CN115297559A - 用于无线通信的装置 - Google Patents

用于无线通信的装置 Download PDF

Info

Publication number
CN115297559A
CN115297559A CN202210624080.2A CN202210624080A CN115297559A CN 115297559 A CN115297559 A CN 115297559A CN 202210624080 A CN202210624080 A CN 202210624080A CN 115297559 A CN115297559 A CN 115297559A
Authority
CN
China
Prior art keywords
logical channel
network
packet
data
grant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210624080.2A
Other languages
English (en)
Inventor
P·M·埃德贾克普勒
J·M·默里
张国栋
L·R·耶尔
陈伟
S·E·特里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oprah Holdings Ltd
Original Assignee
Oprah Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oprah Holdings Ltd filed Critical Oprah Holdings Ltd
Publication of CN115297559A publication Critical patent/CN115297559A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开内容涉及装置。一种设备,从通过网络连接到所述设备的网络节点接收资源的第一授权,其中,资源的第一授权指示与第一授权关联的第一寿命,使得当第一寿命到期时,第一授权不可用;基于与第一授权关联的所述寿命,选择所述设备的所述多个逻辑信道中的逻辑信道;以及利用资源的第一授权通过选择的逻辑信道发送数据。

Description

用于无线通信的装置
本申请是于2017年10月19日提交的、题为“装置”的国际申请号为 PCT/US2017/057483、国家申请号为201780071969.X的专利申请的分案申请。
相关申请的引用
本申请要求2016年10月19日提交的美国临时专利申请序列号No. 62/410,049,2017年5月4日提交的美国临时专利申请序列号No. 62/501,397,2017年8月15日提交的美国临时专利申请序列号No. 62/545,747,和2017年9月28日提交的美国临时专利申请序列号No. 62/564,529的权益,其公开内容通过引用包含在本文中,就像整体记载在本文中一样。
背景技术
2020年及之后的国际移动通信(IMT)的应用场景系列包括:eMBB(增强移动宽带)、URLLC(超可靠低等待时间通信)和mMTC(大规模机器类型通信)。这些主要用例在等待时间、数据速率、移动性、设备密度、可靠性、用户设备(UE)电池寿命、网络能量消耗等方面,具有不同并且冲突的服务要求。鉴于下一代的国际移动电信系统支持的这些不同并且冲突的服务要求,3GPP已经识别了一组系统体系结构要求。然而,在此认识到为了满足这些要求,除了别的问题之外,还应解决与UE和无线接入网络(RAN)数据链路模型相关的问题。
发明内容
本文中公开的是新无线电(NR)数据链路体系结构选项,例如包括NR 无线承载模型、NR逻辑信道模型、以及MAC和HARQ模型。此外说明的是到数据无线承载(DRB)的分组流映射,以及用户平面中的新的流封装协议。在一些实施例中,预先建立但不激活具有不同的服务质量(QoS) 的DRB。这允许给定用户设备(UE)将这些DRB用于分组数据网络(PDN) 流,而不存在较大的开销。预先建立的DRB可以是在根据UE能力、订阅简档、运营策略、安装的app等,决定DRB的预先建立的情况下,对于默认承载概念的扩展。
