被整形为使得它像二阶系统一样使用集体推力c 1112对海拔误差进行响应。类似于垂直控制回路1110,两个水平控制回路1102被整形为以二阶系统的方式进行表现。然而,不直接计算控制输入,而是将所命令的加速度a(x)1104和a(y)1106作为设定点赋予姿态控制器1120。姿态控制器1120控制移动机器人的姿态降低,使得所命令的加速度a(x)1104和a(y)1106被满足。所命令的加速度然后被转换成命令的旋转矩阵条目。使用移动机器人的旋转运动学,可以使用矩阵条目的变化率来计算期望的体速率p 1122和q 1124。上述控制器完全定义了移动机器人的平移行为。偏航控制器1130然后可以根据测量的偏航角度被实现为比例控制器以计算期望的偏航速率r(例如,如由移动机器人1000上的传感器514测量的)。体速率控制器1142接收(测量的或估计的)当前体速率、期望的车辆体速率p1122、q 1124和i 1132连同集体推力c 1112。控制单元940输出致动器命令f1、f2、f3、f4 1144至致动器1004以引起移动机器人1000的移动1146。
图12示出了根据本公开的一些实施例的包括多个收发器130的说明性收发器网络。这样的收发器网络可以通过允许同时使用大量的收发器来允许在广泛的地理区域中使用自定位装置140。如图12所示,在两个收发器的传输范围1400重叠的情况下,收发器将被称为“有干扰”,这是因为两个收发器同时传输定位信号202可能导致定位信号202互相干扰。传输范围可以例如被定义为所传输的信号的信号强度下降到接收器灵敏度以下的区域的边界。为了避免信号干扰,特定区域中的收发器的信号发射通常是经协调的。在一些实施例中,这可以通过确保信号在时间上(例如通过两个信号发射之间的足够时间,例如使用调度单元)、空间上(例如通过收发器的足够地理间隔)或者频率上(例如通过UWB信号的发送载波频率的足够间隔)的充分间隔而实现。
时间上足够的信号间隔所需的时间量可取决于许多因素(例如,信号的强度、信号分组的大小、信号的脉冲/峰形状、收发器的天线、接收器的天线、收发器的地理位置(包括它们的地理间隔)、障碍物、背景噪声等)。保证信号的时间间隔可以意味着来自任何特定收发器的后续信号之间的持续时间随着收发器数量的增长而增加。这可能对动态自主移动机器人特别成问题,其中,即使相对小的更新速率减少也可能会导致显著的定位性能退化。确保时间间隔的已知方法是时分多址(TDMA)。在偶然的信号干扰是可以接受的并且其中信号定时是不重要的实施例中,还可以使用Aloha方法。
与每一个收发器的传输范围有关的在空间中的足够的间隔,可取决于许多因素(例如,信号的强度、信号的频率、信号的带宽、信号的脉冲/峰形状、收发器的天线,接收器的天线、收发器的地理位置(包括它们的地理间隔)、障碍物、背景噪声等)。在一些实施例中,典型的空间间隔为1-100米。在一些实施例中,典型的空间间隔是10-500米。在一些实施例中,典型的空间间隔为200-2000米。在一些实施例中,典型的空间间隔是千米数量级。在一些实施例中,两个收发器可共址。在一些实施例中,使用多个空间间隔的组合。在图12中,简单起见,传输范围1200被图形化地表示为圆;然而,对本领域技术人员将清楚的是,传输范围1200可以是更加复杂的形状。当确保传输的空间间隔时,值得期望的可以是将收发器130放置为使得自定位装置140将能够在所定义的地理地区内的每个点处接收到来自预先确定的数量的收发器130的传输。收发器130的这一数量可以取决于许多因素(例如,所期望的更新速率、所期望的系统稳健性、传输的时间间隔、传输的频率间隔、背景噪声、障碍物等)。
可以通过选择适当的天线来进一步帮助实现空间上的足够间隔。一些实施例使用定向天线。一些实施例使用全向天线。在一些实施例中,定向天线被用来帮助确保定位信号的空间间隔。在一些实施例中,通过使用定向天线来使收发器130的传输定向,有可能更精确地控制哪些收发器130向所定义的空间中的哪些区域进行传输,并且从而更精确地控制定位信号202的空间间隔。在一些实施例中,通过使用定向天线来使收发器130的传输定向,有可能在期望的方向上实现更长的传输距离。可以帮助空间间隔的其他方法包括屏蔽、放置(例如远离噪声源)、优化辐射图案、以及上述各项的组合。在一些实施例中,通过使自定位装置140装配有定向天线,可以基于将接收到哪些信号与收发器130的已知位置进行比较来估计朝向信息。
在一些实施例中,收发器130被布置为使得所期望的操作地区的覆盖相对于某一度量被优化。在一些实施例中,收发器130的操作相对于某一度量被优化。合适的度量可包括范围中的收发器数量、信号强度、来自具体收发器组合的更新速率、多径效应或者其他度量,这包括经组合的度量。收发器布置可以包括收发器的位置、收发器的天线朝向、收发器的操作频率、收发器的带宽、或者其他因素。操作地区可以是地理地区、飞行机器人1000的飞行体积、预定义的操作体积、或其他地区。优化可以涉及物理参数(例如收发器的地理放置、天线朝向等)或者操作参数(例如调度单元218的操作)。在一些实施例中,优化可以由调度器来执行。在一些实施例中,优化可以被预先计算。在一些实施例中,时间表是手动创建的。在一些实施例中,基于优化来创建时间表。例如,在一些实施例中,在具有预先定义的地区内的每个点能够从例如至少三个收发器进行接收的约束的情况下,最优时间表可以通过最小化每个分区或每个区域的收发器的数量来确定。对于某些问题,这样的时间表可以确保自定位装置能够在整个定义的地区上进行三维定位,同时在小区内进一步最小化TDOA循环时间(其可以与小区内的收发器的数量成比例)。作为另一示例,在一些实施例中,时间表可以作为优化问题的解而被计算,所述优化问题在自定位装置改变频率的成本与增加的TDOA循环时间的成本之间进行权衡。
传输频率上的足够间隔可以取决于许多因素(例如,信号强度、信号频率、信号带宽、信号脉冲/峰形状、收发器天线、接收器天线、收发器的地理位置(包括它们的地理间隔)、障碍物、背景噪声等)。在一些实施例中,可以使用调度单元来实现该间隔。在一些实施例中,间隔在1-50MHz的范围中。在一些实施例中,间隔在100-500MHz的范围中。在一些实施例中,间隔在200-1000MHz的范围中。在一些实施例中,使用重叠的传输频率。当针对信号的频率间隔进行设计时,可能重要的是考虑自定位装置140可能需要改变其接收频率以接收在频率上间隔的定位信号202。确保频率间隔的已知方法是频分多址(FDMA)。在一些实施例中,使用各种频率间隔的组合。
在一些实施例中,TDMA可以被用来确保定位信号202的时间间隔。在一些实施例中,如果收发器网络包括N个收发器,则将分配N个时隙(每个收发器130一个时隙),借此可以采用简单的方法。循环通过全部时隙的时间有时被称作TDMA循环时间。在网络中全部收发器都在干扰的情况下,所述向N个时隙分配N个收发器是最优的,因为这是允许每个收发器每个循环进行一次传输的最短时间量。可以使用其他优化准则,诸如定位性能或信息传播时间之类。然而,在如图13中所示的并非全部收发器都干扰的情况下,不同的最佳TDMA分配时间表是有可能的,其使用比N个时隙更少的时隙,并且因此减少了TDOA循环时间以及增大了自定位装置140将接收定位信号202的平均速率。
图13示出根据本公开的一些实施例的示意性的简化的收发器网络。在图13中,收发器130a与130b不干扰。对本领域技术人员将清楚的是,在这种情况下,收发器130a与130b两者可以利用同一TDMA时隙,因为自定位装置不可能同时从这两个收发器接收信号(因为这两个收发器在空间上的间隔)并且因此同时的传输将不会干扰。在图13中,这是通过收发器130a与130b具有同样的底纹(shading)来示意的。
在一些实施例中,调度单元218可以对TDMA时隙的调度进行协调。在一些实施例中,可以通过同步单元224或者通过收发器130共享共同时钟210来实现多个收发器130的同步以实现一致的时间表。在一些实施例中,时隙分配(例如,时间表)可以被手动确定,或者被编程到收发器的存储器(例如存储器230)中。在一些实施例中,可以由调度器自主地计算时间表。在一些实施例中,由调度器确定的时间表可以通过调度单元控制器来传输。
在一些实施例中,调度器(例如,调度器110)可周期性地操作,或者可以由收发器130通过适当的信号302的传输来触发。在一些实施例中,响应于事件来传输信号302。在一些实施例中,额外的TDMA时隙被分配用于任意定位信号202或收发器信号302的传输。在一些实施例中,该TDMA时隙的使用是由ALOHA协调的。在一些实施例中,收发器130使用该TDMA时隙来警告其他收发器130事件的发生。在一些实施例中,由调度单元控制器使用该时隙,以便触发切换到新的时间表。
在一些实施例中,周期性的或者经触发的重新分配允许网络调整时间表,使得TDMA时隙的分配对收发器加入或离开收发器网络进行补偿。在一些实施例中,可以通过使一个TDMA时隙保留为未分配以便允许新的收发器130宣告它们加入到网络并且触发对传输时间表的重新分配(即,TDMA时隙的分配),从而实现向网络添加收发器130。在一些实施例中,可以通过使得收发器能够监视收发器130未进行传输并且如果收发器130在该收发器130的预先确定的数量的TDMA时隙内没有进行传输则触发对传输时间表的重新定义,从而实现从网络中移除收发器130。
在一些实施例中,使用小于0.1毫秒、0.5毫秒、1毫秒、2毫秒、2.5毫秒、5毫秒、10毫秒、或者50毫秒的TDMA时隙长度。
在一些实施例中,收发器130可以在其定位信号202或收发器信号302的有效载荷内包括该收发器130的估计的位置或定时信息。在一些实施例中,收发器130可以操作以接收这些经传输的信号202、302。在一些实施例中,进行接收的收发器可以包括同步单元224,该同步单元224用于基于接收到的定时或者位置信息来使进行接收的收发器的时间表与进行传输的收发器的时间表同步。
在一些实施例中,在至少一个时间表中,收发器130可以被分配多于一个的TDMA时隙,从而允许它们在一个TDMA循环内更经常地进行传输。在一些实施例中,对多个时隙的分配可以例如基于收发器130所添加的费希尔信息(Fisher Information)来决定——一种本领域技术人员已知的启发式方法(heuristic),其可以基于收发器的相对位置来计算。
在一些实施例中,频分多址(FDMA)用于减轻收发器的干扰,从而产生干扰的收发器可以被分配不同的传输频率,使得它们不再干扰。在一些实施例中,产生干扰的收发器可以被分配不同的前导码或脉冲重复频率,以实现类似的效果。
图14示出了根据本公开的一些实施例的示例性收发器网络,其中收发器130被分组到相邻小区1410中。在一些实施例中,相邻小区1410可以采用FDMA技术以使得来自不同小区1410的收发器130能够同时操作,并且在传输重叠的区域1420中不具有显著的干扰。在一些实施例中,不同的小区1410可以使用用于定位信号202的传输的不同的传输参数,诸如不同的传输中心频率、频带带宽、前导码,前导码调制方案、或脉冲重复频率之类,使得不同的小区1410可以同时操作且不产生显著干扰。这可以使自定位装置140在网络中的任意位置(甚至在接收期间移动通过多于一个小区)接收定位信号202。在每个小区内,TDMA可以被用来协调各个收发器130的传输。
图15示出根据本公开的一些实施例,在由不同频率的多个收发器小区1410服务的地区1420内移动机器人1000进行操作。移动机器人1000包括两个自定位装置140,所述两个自定位装置140被物理地耦接到移动机器人1000。因为移动机器人1000在由多个收发器小区1410服务的地区内工作,因此不同频率的多个定位信号202可以同时存在于地区1420中。在一些实施例中,这意味着耦接到移动机器人1000的两个自定位装置140,当被一起考虑时,以与全部收发器130在同一频率上进行传输并使用TDMA来协调它们的传输相比更高的速率接收定位信号202。在一些实施例中,通过使用两个自定位装置140,这可以允许一个或多个定位单元以更高的速率更新位置估计。在一些实施例中,两个自定位装置140之间的通信路径(例如,通信路径702)可以允许定位单元来计算朝向以及两个自定位装置附接到的主体(例如,图15中的移动机器人1000)的位置。在一些实施例中,具有多个自定位装置140可以允许一个或多个定位单元来更精确地计算位置。
如上所述,诸如图1的调度器110之类的调度器110可以使用一个或多个输入参数来确定用于由定位网络的锚来传输定位信号的时间表。在一些实施例中,到调度器110的输入包括锚的位置和用户要求,诸如所期望的定位性能之类。图16示出根据本公开的一些实施例的可用于确定时间表的示意性输入参数地图1610和1620。
输入参数地图1610示出两个输入参数。第一输入参数是锚130的位置。如所示出的,定位网络包括六个锚130。锚130的位置可以在校准步骤中被自动识别,或可在系统安装时由用户来确定(例如,根据进行的调查或根据指示安装位置的可用的图)。第二输入参数是定位网络的期望的定位性能。输入参数地图1610示出了所期望的定位性能的轮廓线。如所示出的,使用从1到0的范围来反映期望的定位性能,1反映出高性能(例如,性能是极为重要的),0反映出低性能(例如,在这里不需要定位性能)。1和0之间的中间值表示需要一些定位性能,但在不同程度上的降级是可以接受的。在一些实施例中,输入参数地图1610的轮廓线反映离散的期望性能水平。例如,所期望的定位性能可以是在轮廓线0以下为0、在轮廓线0和0.5之间为0.5、在轮廓线0.5和0.8之间为0.8、在轮廓线1以上为1。在一些实施例中,轮廓线反映在0和1之间的连续值。输入参数地图1620类似于输入参数地图1610,但输入参数地图1620使用的是二进制地图以反映所需的定位性能。二进制定位性能包括两个区域——其中需要定位的区域(1)和其中不需要定位的另一区域(0)。
在一些实施例中,在地图1610和1620中的期望的定位性能是由用户直接确定的(例如,根据已从其提取了感兴趣区域的建筑图(plan)),或者它可以被自动生成(例如,根据已知的自主机器的运动图案)。应当理解的是,地图1610和1620仅是示意性的,并且锚130的位置和所期望的定位性能可以按任何合适形式被输入到调度器。例如,可以使用锚130的坐标在坐标系中输入锚130的位置。作为另一示例,所期望的定位性能可以使用定义位置性能的函数来输入。作为另一示例,所期望的定位性能可以使用定义坐标系内的定位性能的值的阵列来输入。作为另一示例,所期望的定位性能可以使用轮廓线的形状或位置来输入。
在一些实施例中,输入参数地图是在定位系统的初始化时生成并且在直到定位系统的后续初始化或校准之前不被改变的静态地图。在一些实施例中,输入参数地图随时间变化并且因此可以是动态的。图17示出了根据本公开的一些实施例的用于确定时间表的示意性动态定位性能地图1710。地图1710包括示出定位覆盖需求如何随时间变化的多个不同帧。每帧的阴影部分指示需要定位覆盖的区域。每帧的无阴影部分指示不需要定位覆盖的区域。如所示出的,定位性能地图1710是二进制地图。地图1710的连续帧示出了在时间上被参数化的二进制性能地图的快照。使用参数模型(例如,使用周期性函数)、使用任何其它合适的模型或使用任何其他合适的技术,这样的地图可以存储为快照的密集序列、快照的稀疏序列(使用快照之间的插值技术)。将理解的是,定位性能地图1710的二进制性质仅仅是示意性的,并且地图1710还可以使用连续值或使用多个离散性能水平来实现。
图18示出了根据本公开的一些实施例的时间表可以被如何调整的示意性示例。在一些实施例中,可以基于定位要求实时调整时间表。如面板1810的左上部分所示,位置地图1820a示出三个移动机器人1000在坐标系内的位置。移动机器人1000中的每一个可以包括一个或多个自定位装置140,并且被配置为将其位置传输回定位网络。举例来说,移动机器人1000可被配置为将其位置(例如,经由自定位装置140的天线502)无线传输回定位网络的一个或多个锚。移动机器人1000还可以向定位网络传输附加信息,诸如其当前速度或计划的运动之类。根据这个信息,可以提取覆盖要求地图1830a。在一些实施例中,诸如调度器110之类的调度器可以从移动机器人1000接收信息并生成覆盖要求地图1830a。在一些实施例中,覆盖要求地图1830a可以通过要求针对围绕每个移动机器人1000的当前位置的固定半径以及移动机器人的计划的运动路径周围的固定半径的覆盖来生成。
覆盖要求地图1830a可以由调度器用于计算对于给定要求的适当的时间表1840a。根据定位性能和计算复杂性之间的权衡,调度器可以在一系列预先计算并存储的时间表中选择最合适的时间表,或者调度器可基于要求地图1830a计算新的、优化的时间表。关于时间表1840a的信息可以被传输到定位网络的一个或多个控制单元,用于控制定位信号从网络的锚的传输。
在一些实施例中,调度器将关于时间表1840a的信息传输到调度单元控制器,调度单元控制器进而将信号传输到锚,然后使锚根据该时间表来进行传输。当时间表1840a是预先计算的时间表时,调度单元控制器可以仅发送指示要使用哪个时间表的信号(例如,“使用时间表nr.3”)。当时间表1840a是新计算的时间表时,调度单元控制器可以向锚传输新的时间表,并且然后当锚一接收到它时就发出改变时间表的信号。
所描述的处理在之后被重复以实时调整时间表。如面板1810的底部所示,移动机器人1000的位置在位置地图1820b中已经改变。位置地图1820b中描绘的新位置可以用于生成新的覆盖要求地图1830b,其转而可以用于确定时间表1840b。然后可以使用时间表1840b来控制如上所述的从网络的锚进行的定位信号的传输。
图19示出了根据本公开的一些实施例如何时间表如何被调整的另一个示意性示例。在这个例子中,一组移动机器人1000根据预定义的一组轨迹在相对大的空间中移动,并且一组锚在整个空间中分布。位置地图1910a、1910b、1910c和1910d示出了移动机器人1000沿着预定义的一组轨迹移动时的位置。具体而言,该组移动机器人从右下象限开始,并且然后逆时针移动通过四个象限。为了改善定位网络的定位性能,可能只希望使用靠近该组移动机器人1000的锚的子集,并配置其他锚不进行传输。在位置地图1810a中,由于移动机器人1000位于右下象限,所以可能希望不使用左上象限中的锚。例如,这些锚对于其信号被成功接收而言可能离移动机器人1000太远。可能期望的是使移动机器人1000以相对较高的速率接收定位信号,并且不使用远离的锚可增加移动机器人1000可接收定位信号的速率。