按照本文中公开的另一个方面,给定UE可根据网络赋予该UE的授权,为资源分配区分网络切片、物理层(PHY)参数集和逻辑信道的优先级。此外,UE可提供反馈,以帮助网络进行资源授权分配。例如,所述反馈可包括新的缓冲区状态报告选项,新的功率余量报告选项,和新的调度请求选项。
在例子中,设备,例如UE,从通过网络连接到设备的网络节点接收资源的授权,其中资源的授权规定在网络中可以如何在上行链路发送来自一个或多个节点的数据。设备在网络内分配资源的授权。例如,设备可按照网络的多个网络切片的预定优先级,把资源的授权分配给所述多个网络切片。设备可按照与网络的多个网络切片中的每个网络切片关联的切片优先比特率,把资源的授权分配给所述多个网络切片。在一些情况下,资源的授权为多个物理层参数集所共有,以致多个物理层参数集中的不止一个物理层参数集可被映射到资源的相同授权。这里,设备可按照多个物理层参数集的预定参数集优先级,把资源的授权分配给多个物理层参数集。预定参数集优先级可以是为映射到相应参数集的服务配置的发送时间间隔(TTI)的函数。在例子中,设备把资源的授权分配给多个网络切片中的一个网络切片。设备还可把资源的授权分配给在授权中指示的物理层参数集,以致该物理层参数集是被分配有资源的唯一物理层参数集。另一方面或者另外地,设备可把资源的授权分配给在授权中指示的特定逻辑信道,以致该特定逻辑信道是被分配有资源的唯一逻辑信道。资源的授权可指示由时域、频域、调制和编码方式、以及冗余版本信息定义的物理资源块。资源的授权还可包括用于上行链路发送的功率控制信息,以及用于上行链路ACK/NACK发送的指示或资源。
提供本发明内容是为了简化地介绍在下面的详细描述中进一步描述的一些概念。本发明内容并不意图识别要求保护的主题的关键特征或基本特征,也不意图用于限制要求保护的主题的范围。此外,要求保护的主题不限于解决在本公开的任意部分中提及的任意或所有缺陷的限制。
附图说明
根据结合附图,举例给出的以下说明,可以获得更详细的理解,附图中:
图1A、图1B和图1C图解说明分组数据单元(PDU)会话的不同方面。
图2是图解说明用于接入网络(AN)和核心网络(CN)的解耦和独立演进的体系结构的示图。
图3是图解说明集中部署的例子的示图。
图4是图解说明在中心和分布式单元之间分割的示例功能的示图。
图5是图解说明通过主小区组(MCG)的分割承载的示图。
图6是图解说明通过辅小区组(SCG)的分割承载的示图。
图7是图解说明辅小区组承载的示图。
图8和图9是图解说明网络切片的使用的例子的示图。
图10是图解说明示例服务质量(QoS)功能分割的示图。
图11是图解说明服务数据流、分组流、服务数据流模板和服务数据流过滤器的关系的示图。
图12是图解说明服务数据流模板在检测服务数据流的下行链路部分时的作用的示图。
图13是图解说明服务数据流模板在检测服务数据流的上行链路部分时的作用的示图。
图14是利用控制平面信令图解说明基于流的QoS体系结构的示图。
图15是图解说明长期演进(LTE)层2结构的示图。
图16是图解说明LTE中的调度例子的示图。
图17是图解说明用于MAC多路复用的LTE逻辑信道优先级的例子的示图。
图18是图解说明缓冲区状态和功率余量报告的示例信令的示图。
图19A、图19B和图19C图解说明示例无线接入网络(RAN)切片体系结构模型。
图20是图解说明载波上的参数集多路复用的例子的示图。
图21图解说明借助波束的扇区化小区覆盖的例子的示图。
图22是图解说明逻辑信道(或无线承载)映射配置信令的例子的调用流程。
图23是图解说明逻辑信道(或无线承载)映射配置信令的备选例子的调用流程。
图24是图解说明分两个阶段进行的逻辑信道(或无线承载)映射配置信令的例子的调用流程。
图25是图解说明两个阶段中的逻辑信道(或无线承载)映射配置信令的备选例子的示图。
图26是图解说明无线资源控制(RRC)逻辑信道配置信息元素(IE)的例子的示图。
图27是图解说明RRC配置参数集结构的例子的示图。
图28是图解说明示例的上行链路(UL)L2结构(切片特有资源块 (RB)、逻辑信道和MAC)的示图。
图29是图解说明示例的UL L2结构(切片特有RB、逻辑信道和 MAC、对MAC透明的波束配置)的示图。
图30是图解说明示例的UL L2结构(切片特有RB&逻辑信道,公共 MAC)的示图。