相应地,在一些实施例中,时间表可以被调整,使得仅位于区域A内的锚被用于传输定位信号。在其它实施例中,可以调整时间表,使得锚的子集被用于仅提供区域A中的定位能力。如图19中所示,随着该组移动机器人1000的位置随时间变化,区域A跟随着它们通过四个象限。作为这些时间表变化的结果,移动机器人可以自己定位的区域(区域A)随着时间而移动。时间表的调整可以通过几种方式来实现。在一种情况下,传输时间表可以基于该组移动机器人1000的位置而定期改变。在假设中央单元知道移动机器人的目标位置的情况下,这可以以开环方式实现,或者基于由移动机器人提供的位置信息以闭环方式实现。因此,随着时间可以使用不同的时间表。在另一个可能更复杂的示例中,可以使用与移动机器人的移动同步的单个长时间表来完成调整(例如,可以在移动机器人开始移动时或者在移动机器人开始移动前数秒时开始时间表),并且所述单个长时间表具有至少与移动机器人轨迹的持续时间一样长的持续时间。
尽管图19示出了基于一组移动机器人的位置来调整时间表,还可以基于两组或更多组移动机器人来调整时间表。图20示出了根据本公开的一些实施例的如何针对两组移动机器人调整时间表的示意性示例。在这种情况下,移动机器人被组织成两个不同的组,它们根据不同的轨迹集合移动。
这提出了如何配置调度以适应并优化定位信号的传输的技术问题。在一些实施例中,可以方便地将定位网络的锚组织在两个群集中,并且以使得第一和第二组移动机器人可以独立地从锚接收数据(例如,命令)并定位的方式定义时间表。这可以例如通过对于两个群集使用两个不同的载波频率或通过以下方式设置发射功率来实现,所述方式使得分配给第一组移动机器人的锚的传输不干扰专用于第二组移动车辆的锚的传输。
如位置地图2010a所示,第一组移动机器人从集群A内的空间的顶部开始,而第二组从集群B内的底部开始。时间表可以使第一组锚(集群A)覆盖由第一组移动机器人占用的地区并且使第二组锚(集群B)覆盖由第二组移动机器人占用的地区。
作为目标轨迹的一部分,第一组移动机器人朝着该空间的顶部部分的中心集中,而第二组移动机器人分开并移动到底部部分的侧面。这在位置地图2010b中示出。这些移动,例如,不需要传输时间表的更新。
接着,目标轨道可使得第一组移动机器人朝着底部部分移动,而第二组的移动机器人朝着上部部分移动。这在位置地图2010C中示出。为了执行这些动作(maneuver),传输时间表被更新为改变属于集群A的锚集合和所述属于集群B的锚集合。这创建用于第一组移动机器人的中央通道(aisle)和于第二组移动机器人的侧向过道(corridor)。值得注意的是,在某些情况下由集群B覆盖的空间区域可以与由集群A覆盖的空间区域重叠。
最终,目标轨迹可能使第一组移动机器人在该空间的底部部分内展开,并且第二组移动机器人在上部部分内展开。这在位置地图2010d中示出。这是通过重新分配两个集群中的锚来再次实现的。
所述使用情况所呈现的概念是,群集可以与移动机器人组一起移动,以在由各个移动机器人组占据的空间区域中提供期望的定位性能。
将理解的是,尽管在用于移动机器人1000的定位的上下文中描述了图18-20,可以在任何其他合适的对象(诸如车辆、人或包括用于接收定位信号的自定位装置的任何其他对象)的情况下使用图18-20。在一些实施例中,可以在本文描述的收发器130和自定位装置140的任何实施例的情况下使用图18-20。
图21是根据本公开的一些实施例的定位信号202的示意性结构的图。在一些实施例中,定位信号202的结构与IEEE标准802.15.4中定义的相似。该相同标准描述了定位系统的其他方面,诸如信号传输过程之类。定位信号202的传输在时间tstart 2122处以前导码序列2110的传输开始。该序列通常是预定义的并且对于定位信号202的传输器(例如收发器130)和接收器(例如,自定位装置140)是已知的。在一些实施例中,前导码序列2110可以被存储在存储器中。在一些实施例中,前导码序列2110可以在系统操作期间是可配置的。在一些实施例中,前导码序列2110可以通过数字或模拟电子组件的互连来编码。
在一些实施例中,前导码2110定义其中无线电脉冲(例如,UWB无线电脉冲)在特定传输信道上以特定速率传输的序列。所述速率有时可能被称为脉冲重复频率。脉冲重复频率通常对定位信号202的传输器和接收器都是已知的。在一些实施例中,脉冲重复频率可以被存储在存储器中。在一些实施例中,脉冲重复频率可以在系统操作期间是可配置的。在一些实施例中,脉冲重复频率可以通过数字或模拟组件的互连来编码。
如果接收器被配置为在传输中心频率上操作,具有相同的传输频率带宽、相同的前导码和相同的前导码调制方案(例如,频移或相移),则接收器通常能够接收定位信号(例如,UWB信号)。在一些实施例中,这可以通过适当配置接收器的模拟接收电子器件(例如模拟接收电子器件504)或数字接收电子器件(例如数字接收电子器件506)或传输器的模拟传输电子器件(例如,传输器的模拟传输电子器件214)或数字传输电子器件(例如数字传输电子器件216)来实现。在一些实施例中,信道或前导码2110或脉冲重复频率的适当选择可使接收器能够接收来自特定传输器子集的UWB信号。在一些实施例中,信道或前导码2110或脉冲重复频率的适当选择可以使得传输器能够将UWB信号传输到接收器的特定子集。在一些实施例中,信道或前导码2110或脉冲重复频率的适当选择可允许多个定位信号在具有减少的干扰或无干扰的情况下被同时传输。
在传输前导码2110之后,传输器传输开始帧定界符2112,以指示信号的数据部分的开始。在传输帧首定界符2112之后,传输器传输物理层报头(PHR)2114、包含与信号的有效载荷2116的编码有关的信息(例如,数据速率)。在传输物理报头2114之后,传输信号的有效载荷2116。在一些实施例中,有效载荷是空的。在一些实施例中,有效载荷包含来自全局属性传感器228的信息。在一些实施例中,有效载荷2116包含便于由同步单元(例如,同步单元510)进行同步的信息。在一些实施例中,有效载荷2116包含使得调度单元(例如,调度单元218)能够对将来的传输进行调度的信息。在一些实施例中,有效载荷2116包含使得自定位装置能够接收将来的传输的信息(例如,可包括传输时间、传输信道、传输前导码或传输脉冲重复频率的对将来的信号传输的通知)。在一些实施例中,有效载荷2116包含关于先前传输或接收的信号(例如,信号202或302)的信息。在一些实施例中,有效载荷2116包含其他信息。在一些实施例中,有效载荷2116可以包含多条信息。在一些实施例中,有效载荷2116包含可用于评估所接收的有效载荷2116的完整性的错误检查信息。信号的传输在有效载荷2116的传输之后的时间tend2124处结束。
通过检测和接收定位信号的前导码2110,接收器能够检测帧首定界符(SFD)2112的传输。在一些实施例中,检测到帧首定界符2112的时间由接收器的数字接收电子器件(例如,数字接收电子器件506)进行时间标记。在检测到帧首定界符2112之后,接收器能够检测到物理报头2114。接收器可以使用编码在物理头部2114中的信息来解码编码在信号的有效载荷2116中的信息。
在一些实施例中,可以针对错误检查有效载荷2116。在一些实施例中,可以在接收器的其他单元内使用有效载荷2116。在一些实施例中,可以使用有效载荷2116来计算时间差。在一些实施例中,可以使用有效载荷2116来计算距离。在一些实施例中,有效载荷2116可以与来自接收器的全局属性传感器(例如全局属性传感器520)的测量进行比较。在一些实施例中,有效载荷可被存储在存储器(例如,存储器230、516)中。
如将对本领域技术人员而言清楚的是,虽然本实施例公开了与IEEE标准802.15.4中定义的特定信号结构类似的特定信号结构,但是许多其他信号结构同样有效并且可以与本公开一起使用。
图22示出了根据本公开的一些实施例的可用于实现更高的定位更新的示意性传输时间表2200。例如,在对于自定位装置而言接收每个经传输的数据有效载荷不是至关重要的情况下,可以使用传输时间表2200。传输时间表2200以x轴上的时间和y轴上的收发器编号的图的形式来描绘。如所示出的,传输时间表2200被确定为使得收发器1在时间t0开始传输定位信号2202a的前导码。来自收发器1的信号2202a的传输持续时间是T,并且因此传输将在t2=t0+T完成。信号2202a的前导码和SFD在第一持续时间T'期间被传送。因此,自定位装置能够在时间t1=t0+T'处对信号的接收时间进行时间标记。
在时间t3,从收发器2进行的定位信号2202b的传输被调度。在传统的时间表中,会选择t3>t2,使得自定位装置能够在传输第二定位信号之前完全接收来自收发器1的信号。然而,在本示例中,T3被故意选择成使得t0<t3<t2(即,在收发器1开始其传输之后但在其完成传输之前,从收发器2进行的信号2202b的传输开始)。在一些实施例中,传输将被调度为使得t1<t3<t2。
时间表2200允许接收定位系统的信号的自定位装置在时间t1附近或事先选择进行如下操作是否更有利于其性能:(1)通过在整个持续时间T内保持自定位接收装置的接收电子器件调谐到信号2202a来使得完全接收来自收发器1的信号2202a,或者(2)仅对来自接收器1的信号进行时间标记但忽略其有效载荷,并且改为还通过在持续时间T'内调谐到来自收发器1的信号并且然后中止接收且调谐到来自收发器2的信号2202b,从而对来自接收器2的信号2202b进行时间标记。
时间表2200示出了从相应的收发器3、4进行的两个附加信号传输2202c、2202d,其中进行接收的自定位装置可以做出类似的用于接收的选择。
为了使自定位装置能够在没有接收整个信号的情况下选择性地对信号进行时间标记,自定位装置中的模拟接收电子器件或数字接收电子器件必须可操作以接收以下信号:通过所述信号,对来自天线的信号的接收可以被限制为对前导码和SFD部分进行时间标记。在一些实施例中,数字接收电子器件在已经完成了时间标记时向接口提供信号以停止正在进行的信号接收;随后该信号和接口可以结合使用,以在完成了时间标记之后停止接收信号。在一些实施例中,数字接收电子器件提供接口,其中它们可以被配置为一旦完成了时间标记就自动停止接收。
图23示出了根据本公开的一些实施例的图22的示意性传输时间表的一部分以及对应的接收器活动2310。图23示出了当定位信号被调度为部分重叠时,自定位装置的接收器的操作的进一步细节。特别地,图23示出了图21的两个部分重叠的定位信号2202a、2202b。在定位信号2202a、2202b之下示出了对应的示意性接收器活动2310。
在时间t0之前,接收器针对前导码进行扫描。在时间t0处开始从第一收发器传输前导码之后不久,接收器开始锁定到定位信号2202a的前导码序列中。在前导码和SFD的传输完成之后,接收器(例如数字接收电子器件)已经对定位信号2202a的接收进行了时间标记。此时,接收器停止接收来自收发器1的信号并开始扫描新的前导码。在传输器2在时间t3处开始传输定位信号2202b的前导码之后不久,接收器锁定到前导码序列中。然后,接收器保持锁定到定位信号2202b中以接收来自收发器2的整个信号、生成接收时间标记并接收该信号的数据有效载荷。
在一些实施例中,自定位装置包括决定逻辑,决定逻辑确定是按其整体接收定位信号更有利还是仅接收进行时间标记所需的部分更有利。例如,该决定可以基于所需的最小有效载荷接收频率、必须从其接收有效载荷的定位锚的列表(而其他锚可以仅被标记时间),或者监视是否有足够的信息(诸如,它们是由哪些锚传输的、在哪些时间被传输等)可用于解释仅被标记时间的信号的逻辑。
在一些实施例中,自定位装置包括调度单元,所述调度单元将接收器配置为按信号整体接收信号或者根据存储在存储器中的时间表仅对信号进行时间标记。在一些实施例中,定位信号的有效载荷包括将来的传输的时间表,自定位装置使用所述时间表来确定是仅仅标记时间还是将其整体接收将来的定位信号。
图24示出了根据本公开的一些实施例的包括两个有效载荷的定位信号2402a、2402b、2402c的示意性传输时间表。图24的传输时间表类似于图22,但不是存在单个有效载荷,定位信号的有效载荷被组织为两部分。有效载荷的第一部分(有效载荷1)可以包含全部或大部分自定位装置想要接收的信息,而有效载荷的第二部分(有效载荷2)可以包含仅一些自定位装置对其感兴趣的信息。
在时间t0之前,自定位装置的接收器扫描在时间t0之后不久接收到的前导码。从此刻开始,接收器可以锁定到信号2402a中、接收SFD,并对该消息进行时间标记。一些接收器可决定该信息是足够的,并因此停止接收并开始扫描新的前导码。一些其他的接收器可能对接收更多的信息感兴趣,并因此继续接收,直到有效载荷的第一部分(有效载荷1)被完全接收为止。此时,这些接收器可以决定是否继续并接收有效载荷的其余部分(有效载荷2)或中断接收并开始扫描新的前导码。
图24中所示出的时间表允许自定位装置决定接收多少信息以及以什么样的频率接收所需信息。例如,一些自定位装置可能希望每四个到来的定位信号就接收有效载荷的第二部分,每两个到来的定位信号就接收有效载荷的第一部分,以及每个到来的信号或任何可能的时间来接收SFD(例如,消息时间标记)。与总是接收整个定位信号的接收器相比,这将允许更快地对到来的信号进行时间标记。
在一些实施例中,定位信号的有效载荷可以被组织成三个或更多个部分,并且自定位装置可以确定要接收哪个部分。
图25示出了根据本公开的一些实施例的示意性定位系统2500和对应的性能地图2510。定位系统2500包括标记为A至L的12个锚。性能地图2510指示定位系统2500的整个定位空间的定位性能为1。因此,性能地图2510指示应当为整个定位空间提供相同的定位性能。
可以配置定位系统2500的锚A至L(例如,使用由调度器确定的时间表)以根据多个不同时间表中的任何一个来传输定位信号,从而在定位区域中实现类似的定位性能。在一个示例中,锚可以被调度为按照字母顺序(即A-B-C-D-E-F-G-H-I-J-K-L)进行传输。在另一个示例中,锚可以被调度为以这样的方式进行传输:位于地面上的锚的传输之后是位于天花板上的锚的传输(例如,A-L-C-K-D-H-E-G-F-J-B-I)。这可能是期望的,从而最大化自定位装置接收定位信号的方向上的差异,从而通过最小化精度稀释(dilution)来优化自定位装置的定位性能。值得注意的是,这两种时间表在空间和传输速率上是一致的。还要注意的是,这些时间表仅仅是示意性的,并且其他时间表也可以用于在定位空间内实现相同的定位性能。
图26示出了根据本公开的一些实施例,在不同性能地图2610的情况下使用的图25的示意性定位系统2500。性能地图2610与图25的性能地图2510的不同之处在于,性能地图2610只需要在定位空间的右侧部分中进行定位。定位空间的左侧部分是不需要的。例如,当在定位空间的左侧部分中不存在自定位装置时,可以使用性能地图2610。
为了实现性能地图2610所需的定位性能,锚的子集可以被配置(例如,使用由调度器确定的时间表)以根据多个不同时间表中的任何一个来传输定位信号,从而实现期望的定位性能。例如,锚可以被配置为使得定位空间的左侧上的锚不传输定位信号。因此得到的传输时间表具有为覆盖定位空间的右侧的锚提供更快的传输速率的优点。类似于图25,传输次序可以是字母顺序的(即,B-C-E-F-H-I-K-L)或更复杂的(例如B-L-E-I-F-H-C-K)。值得注意的是,这两种时间表在传输速率上是一致的,但是在定位空间方面是不一致的。
图27示出了根据本公开的一些实施例的示意性定位系统2700和对应的性能地图2710。定位系统2700包括标记为A至E的5个锚。锚在定位系统2700中的分布不同于图25中的定位系统2500中的分布,因为安装在地面上的锚的数量与安装在天花板上的锚的数量不同。性能地图2710指示期望的定位性能在定位空间中是一致的。
实际上,在定位空间内均匀分布锚可能是困难的。例如,在一些装置中,在天花板上安装较大数量的锚并且在地面上安装较少数量的锚可能是更实际的。定位系统2700表示这种情况。如果系统2700的所有锚都以相同的速率传输定位信号,则与具有均匀分布锚的系统相比,定位性能可能降低,因为5个定位信号中的4个将来自天花板。为了减轻如定位系统2700中那样的锚的不均匀分布的影响,可以以如下方式定义传输时间表:使得位于地面上的锚比位于天花板上的锚更频繁地进行传输。例如,定位信号的传输可以在地面和天花板之间交替,使得源自地面上的锚的定位信号的传输速率与源自天花板上的锚的定位信号的传输速率相同。例如,用于定位系统2700的一个合适的传输次序是:A-E-D-E-B-E-C-E。注意,该时间表在该空间中是一致的,但是在传输速率上是不一致的(即不同的锚具有不同的传输速率)。
图28示出了根据本公开的一些实施例,在不同性能地图2810的情况下使用的图25的示意性定位系统2500。性能地图2810不同于图25的性能地图,因为在定位空间内需要不同水平的定位性能。具体而言,需要定位空间的右侧部分中的定位性能高于定位空间的左侧部分中的定位性能。例如,当大多数自定位装置位于定位空间的右侧部分中时,可以使用性能地图2810。作为另一个例子,当在定位空间的右侧部分中存在更多的障碍物时,可以使用性能地图2810,并且因此期望更高的性能来降低与障碍物碰撞的机会。
定位性能的不同等级可以通过以如下方式配置锚来实现:使得覆盖空间左侧的锚比覆盖空间右侧的锚更低频率地进行传输。例如,一个合适的传输次序是:B-L-E-I-F-H-C-K-A-L-C-K-D-H-E-G-F-J-B,这导致对于覆盖空间右侧的锚,传输速率快两倍。另一个合适的传输次序是:B-L-E-I-A-F-H-C-K-J-B-L-E-I-D-F-H-C-K-G,这也导致对于覆盖空间右侧的锚,传输速率快两倍。
图29示出了根据本发明的一些实施例的定位信号的示意性传输时间表2900。时间表2900表示用于图25的定位系统2500的更复杂的传输时间表,其实现了在图28的性能地图2810中反映的期望的定位性能。时间表2900包括9行信息。行1指示时隙。行2-5指示用于将根据该时间表被传输的第一组定位信号的传输参数,而行6-9指示用于将根据该时间表被传输的第二组定位信号的传输参数。行2和行6识别锚。行3和行7识别传输载波频率。行4和行8指示前导码。行5和行9指示发射功率。因此,时间表2900与之前的示例性时间表的不同之处在于它不仅指定了锚传输次序,而且还指定了诸如载波频率、前导码和发射功率之类的附加传输参数。时间表2900的目标是在对低性能区域的影响较小的情况下在高性能区域中实现高性能。
时间表2900可以被认为具有时间同步的两个子时间表。行1示出其中组织了子时间表的时隙。行2-5可以被认为构成第一子时间表,这是针对图25所讨论的优化序列。行6-9可以被认为构成第二子时间表,其定义了针对围绕高性能区域的锚的附加传输。在该配置中,第一子时间表在整个空间中实现了一致的覆盖,并且第二子时间表提高了高性能区域中的定位性能。
在时隙T1期间,锚A在与锚E相同的时间传输信号。因为两个锚在不同的频率上进行传输,所以自定位装置可以选择从锚A或锚E进行接收以基于自定位装置的位置来优化其定位性能。这可以通过使自定位装置接收代表对在该时隙进行传输的锚的可能的选择的数据来实现。可以从远程位置接收数据(例如,作为较早定位信号的有效载荷的一部分),或者通过使用预先已知的传输序列并从存储器中检索数据。选择可以实时地进行(例如,通过计算可以通过接收任一信号来实现的经预测的精度稀释降低)或被预先计算(例如,基于当前位置,作为优选收发器的地图而存储在存储器中)。可以在时隙T5和T10期间执行类似的选择,其中两个不同的锚定器在不同的频率上传输定位信号。
在时隙T6期间,锚H同时传输两个信号。第二信号以不同于第一信号的频率被发送并包括更长的前导码,这允许以更大的距离接收该第二信号并且具有更精确的时间标记。如所示出的,第二信号的更长的前导码可能导致它在多于一个时隙期间被传输。因此,自定位装置可以选择接收来自在频率1上的时隙T6和T7期间进行传输的锚H和E的信号,或者在频率2上的时隙T6和T7二者期间传输的来自锚H的更精确的可标记时间的信号。在该例子中,锚H包括一对收发器。在时隙T11和T12中使用不需要具有一对收发器的锚的类似原理。
在时隙T8期间,锚G在同一频率上在与锚C相同的时间进行传输。在这种情况下,锚C的参数被调整以便避免干扰,锚C以较低的发射功率进行传输,并且只能被锚G的范围之外的设备(包括自定位装置和其他锚)接收。
将理解的是,图29中绘出的时间表仅仅是示意性的并且可以使用其他变型。在一个变型中,可以改变第一时间表(即行2-5),使得所有传输使用较长的前导码长度以预计前导码的传输。例如,被配置为在时隙TK期间进行传输的锚可以在时隙TK-1的最后部分期间开始传输前导码。自定位装置因此可以选择接收整个前导码或仅接收在时隙TK期间传输的前导码部分。第一个选项允许对在时隙TK期间传输的定位信号的更精确的时间标记,而第二个选项允许自定位装置接收两个定位信号。
图30示出了根据本公开的一些实施例的定位信号的另一个示意性传输时间表3000。时间表3000表示另一个复杂的传输时间表。时间表3000指定比时间表2900中所指定的甚至更多的配置参数。时间表3000指定用于进行接收或发送的传输时间、锚模式(即,接收或发送)、载波频率、前导码、前导码长度、发射功率和天线。时间表3000指定三个收发器(A,B和C)的配置参数,并按时隙(T1,T2,T3,T4和T5)组织。
锚A在时隙T1和T4期间进行传输。锚B在时隙T2和T5期间进行传输。锚C在时隙T3期间进行传输。当锚不进行传输时,它们被配置成接收由其他锚传输的定位信号。
锚A始终在频率F1上操作。锚B在时隙T2、T3和T5期间在频率F1上操作,而在其余时隙期间在频率F2上操作。锚C在时隙T1和T2期间在频率F1上操作,而在其余时隙期间在频率F2上操作。使用不同的频率允许同时进行多个传输(未在时间表3000中表示)。
锚A始终使用前导码1。锚B在时隙T1和T5期间使用前导码5,而在其余时隙期间使用前导码1。锚C始终使用前导码5。使用不同的前导码允许同时进行多个传输(未在时间表3000中表示)。
锚A和C始终以250微秒的前导码长度传输定位信号。锚B始终以500微秒的前导码长度传输定位信号。如上所述,更长的前导码长度允许以更大的距离接收定位信号并且具有更精确的时间标记。
锚A始终以等于5dBm的发射功率传输定位信号。锚B和C始终以等于0.5dBm的发射功率传输定位信号。使用不同的发射功率允许以更长或更短的覆盖来进行传输。这可以用来具有同时性但不干扰来自使用相同频率和相同前导码的不同锚的传输。
锚A始终使用天线1接收和传输定位信号。锚B始终使用天线1进行传输并始终使用天线2进行接收。锚C在前3个时隙期间使用天线2,并在最后2个时隙期间使用天线1。使用不同的天线允许具有不同辐射图案的传输(即,可以以不同的信号质量到达空间的不同区域)并且允许更好的接收。
自定位装置可以使用编码在时间表中的知识来配置它们自己的接收参数以接收来自特定传输器的数据。例如,自定位装置可以选择接收特定信号以基于其位置来优化其定位性能。
在一些实施例中,锚可以被配置(作为时间表3000的一部分)以接收特定信号,从而改善网络时钟同步或网络上的信息传播。
图31示出了根据本公开的一些实施例的可以在自定位装置上实现的逻辑的示意性流程图3100,所述逻辑基于识别将来的传输的接收到的有效载荷来配置其接收器。
在步骤3102,自定位装置可以在接收到定位信号时从数字接收电子器件读取原始接收数据。这种读取处理可以使用数字传输协议(例如,SPI、I2C、UART或并行数字协议)来实现。
在步骤3104,在读取数据之后,自定位装置可以解码所接收的有效载荷。解码可以包括多个处理步骤(未示出)。例如,这样的处理可以包括:数据的反序列化、解析表示有效载荷大小的数据、解析表示有效载荷类型的数据、任何其他处理步骤或其任何组合。
在决定3106处,可以进行数据完整性检查。例如,可以验证CRC校验和。如果数据完整性检查失败(例如,如果CRC校验和不正确),则自定位装置可在步骤3108处丢弃所接收的数据,并且该处理可以返回到步骤3102。如果完整性检查成功,则处理可继续到决定3110处。
在决定3110处,有效载荷的内容可以被检视,以确定它是否包含识别通过定位锚的未来传输的有效载荷。在一些实施例中,步骤3110可以是预处理该有效载荷的最后一步。如果发现有效载荷不识别未来传输,则该处理可以在步骤3112处终止,并返回到步骤3102。如果发现有效载荷识别通过定位锚的未来传输,则处理可继续到决定3114。
在这时候,自定位装置可以执行用于确定优选地接收哪个可用的定位信号的步骤。例如,该决定可以基于由定位器提供的状态信息来执行。
在决定3114处,自定位装置可确定定位器是否已被成功地初始化(即,定位器是否具有当前估计位置)。如果自定位装置确定该定位器未被成功地初始化,则处理可以进行到步骤3120。如果自定位装置确定该定位器已被成功地初始化,则处理可以进行到步骤3116。
在步骤3120处,当定位器未被初始化时,自定位装置可以基于备份启发式方法做出关于接收哪个信号的决定。例如,自定位装置可以决定接收提供最宽的覆盖的信号,以确定初始位置估计。然后,该处理可进行到步骤3122。
在步骤3116处,当定位器被初始化时,自定位装置可以基于自定位装置的估计位置进行第一检查。可以将该位置与将在未来时隙中传输信号的定位锚的位置进行比较。如果对于这些锚中的一些锚,在自定位装置的位置处良好的接收将是不可能的,则它们被标记为非优选的信号。在一些实施例中,该检查可以另外考虑锚天线和自定位装置天线二者的朝向,以更准确地估计接收质量。在一些实施例中,用于什么样的估计的接收质量被认为是可接受的度量也可以基于其他的度量(例如捕获信号对于位置估计的质量会有多重要)而调整。
在步骤3118处,定位器的位置估计质量可以被检视。质量可以例如被表示为精度的当前稀释度或表示为位置估计的方差。基于自定位装置的位置的可能的范围,对于每个候选定位信号的不确定性的减少可以被计算。例如,未来的定位信号的模拟版本可以被提供给定位器,以评估方差中的变化。这些评估可以针对每个候选定位信号而执行,并且然后度量可以被应用于确定优选的定位信号。在一些实施例中,这样的度量可以是总位置方差、在平面内的总方差或沿着特别重要的方向的方差的均方根。然后,该处理可进行到步骤3122。
在上述步骤被执行后,要接收的优选的定位信号已被确定。在步骤3122处,接收器设置被确定。然而有效载荷可能已经提供关于未来的定位信号的配置的高级别信息,因此通常可能需要更多低级别接收器设置以设置接收电子器件。在一些实施例中,这些低级别接收器设置可以是依赖于硬件的设置。例如,依赖于硬件的设置可以包括在接收电子器件中的锁相环的配置、用于在接收期间扫描的前导码、RF开关的位置、其他硬件设置中的至少一个,或它们的任意组合。在一些实施例中,接收器设置可以以查找表的形式存储在存储器中,以允许自定位装置从接收到的高级别信息确定正确的低级别配置。
在步骤3124处,低级别接收器配置可以被应用到接收器。在一些实施例中,应用配置可以通过经由诸如SPI、I2C或UART之类的协议将配置参数写入到接收电子器件的寄存器来进行。在一些实施例中,应用配置可以通过例如通过改变微控制器的输出管脚(pin)的状态来改变传输电子器件的数字或模拟输入管脚的值来进行。
在一些实施例中,来自定位器的状态信息可以被用来确定接收哪个定位信号。在一些实施例中,可以使用许多其他的决定标准用于相同的目的。例如,该决定可以基于自定位装置的已知的计划运动、基于接收到的定位信号的信号强度、基于所存储的定位信号优先级列表、基于其他标准,或者它们的任意组合而做出。
应当理解的是,流程图3100的步骤和决定元件仅仅是说明性的,并且可以在本公开的范围内进行各种修改。例如,在一些实施例中,流程图3100的顶部部分可以与底部部分独立地进行。例如,逻辑元件3102-3112可以针对每个接收到的信号来进行,而逻辑元件3114-2124可以根据接收到什么信号来单独地和重复地选择。作为另一示例,在一些实施例中,在自定位装置存储了其中锚被调度在何时传输定位信号的时间表时,可以不需要进行逻辑元件3102-3112。
图32示出了根据本公开的一些实施例的性能图向飞行操作于其中的室内和室外环境3200的例示性应用。环境包括带有访问地区3220的建筑物3210(例如,仓库)内的室内地区,飞行器3230可通过该访问地区3220进入和离开室外地区。在该示例中,已经安装了两个定位系统。一个安装在室外,而第二个安装在室内。
在环境中的不同地区中识别所需的定位性能。着陆区3240环绕飞行器3230的着陆区。由于在着陆期间可能需要紧的飞行公差,因此该地区被标记为需要特别高的定位性能。第二地区3250覆盖了大部分的室内剩余空间,并且需要定位性能水平足以满足正常的安全飞行。室内空间的剩余部分没有定位性能的要求,因为该飞行器没有在这些空间中操作。
由于飞行机动空间在连接室内和室外地区的访问地区3220中降低,因此环绕该访问地区3220的第二地区需要特别高的定位性能。进场地区到访问地区中的剩余的室外地区需要正常的定位性能,而在其他地区中不要求定位性能。
另外,图32示出了其他定位机制(在这种情况下是GPS)的可用性。这些机制的可用性也可以提供给调度器。如果自定位装置被配置为融合不同的定位系统(诸如本文中所公开的系统和GPS)以增强性能,则调度器可以考虑到这一点并在假定其他定位机制可以用作支持工具的情况下调整其定位性能要求以实现所需的总定位性能定位。例如,当飞行器3230在建筑物上方操作时,在没有本文中所述的定位系统的情况下,GPS可以提供足够的定位性能,并且因此该计划不需要考虑该地区中的覆盖。
图32也示出了桥接锚的应用,这里使用桥接锚以允许飞行器在室内定位系统与室外定位系统之间无缝过渡。
图33还示出了根据本公开的一些实施例的两个例示性定位网络3310、3320。定位网络3310与定位网络3320部分地重叠。在一些实施例中,定位网络3310包括多个同步的锚,并且定位网络3320包括多个同步的锚。然而,因为定位网络3310、3320是不同的网络,所以它们可能相对于彼此不同步。因此,自定位装置可能难以在定位网络3310、3320之间移动。为了解决这个问题,可以使用一个或多个桥接锚来使自定位装置能够从一个网络切换到另一个网络。如图所例示,两个桥接锚3330位于两个网络之间的重叠的地区中。
图34是根据本公开的一些实施例的被配置为允许两个定位系统(例如,定位网络3310、3320)的同步的例示性桥接锚的框图。当在彼此附近使用两个单独的定位系统时,自定位装置(例如,因为它们从第一系统提供更好性能的位置移动到第二系统提供更好性能的位置)从接收第一系统的信号切换到接收第二系统的信号通常需要重新初始化其定位单元以识别第二定位系统的定时信息,并且然后再次确定其位置。这会在自定位装置从一个网络切换到下一个网络时产生在其期间定位不可用(或者只有降级的定位可用)的中断期。图34中所示的桥接收发器允许两个相邻网络之间的定时信息的同步,使得自定位装置能够在保持其本地定时信息的同时在网络之间切换,就好像它仍在接收来自第一网络的定位信号一样。
像本文中公开的一些锚一样,该桥接锚包含时钟210、调度单元218a、数字传输电子器件216a、模拟传输电子器件214a、天线212a、模拟接收电子器件220a和数字接收电子器件222a。这些组件用于桥接锚以与第一定位系统进行通信,并提供关于第一定位系统的定位信号。
为了启用桥接功能,本实施例中的桥接锚包括用于第一定位系统的一些组件的第二集合。具体而言,这里的桥接锚附加地包括调度单元218b、数字传输电子器件216b、模拟传输电子器件214b、天线212b、模拟接收电子器件220b和数字接收电子器件224b。这些附加的部件被配置成接收和传输第二定位系统的信号。
本实施例中的桥接锚还包括耦合到数字接收电子器件222a和时钟210的同步单元224a。同步单元224a确定第一定位系统的定时信息。此处的桥接锚还包括同步单元224b,以同样地确定第二定位系统的定时信息。另外,同步单元224b接收同步单元224a的定时信息,以比较来自两个定位系统的定时信息。同步单元224b耦合到调度单元218b,并且可以通过以下方面中的至少一个来调整第二定位系统的调度操作:(1)调整第二定位系统的调度,使得第二定位系统被引导向与第一定位系统的调度同步,以及(2)将使第二定位系统中的锚调整它们到第一定位系统的定时的信息包含在传输有效载荷中。在该上下文中所指的定时信息例如可以是定位系统的表观时钟速率、表观时钟偏移或者表观时钟偏斜。
图35是根据本公开的一些实施例的被配置为实现自定位装置从一个定位系统到另一个定位系统的无缝过渡的另一例示性桥接锚的框图。与图34的桥接锚不同,图35的桥接锚在两个定位系统之间不共享公共定时信息以使它们彼此同步。因此,图35的桥接锚需要在两个非同步定位系统之间实现无缝过渡。导致自定位装置的定位暂时不可用(或降低性能)的困难在于,为了提供有意义的定位数据,当定位器被重新初始化时,自定位装置需要识别第二定位系统的定时。图35中所示的桥接收发器允许自定位装置使用来自第二定位系统的附加定时信息通过在重新初始化之后热启动其定位器来从第一定位系统快速切换到第二定位系统。
为了达到这个目的,图35的桥接收发器包括耦合到天线212的模拟接收电子器件220和数字接收电子器件222,天线212接收来自第二定位系统的信号。数字传输电子器件216和模拟传输电子器件214被配置为传输带有第一定位系统的配置的信号。接收和传输电子器件共享时钟210。从数字接收电子器件222接收的信号被提供给同步单元224,同步单元224识别接收信号(其为来自第二定位系统的信号)的定时信息。所识别的定时信息被发送到调度单元218,调度单元218可以将所识别的定时信息包括在第一定位系统上传输的有效载荷中。接收来自第一定位系统的信号的自定位装置可以解码该定时信息,并且可以在其从第一定位系统切换到第二定位系统时使用该定时信息来热启动用于第二定位系统的定位器。
根据本公开的一个方面,提供了一种定位系统,其包括被配置为无线地传输定位信号的多个定位锚。定位信号可能能够被区域内的自定位装置使用以确定位置信息。例如,自定位装置可以使用定位信号来确定其在限定的三维区域内的自己的位置。
在一些实施例中,多个定位锚可以包括第一定位锚、第二定位锚和第三定位锚。第一定位锚可以被配置为无线地传输第一定位信号。第二定位锚可以被配置为无线地传输第二定位信号。第三定位锚可以被配置为无线地传输第三定位信号。
在一些实施例中,多个定位锚中的每一个可以通信地耦合到调度单元。在一些实施例中,调度单元可以被配置为调度定位信号的传输。例如,调度单元可以调度第一定位信号、第二定位信号和第三定位信号的传输。在一些实施例中,调度单元可以调度定位信号的传输以控制定位性能。例如,调度单元可以调度第一定位锚以按第一传输速率传输第一定位信号,调度第二定位锚以按第二传输速率传输第二定位信号,并且调度第三定位锚以按第三传输速率传输第三定位信号。在一些实施例中,第一传输速率可以大于第二传输速率。在一些实施例中,可以选择第一传输速率、第二传输速率和第三传输速率以在该区域的一部分内提供更高的定位性能。
在一些实施例中,调度单元可以被配置为调整第一、第二和第三定位信号中的任一个的传输速率或其任意组合,以在操作期间改变区域内的定位性能。在一些实施例中,调度单元可以被配置为接收自定位装置的位置和/或自定位装置的飞行模式。在一些实施例中,调度单元可以被配置为基于自定位装置的已知位置来调整传输速率。在一些实施例中,调度单元可以被配置为基于自定位装置的已知运动(例如,飞行模式)来调整传输速率。
在一些实施例中,第一、第二和第三定位信号中的每一个可以包括超宽带(UWB)定位信号。每个UWB定位信号可以包括前导码和有效载荷。在一些实施例中,一些UWB定位信号可以包括包含命令的有效载荷。在一些实施例中,调度单元可以被配置为调度UWB定位信号的传输以优化命令向自定位装置和多个锚中的至少一个的传播。
在一些实施例中,多个定位锚中的每一个可以包括时钟。在一些实施例中,一些UWB定位信号可以包括包含同步数据的有效载荷。多个定位锚中的每一个可以被配置为接收来自接收自至少一个其他定位锚的UWB定位信号的同步数据。在一些实施例中,至少一个调度单元可以被配置为调度UWB定位信号的传输以优化时钟的同步。
在一些实施例中,可以通过包括可以表示时钟同步性能的目标函数或约束来进行对时钟同步的优化。例如,这样的优化可以包含根据环境影响预测时间标记可变性的模型,目标是在具有低时间标记可变性的锚之间实现高通信速率。
在一些实施例中,多个定位锚中的每一个可以包括同步单元,其中每个同步单元可以被配置为基于接收到的同步数据为其相应的时钟计算针对时钟偏移和时钟速率中的至少一个的校正。
在一些实施例中,调度单元可以被配置为调度定位信号的传输以增加区域的一个或多个部分中的精度、准确度或更新速率中的至少一个。在一些实施例中,调度单元可以被配置为基于时间表中的时隙来调度定位信号的传输。在一些实施例中,与第二定位锚相比,第一定位锚可以在时间表中被分配更多的时隙。