图31是图解说明示例的UL L2结构(切片特有RB&逻辑信道,公共上部MAC,和每个服务小区的切片特有HARQ)的示图。
图32是图解说明示例的UL L2结构(公共RB、逻辑信道、公共上部 MAC和每个服务小区的切片特有HARQ)的示图。
图33是图解说明示例的UL L2结构(公共RB、逻辑信道、公共上部 MAC、每个服务小区一个HARQ、和切片特有共享信道)的示图。
图34是图解说明示例的UL L2结构、切片特有RB、切片特有逻辑信道、切片特有MAC或公共MAC的示图。
图35是图解说明包括QoS规格的预先授权的示例控制平面信令的示图。
图36是图解说明示例数据无线承载(DRB)配置的示图。
图37是图解说明分组流和示例DRB激活过程的示图。
图38是图解说明DRB和分组流之间的示例关联选项的示图。
图39是图解说明下行链路中的流封装协议(FEP)子层的示例概览模型的示图。
图40是图解说明上行链路中的FEP子层的示例概览模型的示图。
图41是图解说明示例FEP数据PDU的示图。
图42是图解说明gNB向UE的资源分配的例子的示图,其中UL资源授权赋予是特定于参数集的。
图43是图解说明gNB向UE的资源分配的例子的示图,其中UL资源授权赋予不是特定于配置UE的任何参数集的。
图44是图解说明其中UE跨逻辑信道把参数集公共资源授权分割成参数集特有资源授权的例子的示图。
图45是图解说明基于严格NW切片递减优先权的示例的更新逻辑信道优先级的示图。
图46是图解说明基于切片优先比特率(SPBR)的示例的更新逻辑信道优先级过程的示图。
图47是图解说明基于严格参数集递减优先权的示例的更新逻辑信道优先级过程的示图。
图48是图解说明基于参数集优先比特率(NPBR)的示例的更新逻辑信道优先级过程的示图。
图49是图解说明基于两种优先权类型的逻辑信道优先级的例子的示图。
图50是图解说明用于应用/切片映射的示例用户界面(UI)的示图。
图51是图解说明UI和调制解调器之间的示例信令的示图。
图52A图解说明其中可以体现本文中说明和要求保护的方法和设备的示例通信系统的一个实施例。
图52B是按照本文中例示的实施例的为无线通信配置的示例设备或装置的方框图。
图52C是按照实施例的RAN和核心网络的系统图。
图52D是按照再一个实施例的RAN和核心网络的系统图。
图52E是按照另一个实施例的RAN和核心网络的系统图。
图52F是其中可以体现在图52A、52C、52D和52E中例示的通信网络的一个或多个设备的示例计算系统的方框图。
图53图解说明按照示例实施例的逻辑信道优先级(LCP)的示例流程。
图54图解说明LCP的一部分的示例流程。
图55图解说明LCP过程的另一部分的示例流程。
图56图解说明LCP的一部分的再一示例流程。
图57图解说明LCP的一部分的另一示例流程。
具体实施方式
首先参见图1A-C,在3GPP TR 23.799,Study on Architecture for NextGeneration System,V0.7.0中说明了通过不同接入的多个分组数据单元(PDU)会话的体系结构选项。所述选项包括以下示例情况:通过对不同数据网络的不同接入的多个PDU会话(图1A);通过对同一数据网络的不同接入的多个PDU会话(图1B);和通过对同一数据网络的不同接入的一个PDU会话,这可被称为多址接入PDU会话(图1C)。
如图所示,NG1标示下一代(NextGen)用户设备(UE)和下一代核心网络或核心之间的控制平面的参考点。NG2标示下一代无线接入网络或接入网络(R)AN和下一代核心之间的控制平面的参考点。NG3标示下一代 (R)AN和下一代核心之间的用户平面的参考点。NG4标示NG核心控制功能和NG用户平面功能之间的参考点。NG5标示NG控制功能和应用功能之间的参考点。NG6标示下一代核心和数据网络之间的参考点。数据网络可以是运营商外部的公共或专用数据网络,或者运营商内部的数据网络。NG-U指的是gNB和下一代核心网络(NGC)之间的用户平面接口。除非另有规定,否则NG2和NG-U在本文中可以互换使用,而没有限制。NG-C指的是gNB和NGC之间的控制平面接口。除非另有规定,否则NG3和NG-C在本文中可以互换使用,而没有限制。NR Uu指的是 gNB和UE之间的无线接口。NG1是下一代UE和下一代核心之间的通过NR Uu的参考点。本文中使用的术语gNB指的是新无线电(NR)节点,例如逻辑接入网络节点或无线接入网络节点。