在一些实施例中,调度单元可以包括第一调度单元、第二调度单元和第三调度单元。第一调度单元可以物理地耦合到第一定位锚并且可以被配置为调度第一定位信号的传输。第二调度单元可以物理地耦合到第二定位锚并且可以被配置为调度第二定位信号的传输。第三调度单元可以物理地耦合到第三定位锚并且可以被配置为调度第三定位信号的传输。
在一些实施例中,提供了一种用于在定位系统中传输定位信号的方法。在一些实施例中,定位系统可以包括多个定位锚。
在一些实施例中,该方法可以包括多个定位锚中的在传输时间表的两个或更多个时隙期间无线地传输第一定位信号的第一定位锚。该方法还可以包括多个定位锚中的在传输时间表的一个或多个时隙期间无线地传输第二定位信号的第二定位锚。该方法还可以包括多个定位锚中的在传输时间表的一个或多个时隙期间无线地传输第三定位信号的第三定位锚。
在一些实施例中,第一定位信号、第二定位信号和第三定位信号可能能够被区域内的自定位装置使用以确定位置信息。第一定位锚可以在传输时间表中被分配比第二定位锚更多的时隙,以在该区域的一部分内提供更高的定位性能。
在一些实施例中,该方法可以包括在操作期间调整在传输时间表中第一定位锚、第二定位锚和第三定位锚被分配的时隙的数量的一个或多个调度单元。在一些实施例中,该方法可以包括无线地接收自定位装置的已知位置。在一些实施例中,可以基于自定位装置的已知位置来调整时隙的数量。
在一些实施例中,传输时间表的时隙可以基于以下各项中的一个或多个来分配:自定位装置的已知位置;被包括作为第一、第二和第三定位信号中的至少一些的一部分的命令的传播的优化;与第一、第二和第三定位锚相关联的时钟的同步的优化,以及在该区域的一个或多个部分中的改进的精度、准确度或更新速率中的至少一个。
在一些实施例中,该方法还可以包括使用第一时钟生成用来确定第一定位锚何时无线地传输第一定位信号的第一定时信号。该方法还可以包括使用第二时钟生成用来确定第二定位锚何时无线地传输第二定位信号的第二定时信号。该方法还可以包括使用第三时钟生成用来确定第三定位锚何时无线地传输第三定位信号的第三定时信号,其中第一、第二和第三时钟是同步的。
根据本公开的另一方面,提供了一种定位系统,其包括多个定位锚,所述多个定位锚可以被配置为无线地传输能够由区域内的自定位装置使用的定位信号以确定位置信息。在一些实施例中,该区域可以包括三维区域。
在一些实施例中,定位系统还可以包括至少一个调度单元。该至少一个调度单元可以通信地耦合到多个定位锚。在一些实施例中,至少一个调度单元可以被配置为根据第一传输时间表来调度定位信号的传输。第一传输时间表可以为多个定位锚中的每一个定义用来传输定位信号的第一时间次序。在一些实施例中,定位信号可以包括超宽带(UWB)定位信号。在一些实施例中,每个定位信号可以包括前导码和有效载荷。
在一些实施例中,该至少一个调度单元可以被配置为确定何时从第一传输时间表改变到第二传输时间表。第二传输时间表可以为多个定位锚中的每一个定义用来传输定位信号的第二时间次序。第二传输时间表可以为多个定位锚中的每一个定义第二发射器(TX)或接收器(RX)模式。在一些实施例中,第二时间次序可以不同于第一时间次序。在一些实施例中,第二时间次序可以与第一时间次序相同。
在一些实施例中,该至少一个调度单元可以被配置为确定何时重新开始传输调度。在一些实施例中,该至少一个调度单元可以被配置为从特定时间开始或重新开始传输调度(即,调度不开始或从调度的起点重新开始)。在一些实施例中,第一传输时间表和第二传输时间表可以在区域的不同部分中提供增加的精度、准确度和更新速率中的至少一个。
在一些实施例中,该至少一个调度单元可以被配置为响应于确定从第一传输时间表改变为第二传输时间表,根据第二传输时间表调度定位信号的传输。在一些实施例中,从第一传输时间表到第二传输时间表的改变可以改变该区域内的定位性能。
在一些实施例中,该至少一个调度单元可以被配置为接收自定位装置的已知位置和/或自定位装置的飞行模式。在一些实施例中,该至少一个调度单元可以被配置为基于自定位装置的已知位置来确定何时从第一传输时间表改变到第二传输时间表。在一些实施例中,该至少一个调度单元可以被配置为基于用户输入来确定何时从第一传输时间表改变到第二传输时间表。在一些实施例中,该至少一个调度单元可以被配置为基于自定位装置的已知运动来确定何时从第一传输时间表改变到第二传输时间表。
在一些实施例中,至少一些UWB定位信号的有效载荷可以包括命令。在一些实施例中,该至少一个调度单元可以被配置为从第一传输时间表改变到第二传输时间表,以优化命令向自定位装置和多个锚中的至少一个的传播。
在一些实施例中,多个定位锚中的每一个可以包括时钟。在一些实施例中,至少一些UWB定位信号的有效载荷可以包括同步数据。多个定位锚中的每一个可以被配置为接收来自接收自至少一个其他定位锚的UWB定位信号的同步数据。该至少一个调度单元可以被配置为从第一传输时间表改变到第二传输时间表,以针对时钟的同步进行优化。
在一些实施例中,多个定位锚中的每一个可以包括同步单元。每个同步单元可以被配置为基于接收到的同步数据为其相应的时钟计算针对时钟偏移和时钟速率中的至少一个的校正。
在一些实施例中,第一传输时间表和第二传输时间表可各自包括多个时隙。在一些实施例中,多个定位锚中的至少一个定位锚可以在第一传输时间表和第二传输时间表中被分配不同数量的时隙。在一些实施例中,多个定位锚中的至少一个定位锚可以被分配不同的发射器(TX)模式或接收器(RX)模式。在一些实施例中,多个定位锚中的至少一个定位锚可以在第一传输时间表和第二传输时间表中被分配不同的发射器(TX)模式或接收器(RX)模式。
在一些实施例中,该至少一个调度单元可以包括多个调度单元。在一些实施例中,多个调度单元中的每一个可物理地耦合到多个定位锚中的相应的一个定位锚。在一些实施例中,多个调度单元中的每一个可以被配置为根据分配给其各自的定位锚的时隙来为其各自的定位锚调度定位信号的传输。
在一些实施例中,提供了一种用于在定位系统中传输定位信号的方法。在一些实施例中,定位系统可以包括多个定位锚。
在一些实施例中,该方法可以包括使用多个定位锚来无线地传输能够由区域内的自定位装置使用的定位信号以确定位置信息。在一些实施例中,该方法还可以包括使用通信地耦合到多个定位锚的至少一个调度单元来根据第一传输时间表来调度定位信号的传输。在一些实施例中,第一传输时间表可以为多个定位锚中的每一个定义传输定位信号的第一时间次序。
在一些实施例中,该方法还可以包括使用该至少一个调度单元来确定何时从第一传输时间表改变到第二传输时间表。在一些实施例中,第二传输时间表可以为多个定位锚中的每一个定义传输定位信号的第二时间次序。第二传输时间表可以为多个定位锚中的每一个定义第二发射器(TX)或接收器(RX)模式。在一些实施例中,第二时间次序可以不同于第一时间次序。
在一些实施例中,该方法还可以包括:使用该至少一个调度单元来响应于确定从第一传输时间表改变到第二传输时间表,根据第二传输时间表调度定位信号的传输。在一些实施例中,这样的调度可以改变区域内的定位性能。
在一些实施例中,定位信号可以包括超宽带(UWB)定位信号。在一些实施例中,每个定位信号可以包括前导码和有效载荷。在一些实施例中,至少一些UWB定位信号的有效载荷可以包括命令。在一些实施例中,该方法还可以包括将该至少一个调度单元从第一传输时间表改变为第二传输时间表以优化所述命令向自定位装置和所述多个锚中的至少一个的传播。
在一些实施例中,多个定位锚中的每一个可以包括时钟。在一些实施例中,至少一些UWB定位信号的有效载荷可以包括同步数据。在一些实施例中,该方法还可以包括使用多个定位锚中的每一个来接收来自接收自至少一个其他定位锚的UWB定位信号的同步数据。在一些实施例中,该方法还可以包括将该至少一个调度单元从第一传输时间表改变为第二传输时间表以针对时钟的同步进行优化。
在一些实施例中,多个定位锚中的每一个可以包括同步单元。在一些实施例中,该方法还可以包括使用每个同步单元来基于接收到的同步数据计算针对其相应时钟的时钟偏移和时钟速率中的至少一个的校正。
在一些实施例中,第一传输时间表和第二传输时间表可以在区域的不同部分中提供增加的精度、准确度和更新速率中的至少一个。
在一些实施例中,第一传输时间表和第二传输时间表可各自包括多个时隙。在一些实施例中,该方法还可以包括将第一传输时间表和第二传输时间表中的不同数量的时隙分配给多个定位锚中的至少一个定位锚。
在一些实施例中,第一传输时间表和第二传输时间表可各自包括多个时隙。在一些实施例中,该至少一个调度单元可以包括多个调度单元。在一些实施例中,多个调度单元中的每一个可物理地耦合到多个定位锚中的相应的一个。在一些实施例中,该方法还可以包括使用多个调度单元中的每个调度单元来根据分配给其相应的定位锚的时隙来调度用于其各自的定位锚的定位信号的传输。
根据本公开的另一方面,提供了一种用于确定定位系统的传输时间表的系统。在一些实施例中,定位系统可以包括被配置为无线地传输定位信号的多个定位锚。多个定位锚可以用于确定区域内的位置信息。
在一些实施例中,该系统可以包括输入。该输入可以可操作以接收:多个定位锚的位置、多个定位锚中的至少一个锚属性以及该区域内的至少一个分区内的期望的定位性能。
在一些实施例中,该系统可以包括至少一个处理器。该至少一个处理器可以被配置为基于以下各项确定用于多个锚的传输时间表:(a)多个定位锚的位置,(b)多个定位锚中的所述至少一个锚属性,以及(c)在至少一个分区内的期望的定位性能。在一些实施例中,多个定位锚可以被配置为根据传输时间表来无线地传输定位信号。
在一些实施例中,系统可以包括可操作以将传输时间表传输给多个定位锚的输出。
在一些实施例中,所述至少一个分区中的第一分区内的期望的定位性能可以高于所述至少一个分区中的第二分区内的期望的定位性能。在一些实施例中,所确定的传输时间表可以被确定为在第一分区内提供更高的定位性能。在一些实施例中,该至少一个分区可以覆盖该区域。
在一些实施例中,该至少一个处理器可以被配置为通过基于多个定位锚的位置和多个定位锚的至少一个锚属性来预测至少一个分区内的定位性能来确定传输时间表;以及将预测的定位性能与所述至少一个分区内的期望的定位性能进行比较。
在一些实施例中,该至少一个锚属性可以包括传输功率水平。在一些实施例中,该至少一个处理器还可以被配置为确定传输时间表的传输功率水平。在一些实施例中,传输时间表可以指示每个定位锚可以被调度以用于传输其定位信号的功率水平。
在一些实施例中,该至少一个锚属性可以包括传输中心频率。在一些实施例中,该至少一个处理器还可以被配置为确定传输时间表的传输中心频率。在一些实施例中,传输时间表可以指示每个定位锚可以被调度以用于传输其定位信号的传输中心频率。
在一些实施例中,该至少一个锚属性可以包括传输频率带宽。在一些实施例中,该至少一个处理器还可以被配置为确定传输时间表的传输频率带宽。在一些实施例中,传输时间表可以指示每个定位锚可以被调度以用于传输其定位信号的传输频率带宽。
在一些实施例中,该至少一个锚属性可以包括前导码。在一些实施例中,该至少一个处理器还可以被配置为确定传输时间表的前导码。在一些实施例中,传输时间表可以指示被调度为与每个定位信号一起使用的前导码。
在一些实施例中,该至少一个锚属性可以包括前导码调制方案。在一些实施例中,该至少一个处理器还可以被配置为确定传输时间表的前导码调制方案。在一些实施例中,传输时间表可以指示调度为与每个定位信号一起使用的前导码调制方案。
在一些实施例中,该至少一个锚属性可以包括前导码长度。在一些实施例中,该至少一个处理器还可以被配置为确定传输时间表的前导码长度。在一些实施例中,传输时间表可以指示调度为与每个定位信号一起使用的前导码长度。
在一些实施例中,传输时间表可以包括多个时隙。在一些实施例中,该至少一个处理器还可以被配置成将一个或多个定位信号分配给多个时隙中的每一个。
在一些实施例中,该至少一个处理器还可以被配置为确定传输时间表的多个时隙的重叠量。在一些实施例中,多个时隙的重叠量可以是固定的。在一些实施例中,多个时隙的重叠量可以是可变的。在一些实施例中,该至少一个处理器可以被配置为通过确定多个定位锚无线地传输定位信号的时间次序来确定传输时间表。
在一些实施例中,该至少一个处理器可以被配置为通过确定多个定位锚无线地传输定位信号的传输速率来确定传输时间表。
在一些实施例中,传输时间表可以包括多个时隙。在一些实施例中,该至少一个处理器还可以被配置为向具有较高传输速率的定位锚比向具有较低传输速率的定位锚分配更多时隙。
在一些实施例中,该至少一个处理器可以被配置为通过使用优化算法来确定传输时间表。在一些实施例中,该至少一个处理器可以被配置成通过最小化成本函数来确定传输时间表。
在一些实施例中,输入还可以可操作以接收区域内的自定位装置的实时定位信息。在一些实施例中,该至少一个处理器还可以被配置为基于实时定位信息来确定更新的传输时间表。在一些实施例中,可以从系统的存储器接收实时定位信息。在一些实施例中,期望的定位性能可以包括飞行模式。
在一些实施例中,提供了一种用于确定定位系统的传输时间表的方法。在一些实施例中,定位系统可以包括多个定位锚,所述多个定位锚配置成无线地传输可以用于确定区域内的位置信息的定位信号。
在一些实施例中,该方法可以包括使用输入来接收多个定位锚的位置、多个定位锚的至少一个锚属性以及该区域内的至少一个分区内的期望的定位性能。
在一些实施例中,该方法还可以包括使用至少一个处理器来基于以下各项确定用于多个锚的传输时间表:(a)多个定位锚的位置,(b)多个定位锚中的至少一个锚属性,以及(c)在所述至少一个分区内的期望的定位性能,其中所述多个定位锚被配置为根据所述传输时间表无线地传输所述定位信号。在一些实施例中,该方法还可以包括使用输出以将传输时间表传输给多个定位锚。
在一些实施例中,该方法还可以包括使用该至少一个处理器来基于所述多个定位锚的位置和所述多个定位锚的所述至少一个锚属性来预测该至少一个分区内的定位性能。该方法还可以包括使用该至少一个处理器来将预测的定位性能与该至少一个分区内的期望的定位性能进行比较。
在一些实施例中,该至少一个锚属性可以包括传输功率水平。该方法还可以包括使用至少一个处理器来确定传输时间表的传输功率水平。在一些实施例中,传输时间表可以指示每个定位锚可以被调度以用于传输其定位信号的功率水平。
根据本公开的另一方面,定位系统可以包括多个定位锚,多个定位锚被配置为在传输时间表的时隙期间无线地传输定位信号。在一些实施例中,每个定位信号可以包括有效载荷。在一些实施例中,每个定位信号的有效载荷可以识别被配置为在至少一个未来时隙期间传输定位信号的多个定位锚的至少一个定位锚。
在一些实施例中,定位系统可以包括多个定位锚,多个定位锚被配置为在传输时间表的时隙期间无线地传输无线信号。在一些实施例中,每个无线信号可以包括有效载荷。在一些实施例中,每个无线信号的有效载荷可以识别被配置为在至少一个未来时隙期间传输或接收定位或无线信号的多个定位锚中的至少一个定位锚的发射器(TX)模式的配置或接收器(RX)模式的配置。在一些实施例中,有效载荷可以仅识别用于TX模式的配置,并且锚可以确定其RX模式。
在一些实施例中,定位系统可以包括自定位装置。在一些实施例中,自定位装置可以包括接收器。自定位装置可以被配置为接收至少一些定位信号,提取接收到的定位信号的有效载荷。自定位装置还可以被配置为基于所提取的接收到的定位信号的有效载荷来确定要接收哪个定位信号以用于确定自定位装置的定位信息。自定位装置可以被配置成基于所确定的定位信号来配置接收器。自定位装置还可以被配置为使用配置的接收器来接收所确定的定位信号,并且基于接收到的所确定的定位信号来确定自定位装置的定位信息。
在一些实施例中,每个定位信号可以包括报头部分和有效载荷部分。在一些实施例中,报头部分可以是前导码。在一些实施例中,定位信号可以包括第一子组和第二子组。在一些实施例中,第一子组和第二子组可以包括至少一个不同的传输特性。在一些实施例中,至少一个不同的传输特性可以包括传输中心频率、传输频率带宽、前导码和前导码调制方案中的至少一个。在一些实施例中,来自第一子组的定位信号和来自第二子组的定位信号都可以被调度用于在传输时间表的相同时隙期间进行传输。
在一些实施例中,自定位装置可以被配置为基于状态信息来确定要接收哪些定位信号。在一些实施例中,状态信息可以包括自定位装置的当前位置。在一些实施例中,状态信息可以包括与自定位装置的定位估计器相关联的方差信息。
在一些实施例中,自定位装置可以被配置为确定要接收哪些定位信号以最小化与定位估计器相关联的方差。
在一些实施例中,用于每个定位信号的有效载荷可以识别多个定位锚中的被配置为在相同的未来时隙期间传输定位信号的两个定位锚。在一些实施例中,用于每个定位信号的有效载荷可以识别多个定位锚的中的被配置为在至少两个未来时隙中的每一个期间传输定位信号的至少一个定位锚。
在一些实施例中,提供了一种定位方法。该方法可以包括使用多个定位锚来在传输时间表的时隙期间无线地传输定位信号。在一些实施例中,每个定位信号可以包括有效载荷。在一些实施例中,用于每个定位信号的有效载荷可以识别被配置为在至少一个未来时隙期间传输定位信号的多个定位锚中的至少一个定位锚。
该方法可以包括使用自定位装置来接收至少一些定位信号,提取接收到的定位信号的有效载荷,并基于提取的所接收到的定位信号的有效载荷来确定要接收哪些定位信号以用于确定自定位装置的定位信息。在一些实施例中,该方法可以包括基于所确定的定位信号来配置自定位装置的接收器。在一些实施例中,该方法还可以包括使用配置的接收器来接收所确定的定位信号,并且确定定位信息。
在一些实施例中,定位信号可以包括第一子组和第二子组,其中第一子组和第二子组包括至少一个不同的传输特性。
在一些实施例中,至少一个不同的传输特性包括传输中心频率、传输频率带宽、前导码和前导码调制方案中的至少一个。在一些实施例中,来自第一子组的定位信号和来自第二子组的定位信号都可以被调度用于在传输时间表的相同时隙期间进行传输。
在一些实施例中,该方法还可以包括使用自定位装置来基于状态信息确定要接收哪些定位信号。在一些实施例中,状态信息可以包括自定位装置的当前位置。在一些实施例中,状态信息可以包括与自定位装置的定位估计器相关联的方差信息。
在一些实施例中,该方法还可以包括使用自定位装置来确定要接收哪些定位信号以最小化与定位估计器相关联的方差。
在一些实施例中,每个定位信号的有效载荷可以识别多个定位锚中的被配置为在相同的未来时隙期间传输定位信号的两个定位锚。在一些实施例中,每个定位信号的有效载荷可以识别多个定位锚中的被配置为在至少两个未来时隙中的每一个期间传输定位信号的至少一个定位锚。
根据本公开的另一方面,提供了一种定位系统,其包括第一定位网络,该第一定位网络被配置为使用第一组时间同步锚来无线地传输第一定位信号。在一些实施例中,第一定位信号可以可用于确定第一区域内的位置信息。
在一些实施例中,定位系统还可以包括第二定位网络,第二定位网络被配置为使用第二组时间同步锚来无线地传输第二定位信号。在一些实施例中,第二定位信号可以可用于确定第二区域内的位置信息。
在一些实施例中,定位系统还可以包括桥接锚。在一些实施例中,桥接锚可被配置为接收与第一组时间同步锚有关的第一时间同步信息。桥接锚可以被配置为接收与第二组时间同步锚有关的第二时间同步信息,将与第一时间同步信息有关的时间同步信息传输到第二定位网络。
在一些实施例中,时间同步信息可以包括第一定位网络的时钟偏移和时钟速率中的至少一个。
在一些实施例中,第二定位网络可以被配置为基于接收到的时间同步信息来调整时钟偏移和时钟速率中的至少一个,以使第二定位网络与第一定位网络时间同步。
在一些实施例中,桥接锚可被配置为无线地传输时间同步信息。在一些实施例中,其中第二定位网络的至少一个锚可以被配置为无线地接收时间同步信息。
在一些实施例中,桥接锚还可以被配置为将与第二时间同步信息有关的时间同步信息传输到第一定位网络。
在一些实施例中,桥接锚可以被配置为将时间同步信息无线地传输到第一定位网络的自定位装置,以使得自定位装置能够使用第一定位网络和第二定位网络来确定其位置。
在一些实施例中,自定位装置可以被配置为基于接收到的时间同步信息在接收来自第一定位网络的定位信号和来自第二定位网络的定位信号之间切换。在一些实施例中,可以通过重新配置自定位装置的接收器来实现切换。在一些实施例中,由桥接锚传输的信号可以包括代表两个定位网络中的至少一个的接收器配置的有效载荷。在一些实施例中,自定位装置可以基于从桥接锚接收到的有效载荷重新配置其接收器。
在一些实施例中,桥接锚还可以被配置为无线地传输一个或多个第二定位信号。在一些实施例中,第二定位信号中的一个或多个可以各自包括前导码和有效载荷。在一些实施例中,一个或多个第二定位信号的有效载荷可以包括时间同步信息。
在一些实施例中,权利要求中的定位系统还可以包括自定位装置。在一些实施例中,自定位装置可以被配置为接收第二定位信号,并且基于接收到的第二定位信号来确定位置信息。在一些实施例中,自定位装置可以被配置为将其接收器配置为接收第一定位信号,并且基于接收到的第一定位信号来确定位置信息。
在一些实施例中,自定位装置还可以被配置为从桥接锚接收时间同步信息。在一些实施例中,基于所接收的第一定位信号来确定位置信息还可以依赖于来自桥接锚的时间同步信息来执行。
在一些实施例中,自定位装置可以被配置为从第一定位网络接收一个或多个第一定位信号,从桥接锚接收一个或多个第二定位信号,并且从第二定位网络接收一个或多个第二定位信号。在一些实施例中,自定位装置还可以被配置为基于从第一定位网络接收到的一个或多个第一定位信号、从第二定位网络接收到的一个或多个第二定位信号以及从桥接锚接收到的时间同步信息来确定位置信息。
在一些实施例中,桥接锚可被配置为交替地接收来自第一定位网络和第二定位网络的定位信号。在一些实施例中,第一区域和第二区域至少部分重叠。
在一些实施例中,桥接锚可以被配置为基于接收到的第一时间同步信息和接收到的第二时间同步信息来确定相对时间信息,并且其中由桥接锚传输的时间同步信息包括相对时间信息。
在一些实施例中,定位系统可以包括被配置为使用第一时间同步锚集合来传输第一定位信号的第一定位网络。在一些实施例中,第一定位信号可以用于确定的第一区域内的位置信息。
在一些实施例中,定位系统可以包括被配置为使用第二时间同步锚集合来传输第二定位信号的第二定位网络。在一些实施例中,第二定位信号可以用于确定第二区域内的位置信息。在一些实施例中,定位系统可以包括桥接锚。
在一些实施例中,桥接锚可以被配置为接收与第一时间同步锚集合相关的第一时间同步信息,并被配置为接收与第二时间同步锚集合相关的第二时间同步信息。在一些实施例中,桥接锚可以被配置为在第一操作模式中基于所接收的第一时间同步信息来传输第一定位信号作为第一定位网络的一部分;并被配置为在第二操作模式中基于所接收的第二时间同步信息来传输第二定位信号作为第二定位网络的一部分。
在一些实施例中,桥接锚可以被配置为基于第一定位网络和第二定位网络中的至少一个的期望定位性能在第一操作模式和第二操作模式之间进行切换。
在一些实施例中,提供了一种定位方法。在一些实施例中,定位方法可以包括使用第一定位网络以无线地传输使用第一时间同步锚集合的第一定位信号。第一定位信号可以是可用于确定的第一区域内的位置信息。
在一些实施例中,定位方法可以包括使用第二定位网络以无线地传输利用第二时间同步锚集合的第二定位信号。第二定位信号可以是可用于确定第二区域内的位置信息。
在一些实施例中,定位方法可以进一步包括使用桥接锚以接收与第时间同步锚集合相关的第一时间同步信息以及接收与第二时间同步锚集合有关的第二时间同步信息。定位方法可以进一步包括使用桥接锚来将与第一时间同步信息相关的时间同步信息传输到第二定位网络。
在一些实施例中,定位方法可以进一步包括使用桥接锚以将时间同步信息无线地传输到第一定位网络的自定位装置,以使自定位装置能够使用第一定位网络和第二定位网络来确定其位置。
在一些实施例中,提供了另一种定位方法。在一些实施例中,定位方法可以包括使用第一定位网络来传输使用第一时间同步锚集合的第一定位信号。第一定位信号可以是可用于确定的第一区域内的位置信息。
在一些实施例中,定位方法还可以包括使用第二定位网络以传输使用第二时间同步锚集合的第二定位信号。第二定位信号可以是可用于确定的第二区域内的位置信息。
在一些实施例中,定位方法可以进一步包括使用桥接锚以接收与第一时间同步锚集合有关的第一时间同步信息以及接收与第二时间同步锚集合有关的第二时间同步信息。
在一些实施例中,定位方法还可以包括使用桥接锚以在第一操作模式中基于所接收的第一时间同步信息来传输第一定位信号作为第一定位网络的一部分,并且在第二操作模式中基于所接收的第二时间同步信息来传输第二定位信号作为第二定位网络的一部分。
根据本公开的另一个方面,提供了一种定位系统,该定位系统包括被配置为传输第一能进行时间标记的定位信号的第一锚。在一些实施例中,第一能进行时间标记的定位信号包括前导,之后为有效载荷。
定位系统可以进一步包括被配置为传输第二能进行时间标记的定位信号的第二锚。在一些实施例中,第二能进行时间标记的定位信号可以包括前导,之后为有效载荷。在一些实施例中,第二能进行时间标记的定位信号的传输可以部分地与第一能进行时间标记的定位信号的传输重叠,使得第二能进行时间标记的定位信号不与第一能进行时间标记的定位信号的前导码重叠。在一些实施例中,可以在公共区域内接收第一能进行时间标记的定位信号和第二能进行时间标记的定位信号。
在一些实施例中,第二能进行时间标记的定位信号的传输可以在第一能进行时间标记的定位信号的传输结束之前开始。在一些实施例中,第二能进行时间标记的定位信号的传输可以在第一能进行时间标记的定位信号的前导的传输结束之后开始。在一些实施例中,第二能进行时间标记的定位信号的前导可以与第一能进行时间标记的定位信号的有效载荷重叠。
在一些实施例中,第一能进行时间标记的定位信号的前导可以包括第一编码前导码。在一些实施例中,第二能进行时间标记的定位信号的前导可以包括相同编码的第二编码前导。
在一些实施例中,定位系统可以包括自定位装置。在一些实施例中,自定位装置可以被配置为接收整个第一能进行时间标记的定位信号或整个第二能进行时间标记的定位信号,而不整个第一能进行时间标记的定位信号和整个第二能进行时间标记的定位信号。在一些实施例中,自定位装置可以被配置为接收第一能进行时间标记的定位信号的前导码和整个第二能进行时间标记的定位信号。
在一些实施例中,第一能进行时间标记的定位信号可以进一步包括前导和有效载荷之间的帧定界符(SFD)的开始。在一些实施例中,第二能进行时间标记的定位信号可以不与第一能进行时间标记的定位信号的SFD重叠。在一些实施例中,自定位装置可以被配置为接收第一能进行时间标记的定位信号的前导和SFD以及整个第二能进行时间标记的定位信号。
在一些实施例中,自定位装置可以进一步被配置为确定对应于第一定位信号的前导或SFD的接收的时间标记;并且基于第一能进行时间标记的定位信号和时间标记的已知传输时间来确定位置信息。
在一些实施例中,第一能进行时间标记的定位信号的有效载荷可以包括第一有效载荷和第二有效载荷。在一些实施例中,第二能进行时间标记的定位信号可以与第二有效载荷重叠,但不与第一能进行时间标记的定位信号的第一有效载荷重叠。在一些实施例中,自定位装置可以被配置为接收第一能进行时间标记的定位信号的第一有效载荷和整个第二能进行时间标记的定位信号。
在一些实施例中,第一锚可以被配置为传输使用传输中心频率和传输频率带宽的第一能进行时间标记的定位信号。在一些实施例中,第二锚可以被配置为传输使用传输中心频率和传输频率带宽的第二能进行时间标记的定位信号。
在一些实施例中,第一锚可以被配置为传输多个第一能进行时间标记的定位信号。在一些实施例中,第二锚可以被配置为传送多个第二能进行时间标记的定位信号。在一些实施例中,多个第二能进行时间标记的定位信号中的每一个的可以部分地与多个第一能进行时间标记的定位信号中的对应的一个重叠。
在一些实施例中,定位系统可以进一步包括四个或更多个锚。在一些实施例中,四个或更多个锚可以包括第一锚件和第二锚。在一些实施例中,四个或更多个锚可以被配置为根据与能进行时间标记的定位信号的传输部分重叠的传输时间表来传输能进行时间标记的定位信号,从而使时间标记定位系统比如果能进行时间标记的定位信号没有重叠的情况下在每个时间单位传输更多的时间标记信号。
在一些实施例中,第一能进行时间标记的定位信号和第二能进行时间标记的定位信号中的每一个的有效负载识别何时锚可以被配置为在未来时隙期间传输定位信号。
在一些实施例中,自定位装置可以被配置为接收对何时锚可以被配置为在未来时隙期间传输定位信号的识别,并且基于所接收的识别来选择整体接收哪个时间标记信号。
在一些实施例中,提供了一种用于定位的方法。在一些实施例中,该方法可以包括使用第一锚来传输第一能进行时间标记的定位信号。在一些实施例中,第一能进行时间标记的定位信号可以包括前导码,之后为有效载荷。
在一些实施例中,该方法可以进一步包括使用第二锚来传输第二能进行时间标记的定位信号。在一些实施例中,第二能进行时间标记的定位信号可以包括前导,之后是有效载荷。在一些实施例中,第二能进行时间标记的定位信号的传输可以部分地与第一能进行时间标记的定位信号的传输重叠,使得第二能进行时间标记的定位信号不与第一能进行时间标记的定位信号的前导重叠。在一些实施例中,可以在公共区域内接收第一能进行时间标记的定位信号和第二能进行时间标记的定位信号。
在一些实施例中,第一能进行时间标记的定位信号可以包括第一超宽带(UWB)信号,并且第二能进行时间标记的定位信号可以包括第二UWB信号。
在一些实施例中,第一能进行时间标记的定位信号可以进一步包括前导和有效载荷之间的帧定界符(SFD)的开始。在一些实施例中,第二能进行时间标记的定位信号可以不与第一能进行时间标记的定位信号的SFD重叠。在一些实施例中,该方法可以进一步包括使用一个自定位装置以接收第一能进行时间标记的定位信号的前导和SFD以及整个第二能进行时间标记的定位信号。
在一些实施例中,该方法可以进一步包括使用自定位装置以确定与第一定位信号的前导或SFD的接收对应的时间标记;以及基于第一能进行时间标记的定位信号和时间标记的已知传输时间来确定位置信息。
在一些实施例中,第一能进行时间标记的定位信号的有效载荷可以包括第一有效载荷和第二有效载荷,并且其中第二能进行时间标记的定位信号可以与第二有效载荷重叠,但不与第一能进行时间标记的定位信号的第一有效载荷重叠。在一些实施例中,该方法可以进一步包括使用自定位装置以接收第一能进行时间标记的定位信号的第一有效载荷和整个第二能进行时间标记的定位信号。
根据本公开的另一个方面,提供了一种用于操作定位系统的方法。在一些实施例中,定位系统可以包括多个定位锚。在一些实施例中,该方法可以包括将多个定位锚的第一子集分配给第一子网。该方法还可以包括操作定位锚的第一子集的第一子网以根据第一传输时间表来传输第一定位信号。在一些实施例中,第一定位信号可以由自定位装置使用以确定第一地理区域内的位置信息;
该方法还可以包括调节多个定位锚向第一子网的分配,使得多个定位锚的第二子集可以被分配给第一子网。在一些实施例中,第一子集的至少一个定位锚不包括在第二子集中,并且第二子集的至少一个定位锚不包括在第一子集中。
该方法还可以包括操作定位锚的第二子集的第一子网以根据第二传输时间表来传输第二定位信号。在一些实施例中,第二定位信号可以由自定位装置可以使用以确定第二地理区域内的位置信息。在一些实施例中,第一地理区域和第三地理区域不重叠。
在一些实施例中,第一定位信号可以包括第一超宽带(UWB)信号,并且第二定位信号可以包括第二UWB信号。
在一些实施例中,该方法还可以包括将多个定位锚的第三子集分配到第二子网,以及操作定位锚的第三子集的第二子网以根据第三传输时间表来传输第三定位信号。在一些实施例中,第三定位信号可以由自定位装置使用以确定第三地理区域内的位置信息。
在一些实施例中,该方法还可以包括同时操作第一子网和第二子网。在一些实施例中,多个定位锚的第三子集可以不包括多个定位锚的第一子集的任何定位锚。
在一些实施例中,该方法还可以包括同时操作多个定位锚的第一子集的第一子网和第二子网。在一些实施例中,多个定位锚的第三子集可以包括多个定位锚的第一子集的至少一个定位锚。在一些实施例中,第一定位信号和第三定位信号的传输可以使用至少一个不同的传输特性。在一些实施例中,至少一个不同的传输特性可以包括传输中心频率、传输频率带宽、前导和前导调制方案中的至少一个。
在一些实施例中,该方法还可以包括同时操作多个定位锚的第一子集的第一子网和第二子网。在一些实施例中,可以使用较低的发射功率操作第一子网的锚的至少一个以减少第一地理区域的大小,使得第一地理区域和第二地理区域不重叠。
在一些实施例中,第一子网和第二子网可以使用相同的传输特性来传输的第一定位信号和第二定位信号。在一些实施例中,第一定位信号和第二定位信号可能在时间上重叠。
在一些实施例中,该方法还可以包括调节将多个定位锚到第二子网的分配,使得多个定位锚的第四子集可以被分配给第二子网。在一些实施例中,第三子集的至少一个定位锚不包括在第四子集中并且第四子集的至少一个定位锚不包括在第三子集中。
在一些实施例中,该方法还可以包括额外调节多个定位锚到第一子网的分配以动态改变由第一子网服务的地理区域。在一些实施例中,可以基于由第一子网服务的至少一个自定位装置的已知运动来调节多个定位锚到第一子网的分配。在一些实施例中,运动可以是飞行模式。
在一些实施例中,该方法还可以包括接收至少一个自定位装置的已知位置。在一些实施例中,可以从自定位装置的存储器接收该位置。在一些实施例中,从存储器中检索的所接收的已知位置是自定位装置的预期位置。在一些实施例中,基于自从轨迹执行的开始之后所经过的时间来预测预期位置。在一些实施例中,定位系统中的第一子网的使用可以在第一地理区域内提高定位性能。
在一些实施例中,提供了一种定位系统。定位系统可以包括多个定位锚的。在一些实施例中,定位系统可以被配置为将多个定位锚的第一子集分配给第一子网。定位系统可以被配置为操作定位锚的第一子集的第一子网以根据第一传输时间表来传输第一定位信号。在一些实施例中,第一定位信号可以由自定位装置使用以确定第一地理区域内的位置信息;
定位系统还可以被配置为调节多个定位锚到第一子网的分配,使得多个定位锚的第二子集可以被分配给第一子网。在一些实施例中,第一子集的至少一个定位锚不包括在第二子集中并且第二子集的至少一个定位锚不包括在第一子集中。
定位系统还可以被配置为操作定位锚的第二子集的第一子网以根据第二传输时间表来传输第二定位信号。在一些实施例中,第二定位信号可以由自定位装置使用以确定第二地理区域内的位置信息。
在一些实施例中,第一定位信号可以包含第一超宽带(UWB)信号,并且第二定位信号可以包含第二UWB信号。
在一些实施例中,定位系统可以进一步被配置为将多个定位锚的第三子集分配到第二子网;以及操作定位锚的第三子集的第二子网以根据第三传输时间表来传输第三定位信号。在一些实施例中,第三定位信号可以由自定位装置使用以确定第三地理区域内的位置信息。
在一些实施例中,提供了另一种定位系统。在一些实施例中,定位系统可以包括多个定位锚。在一些实施例中,多个定位锚可以至少包括第一定位锚、第二定位锚和第三定位锚。
在一些实施例中,定位锚的第一子集可以被配置为根据第一传输时间表在第一时间段期间传输第一定位信号。在一些实施例中,第一定位信号可以由自定位装置使用以确定第一地理区域内的位置信息。在一些实施例中,锚定位的第一子集可以包括第一定位锚和第二定位锚。在一些实施例中,第三定位锚可以被配置为在第一时间段期间不传输。
在一些实施例中,定位锚的第二子集可以被配置为根据第二传输时间表在第二随后时间段期间传输第二定位信号。在一些实施例中,第二定位信号可以由自定位装置使用以确定第二地理区域内的位置信息。在一些实施例中,定位锚的第二子集可以包括第一定位锚和第三定位锚。在一些实施例中,第二定位锚可以被配置为在第二时间段期间不传输。
根据本公开的另一个方面,提供了一种用于操作定位系统的方法。在一些实施例中,定位系统可以包括多个定位锚。在一些实施例中,该方法可以包括使用多个定位锚以根据第一传输时间表来传输第一能进行时间标记的定位信号。在一些实施例中,第一能进行时间标记的定位信号可以包括第一传输特性集合,并且其中第一能进行时间标记的定位信号可以由自定位装置使用以确定第一地理区域内的位置信息。
在一些实施例中,该方法可以进一步包括使用多个定位锚以根据第二传输时间表来传输第二能进行时间标记的定位信号。在一些实施例中,第二能进行时间标记的定位信号可以包括第二传输特性集合。在一些实施例中,第二能进行时间标记的定位信号可以由自定位装置使用以确定第二地理区域内的位置信息。
在一些实施例中,第一地理区域和第二地理区域可以至少部分地重叠。在一些实施例中,可以传输第一能进行时间标记的定位信号和第二能进行时间标记的定位信号中的至少一些,使得它们在时间上重叠。在一些实施例中,至少一种类型的传输特性可以不同于第一传输特性集合和第二传输特性集合中的传输特性以减少重叠的第一能进行时间标记的定位信号和第二能进行时间标记的定位信号的至少一些之间的干扰。
在一些实施例中,第一能进行时间标记的定位信号可以包括第一超宽带(UWB)信号,并且第二能进行时间标记的定位信号可以包括第二UWB信号。
在一些实施例中,至少一种类型的传输特性可以包括传输中心频率、传输频率带宽、前导码和前导调制方案中的至少一个。
在一些实施例中,多个定位锚中的一个可以包括第一天线和第二天线,并且多个定位锚中的一个可以被配置为使用第一天线来传输第一能进行时间标记的定位信号中的一个以及使用第二天线来传输第二能进行时间标记的定位信号中的一个。
在一些实施例中,一个定位锚可以被配置为传输一个第一能进行时间标记的定位信号和一个第二能进行时间标记的定位信号,使得它们在时间上重叠。
在一些实施例中,自定位装置可以包括至少一个接收设置。在一些实施例中,该方法可以进一步包括对自定位装置的至少一个接收设置进行配置来选择接收第一能进行时间标记的定位信号和第二能进行时间标记的定位信号中的哪一个。
在一些实施例中,该方法可以进一步包括使用自定位装置以基于信息来确定接收第一能进行时间标记的定位信号中的一个还是第二能进行时间标记的定位信号中的一个。在一些实施例中,该信息可以包括被接收作为先前所接收的能进行时间标记的定位信号的一部分的配置信息。在一些实施例中,信息可以包括存储在自定位装置的存储器上的信息。在一些实施例中,信息可以包括在自定位装置的内部度量和自定位装置的内部状态中的一个。
在一些实施例中,该方法可以进一步包括使用多个定位锚中的一个以接收由至少一个其它多个定位锚传输的第一能进行时间标记的定位信号和第二能进行时间标记的定位信号中的至少一个。在一些实施例中,该方法可以进一步包括使用一个定位锚以基于信息来确定接收第一能进行时间标记的定位信号中的一个还是第二能进行时间标记的定位信号中的一个。在一些实施例中,信息可以包括被接收作为先前所接收的能进行时间标记的定位信号的一部分的配置信息。在一些实施例中,信息可以包括存储在一个定位锚的存储器上的信息。
在一些实施例中,第一传输特性集合和第二传输特性集合可以包括相同的中心频率和传输频率带宽。
在一些实施例中,提供了一种定位系统。在一些实施例中,定位系统可以包括多个定位锚。在一些实施例中,多个定位锚可以被配置为根据第一传输时间表来传输第一能进行时间标记的定位信号。在一些实施例中,第一能进行时间标记的定位信号可以包括第一传输特性集合。在一些实施例中,第一能进行时间标记的定位信号可以由自定位装置使用以确定第一地理区域内的位置信息。
在一些实施例中,多个定位锚可以被配置为根据第二传输时间表来传输第二能进行时间标记的定位信号。在一些实施例中,第二能进行时间标记的定位信号可以包括第二传输特性集合。在一些实施例中,第二能进行时间标记的定位信号可以由自定位装置使用以确定第二地理区域内的位置信息。
在一些实施例中,第一地理区域和第二地理区域可以至少部分地重叠。在一些实施例中,可以传输第一能进行时间标记的定位信号和第二能进行时间标记的定位信号中的至少一些,使得它们在时间上重叠。在一些实施例中,至少一种类型的传输特性可以不同于第一传输特性集合和第二传输特性集合中的传输特性以减少重叠的第一能进行时间标记的定位信号和第二能进行时间标记的定位信号的至少一些之间的干扰。
在一些实施例中,第一能进行时间标记的定位信号可以包括第一超宽带(UWB)信号,并且第二能进行时间标记的定位信号可以包括第二UWB信号。
在一些实施例中,多个定位锚可以进一步包括第一三个射频锚集合和第二三个射频锚集合。射频锚中的每一个可以被配置为发射射频信号。在一些实施例中,射频锚中的每一个可以包括锚天线、可操作以接收锚时钟信号的锚时钟接口以及模拟传输电子器件。
在一些实施例中,射频锚中的每一个可以包括可操作地耦接到锚时钟接口和模拟传输电子器件以及可操作以在调度传输时间参考锚时钟信号来发射射频信号的数字传输电子期间。
在一些实施例中,系统可以进一步包括自定位装置。在一些实施例中,自定位装置可以被配置为接收射射频信号。在一些实施例中,自定位装置可以包括装置天线;被配置为接收装置时钟信号的装置时钟接口;和装置模拟接收电子器件。
在一些实施例中,系统可以进一步包括可操作地耦接到装置时钟接口和装置模拟接收电子器件以及被配置为参考装置时钟信号对所接收的射频信号进行时间标记的装置数字接收电子器件。在一些实施例中,第一射频锚集合和第二射频锚集合可以在具有重叠区域的地理上相邻的小区中操作。在一些实施例中,自定位装置可以被配置为当定位在重叠区域中时从第一射频锚集合或从第二射频锚集合接收射频信号。在一些实施例中,多个定位锚可以被配置为使用在时间中的信号间隔、在空间中的信号间隔或在频率中的信号间隔中的至少一个以减轻第一射频锚集合和第二射频锚集合之间的信号干扰。
在一些实施例中,至少一种类型的传输特性可以包括传输中心频率、传输频率带宽、前导码和前导调制方案中的至少一个。
在一些实施例中,多个定位锚中的一个可以进一步被配置为接收由至少一个其它多个定位锚传输的第一能进行时间标记的定位信号和第二能进行时间标记的定位信号中的至少一个。
根据本公开的另一个方面,提供了一种用于确定车辆的位置的自定位装置。在一些实施例中,自定位装置可以包括第一子系统和第二子系统。
在一些实施例中,第一子系统可以包括可操作以接收第一射频信号的第一天线,以及可以被配置为放大第一射频信号的第一模拟接收电子器件。第一子系统还可以包括可以被配置为参考时钟信号对放大的第一射频信号进行时间标记的第一数字接收电子器件;以及可以被配置为来基于放大的第一射频信号的时间标记来计算在坐标系中自定位装置的位置的第一估计的第一定位单元。
在一些实施例中,第二子系统可以包括可操作以接收第二射频信号的第二天线,以及可以被配置为放大第二射频信号的第二模拟接收电子器件。第二子系统还可以包括可以被配置为参考时钟信号对放大的第二射频信号进行时间标记的第二数字接收电子器件;以及可以被配置为基于放大的第二射频信号的时间标记来计算在坐标系中自定位装置的位置的第二估计的第二定位单元。
在一些实施例中,第一子系统和第二子系统中的每一个可以被配置为选择性地用于在不依赖于其它子系统的情况下控制车辆。
在一些实施例中,第一子系统和第二子系统可以是完全冗余的。例如,在一些实施例中,第一子系统可以进一步包括第一时钟。在一些实施例中,第一数字接收电子器件可以被配置为参考由第一时钟生成的第一时钟信号对放大的第一射频信号进行时间标记。在一些实施例中,第二子系统可以进一步包括第二时钟。在一些实施例中,第二数字接收电子器件可以被配置为参考由第二时钟生成的第二时钟信号对放大的第二射频信号进行时间标记。
在一些实施例中,第一子系统可以进一步包括被配置为计算针对第一时钟的时钟校正的第一同步单元。在一些实施例中,第二子系统可以进一步被配置为计算针对第二时钟的时钟校正的第二同步单元。
在一些实施例中,第一子系统可以进一步包括用于感测自定位装置相对于外部参考系的位置、朝向或速度中的至少一个的第一传感器。在一些实施例中,第一定位单元可以被配置为进一步基于由第一传感器生成的第一信号来计算自定位装置的位置的第一估计。在一些实施例中,第二子系统可以进一步包括用于感测自定位装置相对于外部参考系的位置、朝向或速度中的至少一个的第二传感器。在一些实施例中,第二定位单元可以被配置为进一步基于由第二传感器生成的第二信号来计算自定位装置的位置的第二估计。在一些实施例中,第一传感器可以是第一全局属性传感器;并且第二传感器可以是第二全局属性传感器。
在一些实施例中,第一子系统可以进一步包括第一补偿单元。在一些实施例中,第一定位单元可以被配置为基于由第一补偿单元提供的数据来计算自定位装置的位置的第一估计。在一些实施例中,第二子系统可以进一步包括第二补偿单元。在一些实施例中,第二定位单元可以被配置为基于由第二补偿单元提供的数据来计算自定位装置的位置的第二估计。
在一些实施例中,第一子系统和第二子系统可以是部分冗余的。例如,在一些实施例中,自定位装置可以包括时钟。第一数字接收电子器件可以被配置为参考由时钟生成的第一时钟信号对放大的第一射频信号进行时间标记。第二数字接收电子器件还可以被配置为参考由时钟生成的第一时钟信号对放大的第二射频信号进行时间标记。在一些实施例中,自定位装置可以包括同步单元。在一些实施例中,同步单元可以被配置为计算针对时钟的时钟校正。
在一些实施例中,自定位装置可以进一步包括用于感测自定位装置相对于外部参考系的位置、朝向或速度中的至少一个的传感器。在一些实施例中,第一定位单元可以被配置为进一步基于由传感器生成的第一信号来计算自定位装置的位置的第一估计。在一些实施例中,第二定位单元可以被配置为基于由传感器生成的第一信号来计算自定位装置的位置的第二估计。在一些实施例中,传感器是全局属性传感器。
在一些实施例中,自定位装置可以进一步包括补偿单元。在一些实施例中,第一定位单元可以被配置为进一步基于由补偿单元提供的数据来计算自定位装置的位置的第一估计。在一些实施例中,第二定位单元可以被配置为进一步基于由补偿单元提供的数据来计算自定位装置的位置的第二估计。
在一些实施例中,提供了一种用在定位网络中的自定位装置。在一些实施例中,定位网络可以包括被配置为传输射频信号的多个锚。在一些实施例中,自定位装置可以包括可操作以从定位网络接收射频信号的天线。在一些实施例中,自定位装置可以包括可以被配置为放大由天线接收的射频信号的模拟接收电子器件。
在一些实施例中,自定位装置可以包括可以被配置为参考第一时钟信号对放大的射频信号进行时间标记以生成多个时间标记的数字接收电子器件。在一些实施例中,自定位装置可以包括定位单元。在一些实施例中,定位单元可以被配置为基于时间标记来计算在坐标系中自定位装置的位置的估计,以及确定从至少两个未来射频信号接收所选择的未来射频信号。
在一些实施例中,定位单元可以被配置为对天线、模拟接收电子器件和数字接收电子器件中的至少一个进行配置以接收所选择的射频信号;以及基于所接收的所选择的射频信号来计算在坐标系中自定位装置的位置的更新估计。
在一些实施例中,如权利要求170所述的自定位装置可以进一步包括可以被配置为将自定位装置的位置传输到到多个锚中的至少一个的数字传输电子器件和模拟传输电子器件。
在一些实施例中,所接收的射频信号可以均包括有效载荷。在一些实施例中,数字接收电子器件可以被配置为提取有效载荷。在一些实施例中,有效载荷可以识别可以被配置为在至少一个未来时隙期间传输定位信号的多个锚中的至少一个锚。
在一些实施例中,定位单元可以被配置为基于可以被配置为传输所选择的未来射频信号的锚的位置以及与所计算的自定位装置的位置的估计相关联的方差来确定接收所选择的未来射频信号。
在一些实施例中,至少两个未来射频信号可以在时间上部分重叠。在一些实施例中,定位单元可以被配置为确定接收整个所选择的未来射频信号以及仅接收至少两个未来射频信号中的另一个的一部分。在一些实施例中,定位单元被配置为接收以下中的一个:(i)至少两个未来射频信号中的第一个的一部分和至少两个未来射频信号中的整个第二个,或(ii)至少两个未来射频信号中的整个第一个但没有至少两个未来射频信号中的第二个。在一些实施例中,至少两个未来射频信号可以使用不同的前导码。在一些实施例中,可以由不同的定位网络来传输至少两个未来射频信号。
在一些实施例中,定位单元可以进一步被配置为基于被配置为传输由天线接收的无线电频率的锚的已知位置来计算在坐标系中自定位装置的位置的估计。
在一些实施例中,提供了一种用于使用自定位装置来确定车辆的位置的方法。在一些实施例中,自定位装置可以包括第一子系统和第二子系统。
在一些实施例中,该方法可以包括使用第一子系统的第一天线来接收第一射频信号。该方法可以进一步包括使用第一子系统的第一模拟接收电子器件来放大第一射频信号。
该方法可以进一步包括使用第一子系统的第一数字接收电子器件参考时钟信号对放大的第一射频信号进行时间标记。该方法可以进一步包括使用第一子系统的第一定位单元来计算在坐标系中自定位装置的位置的第一估计。
在一些实施例中,该方法可以包括使用第二子系统的第二天线来接收第二射频信号。该方法可以进一步包括使用第二子系统的第二模拟接收电子器件来放大第二射频信号。
该方法可以进一步包括使用第二子系统的第二数字接收电子器件参考时钟信号对放大的第二射频信号进行时间标记。该方法可以进一步包括使用第二子系统的第二定位单元来计算在坐标系中自定位装置的位置的第二估计。
该方法可以进一步包括使用第一子系统和第二子系统中的一个在不依赖于另一个子系统的情况下控制车辆。
在一些实施例中,提供了一种定位网络中的自定位装置的定位方法。在一些实施例中,定位网络可以包括被配置为传输射频信号的多个锚。在一些实施例中,该方法可以包括使用天线以从定位网络接收射频信号。该方法还可以包括使用模拟接收电子器件来放大由天线接收的射频信号。该方法还可以包括使用数字接收电子器件参考第一时钟信号对放大的射频信号进行时间标记以生成多个时间标记。
该方法还可以包括使用定位单元以基于时间标记来计算在坐标系统中自定位装置的位置的估计。该方法还可以包括使用定位单元来确定从至少两个未来射频信号接收所选择的未来射频信号。该方法还可以包括使用定位单元来对模拟接收电子器件进行配置,以及使用数字接收电子器件来接收所选择的射频信号。该方法可以进一步包括使用定位单元以基于所接收的所选择的射频信号来计算在坐标系中自定位装置的位置的更新估计。
虽然已经参照本公开的示例性实施例具体示出和描述了本公开的某些方面,但是本领域普通技术人员将理解,在不脱离如以下权利要求所限定的本公开的精神和范围的情况下,可以在其中进行形式和细节上的各种改变。例如,应用于时间标记信号的本公开的具体方面可以同等适用于UWB信号,反之亦然。作为另一个示例,应用于时间标记信号的本公开的具体方面可以同等适用于非时间标记的定位信号。
还将理解的是,本公开的收发器、装置和组件可以包括硬件组件或者硬件组件和软件组件的组合。硬件组件可以包括被构造或布置成如本文所述进行操作的任何合适的有形组件。一些硬件组件(例如,调度器、调度单元控制器、调度单元、同步单元、调度单元、定位单元、补偿单元、控制单元、数字接收电子器件、数字传输电子器件等)可以包括处理电路(例如,处理器或一组处理器)以执行本文所述的操作。软件组件可以包括记录在有形的计算机可读介质上的代码。处理电路可以由软件组件进行配置以执行所描述的操作。
因此期望在所有方面将本实施例视为说明性的而非限制性的。
附图标记
100 定位系统
110 调度器
120 调度单元控制器
130、130a、130b 收发器
140、140a、140b 自定位装置
202 能进行时间标记的定位信号
210 时钟
212、212a、212b 天线
214、214a、214b 收发器模拟传输电子器件
216、216a、216b 收发器数字传输电子器件
218 调度单元
220、220a、220b 收发器模拟接收电子器件
222、222a、222b 收发器数字接收电子器件
224 收发器同步单元
226 传感器
228 全局属性传感器
230 收发器存储器
302 收发信号
400 结构元件
402a、402b 时钟接口
502、502a、502b、502c 自定位装置天线
504、504a、502b 自定位装置模拟接收电子器件
506、506a、506b 自定位装置数字接收电子器件
508 自定位装置时钟
510 自定位装置同步单元
512、512a、512b 自定位装置定位单元
514、514a、514b 自定位装置车载传感器
516 补偿单元
518 自定位装置存储器
520 全局属性传感器
600 在自定位装置A的时钟中测量的时间的进展
602 在自定位装置A的天线处的第一消息的到达时间
604 自定位装置A的数字接收电子器件的第一消息的时间标记与自定位装置A的天线处的第一消息的到达时间之间的差异
606 通过自定位装置A的数字接收电子器件的第一消息的时间
标记
612 在自定位装置A的天线处的第二消息的到达时间
614 通过自定位装置A的数字接收电子器件的第二消息的时间标记与在自定位装置A的天线处的第二消息的到达时间之间的差异
616 通过自定位装置A的数字接收电子器件的第二消息的时间
标记
700 结构元件
702 通信路径
800 射频开关
900 接收时间标记
902 时钟校正
904 效果补偿
906 更正的到达时间
910 远程全局属性
912 比较
914 全局属性模型
920 扩展Kalman滤波器处理更新
922 之前
924 扩展Kalman滤波器测量更新
926 之后
930 位置
940 控制单元
1000 移动机器人
1002 中央处理电子器件
1004 致动器
1006 加速度计
1008 陀螺仪
1010 螺旋桨
1102 水平控制器
1104 在x方向上指定车辆加速度的命令
1106 在y方向上指定车辆加速度的命令
1110 垂直控制器
1112 在z方向上指定车辆加速度的命令
1120 降低高度控制器
1122 指定车辆俯仰率的命令
1124 指定车辆滚动率的命令
1130 偏航控制器
1132 指定车辆偏航率的命令
1142体速控制器
1144 致动器命令
1146 移动
1200 收发信号的径向覆盖
1210 两个范围内收发器之间的无线通信
1220 在一个小区内通过多个收发器的重叠空间覆盖
1240 通过多个收发器小区的重叠空间覆盖
1410 在一个小区内通过多个收发器的重叠空间覆盖
1420 通过多个收发器小区的重叠空间覆盖
1610 具有性能等值线的输入参数图
1620 具有二进制性能的输入参数映射
1710 动态定位性能图
1810 面板
1820a、1820b 位置地图
1830a、1830b 覆盖要求地图
1840a、1840b 时间表
1910a、1910b、1910c、1910d 位置地图
2010a、2010b、2010c、2010d 位置地图
2110 定位信号前导
2112 定位信号起始帧定界符(SFD)
2114 定位信号包头
2116 定位信号有效载荷
2122 定位信号传输起始时间
2124 定位信号传输结束时间
2200 传输时间表
2202a、2202b、2202c、2202d 定位信号
2310 接收器活动
2402a、2402b、2402c 定位信号
2500 定位系统
2510 性能图
2610 性能图
2700 定位系统
2710 性能图
2810 性能图
2900 传输时间表
3000 传输时间表
3100 流程图
3102 流程图步骤
3104 流程图步骤
3106 流程图决定
3108 流程图步骤
3110 流程图决定
3112 流程图步骤
3114 流程图决定
3116 流程图步骤
3118 流程图步骤
3210 流程图步骤
3222 流程图步骤
3124 流程图步骤
3200 室内和室外环境
3210 建筑物
3220 访问地区
3230 飞行器
3240 着陆区
3250 第二地区
3310 定位网络
3320 定位网络
3330 桥接锚

Claims (20)

1.一种定位系统,包括:
第一锚,配置为传输第一能进行时间标记的定位信号,其中,第一能进行时间标记的定位信号包括在有效载荷之前的前导码;和
第二锚,配置为传输第二能进行时间标记的定位信号,其中,第二能进行时间标记的定位信号包括在有效载荷之前的前导码,其中,所述定位系统被配置为使第二能进行时间标记的定位信号的传输与第一能进行时间标记的定位信号的传输部分地重叠,使得第二能进行时间标记的定位信号与第一能进行时间标记的定位信号的前导码不重叠,并且其中,第一能进行时间标记的定位信号和第二能进行时间标记的定位信号能够在公共区域内被接收到。
2.根据权利要求1所述的定位系统,其中,第一能进行时间标记的定位信号的前导码包括第一编码的前导码,并且其中第二能进行时间标记的定位信号的前导码包括第二相同地编码的前导码。
3.根据权利要求1或2所述的定位系统,还包括被配置为接收整个第一能进行时间标记的定位信号或整个第二能进行时间标记的定位信号而不是整个第一能进行时间标记的定位信号和整个第二能进行时间标记的定位信号的自定位装置。
4.根据权利要求1或2所述的定位系统,其中,第一能进行时间标记的定位信号还包括在前导码和有效载荷之间的帧首定界符(SFD),其中第二能进行时间标记的定位信号与第一能进行时间标记的定位信号的SFD不重叠,并且其中能进行时间标记的所述定位系统还包括配置为接收第一能进行时间标记的定位信号的前导码和SFD和整个第二能进行时间标记的定位信号的自定位装置,其中所述自定位装置进一步被配置为:
确定与第一定位信号的前导码或SFD的接收对应的时间标记;和
基于第一能进行时间标记的定位信号的已知传输时间和时间标记确定位置信息。
5.根据权利要求1或2所述的定位系统,其中,第一能进行时间标记的定位信号的有效载荷包括第一有效载荷和第二有效载荷,并且其中第二能进行时间标记的定位信号与第一能进行时间标记的定位信号的第二有效载荷重叠,而与第一能进行时间标记的定位信号的第一有效载荷不重叠。
6.根据权利要求1或2所述的定位系统,其中,第一锚被配置为使用传输中心频率和传输频率带宽传输第一能进行时间标记的定位信号,其中,第二锚被配置为使用所述传输中心频率和所述传输频率带宽传输第二能进行时间标记的定位信号。
7.根据权利要求1或2所述的定位系统,还包括四个或更多个锚,其中,所述四个或更多个锚包括第一锚和第二锚,其中,所述四个或更多个锚被配置为根据传输时间表传输各个能进行时间标记的定位信号,所述传输时间表使所述各个能进行时间标记的定位信号的传输部分地重叠,从而使能进行时间标记的所述定位系统比所述各个能进行时间标记的定位信号不重叠的情况在每个时间单位传输更多能进行时间标记的信号。
8.根据权利要求1或2所述的定位系统,其中,第一能进行时间标记的定位信号和第二能进行时间标记的定位信号中的每一个的有效载荷识别锚被配置为在未来的时隙中何时传输定位信号,并且其中所述定位系统还包括被配置为进行以下操作的自定位装置:
接收锚被配置为在未来的时隙中何时传输定位信号的标识;和
基于所接收到的标识选择接收哪个能进行时间标记的信号的全部。
9.根据权利要求1或2所述的定位系统,其中第一能进行时间标记的定位信号包括第一超宽带(UWB)信号,并且第二能进行时间标记的定位信号包括第二UWB信号。
10.一种用于定位的方法,该方法包括:
使用第一锚,传输第一能进行时间标记的定位信号,其中,第一能进行时间标记的定位信号包括在有效载荷之前的前导码;和
使用第二锚,传输第二能进行时间标记的定位信号,其中,第二能进行时间标记的定位信号包括在有效载荷之前的前导码,其中,第二能进行时间标记的定位信号的传输被配置为与第一能进行时间标记的定位信号的传输部分地重叠,使得所述第二能进行时间标记的定位信号与第一能进行时间标记的定位信号的前导码不重叠,并且其中,第一能进行时间标记的定位信号和第二能进行时间标记的定位信号能够在公共区域内被接收到。
11.一种定位系统,包括:
多个定位锚,所述多个定位锚被配置为无线地传输定位信号,所述定位信号能够被区域内的自定位装置用来确定位置信息,其中:
所述多个定位锚中的第一定位锚被配置为无线地传输第一定位信号;
所述多个定位锚中的第二定位锚被配置为无线地传输第二定位信号;
所述多个定位锚中的第三定位锚被构造为无线地传输第三定位信号;和
所述多个定位锚中的每一个通信地耦接到至少一个调度单元,其中,所述至少一个调度单元被配置为:
通过以下方式调度定位信号的传输,以控制所述区域内的定位性能:
调度第一定位锚以第一传输速率传输第一定位信号;
调度第二定位锚以第二传输速率传输第二定位信号;和
调度第三定位锚以第三传输速率传输第三定位信号,其中,第一传输速率大于第二传输速率以在所述区域的一部分内提供更高的定位性能。
12.根据权利要求11所述的定位系统,其中所述至少一个调度单元进一步被配置为:调节所述定位信号的传输速率以在操作期间改变所述区域内的定位性能。
13.权利要求11或12所述的定位系统,其中,所述至少一个调度单元被配置为:基于所述自定位装置的已知位置调节定位信号的传输速率。
14.一种用于在包括多个定位锚的定位系统中传输定位信号的方法,该方法包括:
在传输时间表的两个或更多个时隙中,利用所述多个定位锚中的第一定位锚无线地传输第一定位信号;
在传输时间表的一个或多个时隙中,利用所述多个定位锚中的第二定位锚无线地传输第二定位信号;和
在传输时间表的一个或多个时隙中,利用所述多个定位锚中的第三定位锚无线地传输第三定位信号:
第一定位信号、第二定位信号和第三定位信号能够被区域内的自定位装置用来确定位置信息;和
第一定位锚比第二定位锚在所述传输时间表中被分配更多的时隙,以在所述区域的一部分内提供更高的定位性能。
15.根据权利要求14所述的方法,进一步包括:
在操作期间使用一个或多个调度单元调节第一定位锚、第二定位锚和第三定位锚在所述传输时间表中被分配的时隙的数量。
16.如权利要求14所述的方法,其中,时隙的数量是基于所述自定位装置的已知位置调节的。
17.一种定位系统,包括:
多个定位锚,所述多个定位锚被配置为无线地传输定位信号,所述定位信号能够被区域内的自定位装置用来确定位置信息;和
至少一个调度单元,通信地耦接到所述多个定位锚,其中所述至少一个调度单元被配置为:
根据第一传输时间表调度定位信号的传输,其中,第一传输时间表定义所述多个定位锚中的每一个传输定位信号的第一时间次序;
确定何时从第一传输时间表改变为第二传输时间表,其中,第二传输时间表定义所述多个定位锚中的每一个传输定位信号的第二时间次序,并且其中第二时间次序不同于第一时间次序;和
响应于确定从第一传输时间表改变为第二传输时间表,根据第二传输时间表调度定位信号的传输,从而改变所述区域内的定位性能。
18.根据权利要求17所述的定位系统,其中所述至少一个调度单元被配置为:基于所述自定位装置的已知位置,确定何时从第一传输时间表改变为第二传输时间表。
19.权利要求17所述的定位系统,其中所述至少一个调度单元被配置为接收所述自定位装置的已知位置。
20.根据权利要求17所述的定位系统,其中所述至少一个调度单元被配置为:基于所述自定位装置的已知运动,确定何时从第一传输时间表改变为第二传输时间表。
CN202210322236.1A 2015-05-29 2016-05-30 用于调度定位信号传输和操作自定位装置的方法和系统 Pending CN115314836A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562168704P 2015-05-29 2015-05-29
US62/168,704 2015-05-29
US15/063,104 US9885773B2 (en) 2015-03-07 2016-03-07 Distributed localization systems and methods and self-localizing apparatus
US15/063,104 2016-03-07
PCT/IB2016/053173 WO2016193897A1 (en) 2015-05-29 2016-05-30 Methods and systems for scheduling the transmission of localization signals and operating self-localizing apparatus
CN201680044509.3A CN107923963B (zh) 2015-05-29 2016-05-30 用于调度定位信号传输和操作自定位装置的方法和系统

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680044509.3A Division CN107923963B (zh) 2015-05-29 2016-05-30 用于调度定位信号传输和操作自定位装置的方法和系统

Publications (1)

Publication Number Publication Date
CN115314836A true CN115314836A (zh) 2022-11-08

Family

ID=57442381

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680044509.3A Active CN107923963B (zh) 2015-05-29 2016-05-30 用于调度定位信号传输和操作自定位装置的方法和系统
CN202210322236.1A Pending CN115314836A (zh) 2015-05-29 2016-05-30 用于调度定位信号传输和操作自定位装置的方法和系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680044509.3A Active CN107923963B (zh) 2015-05-29 2016-05-30 用于调度定位信号传输和操作自定位装置的方法和系统

Country Status (6)

Country Link
EP (2) EP3304120B8 (zh)
JP (1) JP6872798B2 (zh)
KR (1) KR102626688B1 (zh)
CN (2) CN107923963B (zh)
HK (1) HK1252547A1 (zh)
WO (1) WO2016193897A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10408943B2 (en) * 2017-02-09 2019-09-10 Samsung Electronics Co., Ltd. Method and apparatus for improving position-velocity solution in GNSS receivers
US10397896B2 (en) * 2017-04-19 2019-08-27 International Business Machines Corporation IP address geo-position detection based on landmark sequencing
EP3518155B1 (en) * 2018-01-30 2021-05-26 Claitec Solutions, SL Anti-collision system and method between objects
CN108344970B (zh) * 2018-02-01 2022-03-15 感知智能科技新加坡有限公司 一种使用移动机器人的无线定位自动校准方法
EP3805780B1 (en) 2018-04-11 2023-11-01 Teknologian Tutkimuskeskus VTT Oy Wireless positioning
WO2019200564A1 (en) * 2018-04-18 2019-10-24 Baidu. Com Times Technology (Beijing) Co., Ltd. Method for evaluating localization system of autonomous driving vehicles
CN108958239B (zh) * 2018-06-05 2022-02-01 广州市远能物流自动化设备科技有限公司 一种控制agv小车与对接平台对接的方法及agv小车
CN109218964A (zh) * 2018-09-17 2019-01-15 昂科信息技术(上海)股份有限公司 相邻信号源防干扰方法、系统及信号定位系统、介质
CN109257702B (zh) * 2018-12-10 2021-01-29 中国人民解放军陆军工程大学 Uwb发射功率控制方法和系统
CN115754926A (zh) * 2019-08-19 2023-03-07 华为技术有限公司 信号传输方法及装置、信号处理方法及装置以及雷达系统
US20210072027A1 (en) * 2019-09-09 2021-03-11 Caci, Inc. - Federal Systems and methods for providing localization and navigation services
KR102392864B1 (ko) * 2019-12-24 2022-05-03 경북대학교 산학협력단 실내 측위 장치 및 방법
CN111445593B (zh) * 2020-03-27 2022-06-14 中国工商银行股份有限公司 签到方法和电子设备
EP4016247A1 (en) 2020-12-17 2022-06-22 Nxp B.V. An infrastructure controller for an infrastructure and a key controller for a key
CN113395661B (zh) * 2021-06-30 2023-02-10 吉林农业大学 一种基于深度神经网络的室内定位系统
CN113556795B (zh) * 2021-07-20 2023-03-24 哈尔滨海能达科技有限公司 首次转发设备的确定方法、相关装置及计算机存储介质
CN113655505B (zh) * 2021-08-27 2023-09-29 西安广和通无线通信有限公司 定位调整方法、装置、电子设备和存储介质
WO2023176266A1 (ja) * 2022-03-18 2023-09-21 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、情報処理方法、プログラム
US20240155307A1 (en) * 2022-11-03 2024-05-09 X Development Llc Coordination of beacon signal scanning in an object tracking system
CN115811370B (zh) * 2022-12-09 2023-09-22 荣耀终端有限公司 定位性能的测试方法、相关装置及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359733A (en) * 1980-09-23 1982-11-16 Neill Gerard K O Satellite-based vehicle position determining system
GB0229693D0 (en) * 2002-12-19 2003-01-29 Koninkl Philips Electronics Nv Location determination method and system
CN1567869B (zh) * 2003-06-30 2010-05-05 叶启祥 可避免干扰损坏并增加空间再用率的干扰控制方法
US8149752B2 (en) * 2007-07-06 2012-04-03 Alcatel Lucent Media-access-control protocol for a network employing multi-user wireless channels
US7602334B1 (en) * 2008-04-03 2009-10-13 Beceem Communications Inc. Method and system of a mobile subscriber estimating position
GB0912082D0 (en) * 2009-07-10 2009-08-19 Ubisense Ltd Lacation sysstem
US8934413B2 (en) * 2011-05-13 2015-01-13 Qualcomm Incorporated Systems and methods for wireless communication of packets having a plurality of formats
WO2012175352A1 (en) * 2011-06-22 2012-12-27 Salland Electronics Holding B.V. Localization system
US8948596B2 (en) * 2011-07-01 2015-02-03 CetusView Technologies, LLC Neighborhood node mapping methods and apparatus for ingress mitigation in cable communication systems
EP2557850A1 (en) * 2011-08-12 2013-02-13 Alcatel Lucent Interference reduction
US8994506B2 (en) * 2012-03-08 2015-03-31 The University Of British Columbia Apparatus and method for processing RFID signals
WO2013156174A1 (en) * 2012-04-19 2013-10-24 Nokia Siemens Networks Oy Scheduling mode selection in uplink data transmission
US9894531B2 (en) * 2012-12-03 2018-02-13 University Of Florida Research Foundation, Incorporated Apparatus, method, and software systems for smartphone-based fine-grained indoor localization

Also Published As

Publication number Publication date
EP3304120A1 (en) 2018-04-11
CN107923963A (zh) 2018-04-17
EP4254013A2 (en) 2023-10-04
HK1252547A1 (zh) 2019-05-31
KR102626688B1 (ko) 2024-01-17
JP2018517139A (ja) 2018-06-28
EP3304120B1 (en) 2023-08-23
CN107923963B (zh) 2022-04-19
WO2016193897A1 (en) 2016-12-08
EP3304120B8 (en) 2023-10-04
EP4254013A3 (en) 2023-12-27
JP6872798B2 (ja) 2021-05-19
EP3304120C0 (en) 2023-08-23
KR20180019617A (ko) 2018-02-26

Similar Documents

Publication Publication Date Title
US11595795B2 (en) Methods and systems for scheduling the transmission of localization signals and operating self-localizing apparatus
CN107923963B (zh) 用于调度定位信号传输和操作自定位装置的方法和系统
US11378985B2 (en) Distributed localization systems and methods and self-localizing apparatus
EP3761062A1 (en) Position determination of mobile objects
CN112749007A (zh) 用于分布式航空电子设备处理的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40083158

Country of ref document: HK