除非另有规定,否则本文中的使用的接入网络(AN)和无线接入网络 (RNA)可以互换使用,而没有限制。此外,术语gNB、接入网络节点、接入网络功能、无线接入网络节点、无线接入网络功能在本文中可以互换使用,而没有限制,除非另有规定。本文中使用的接入网络CP功能(AN CP功能)或AN CP节点可以指的是实现gNB、接入网络节点、接入网络功能、无线接入网络节点、或无线接入网络功能的控制平面功能的逻辑节点。类似地,接入网络UP功能(AN UP功能)或AN UP节点可以指的是实现gNB、接入网络节点、接入网络功能、无线接入网络节点、或无线接入网络功能的用户平面功能的逻辑节点。
现在参见图2,示例的系统体系结构200允许接入网络和核心网络的解耦和独立演进。如图所示,示例部署用例(案例1)只用于3GPP接入,示例部署用例(案例2)用于在控制3GPP接入的伞状覆盖下的非3GPP接入,另一个示例部署用例(案例3)用于独立的非3GPP接入。尽管在核心网络中,例示了CP和UP之间的解耦,不过在无线接入网络中,可以实现控制平面和用户平面之间的类似解耦。
参见图3,图中表示了其中新RAN无线电协议栈的上层集中在中心单元302中的例子。中心单元302和NR BS节点304的下层之间的不同的协议分割选项是可能的。图4中,将示例的协议分割选项描述为选项 1-8。
现在转向用于LTE和NR之间的双重连接的承载类型,各种类型的承载支持LTE无线电和新无线电(NR)之间的双重连接。图5图解说明通过主小区组(MCG)的分割承载的例子。在该示例情形下,核心网络可以是演进分组核心网络(EPC)或者下一代(NextGen)核心网络(NG CN)。例子504描述其中LTE是辅小区组(SCG)而NR是MCG的示例情形。在该示例情形下,核心网络是下一代(NextGen)核心网络(NG CN)。图6图解说明通过辅小区组(SCG)的分割承载的例子。例子602描述其中LTE 是MCG而NR是SCG的情形。在该情形下,核心网络可以是演进分组核心网络(EPC)或者下一代(NextGen)核心网络(NG CN)。例子604描述其中LTE是SCG而NR是MCG的情形。在该情形下,核心网络是下一代(NextGen)核心网络(NG CN)。图7图解说明辅小区组承载的例子。例如,承载可以直接从核心网络路由到SCG。例子702描述其中LTE是 MCG的情形。在该情形下,核心网络可以是演进分组核心网络(EPC)或者下一代(NextGen)核心网络(NG CN)。例子704描述其中LTE是SCG 而NR是MCG的情形。在该情形下,核心网络是下一代(NextGen)核心网络(NG CN)。
现在转向网络切片,图8描述示例网络切片概念的高层例示。网络切片可以由支持一个或多个特殊用例的通信服务要求的一批逻辑网络功能构成。在一些情况下,终端可按照满足运营商或用户需求的方式,被定向到选择的切片。例如,终端(UE)可基于订阅或终端类型,被定向到选择的切片。网络切片可针对核心网络的分区。在一些情况下,无线接入网络(RAN)可能需要特定的功能来支持多个切片,或者支持对于不同网络切片的资源的划分。图9中描述了网络切片的使用的例子。
现在转向下一代系统的服务质量(QoS)框架,图10描述核心网络(CN) 1002、无线接入网络(RAN)1004和用户设备(UE)1006之间的QoS功能的示例分布。QoS参数可包括作为例子而非限制地给出的下述参数中的一个或多个:
·流优先权指示符(FPI),它可定义在UP和AN功能处的每个流处理的优先权。它可对应于调度优先权,以及拥堵情况下的优先权处理。这可能类似于借助标准化QCI在现有系统中定义的优先权。
·流优先权等级(FPL),它可定义访问AN资源的流相对重要性。这可能类似于在现有LTE系统中定义的分配和保持优先权(ARP)。
·分组优先权指示符(PPI),它可定义在UP和AN功能处的每个分组的调度优先权。对于同一流中的分组,可以标记不同的PPI。
·分组丢弃优先权指示符(PDPI),它可定义例如在拥堵的情况下每个分组的丢弃优先权,以区分同一流内的内容。在一些情况下,下行链路中的PDPI标记由UP功能设定,由AN使用。
·最大流比特率(DL,UL):适用于单一流或者流的聚合的UL和DL 比特率值。它可指示对于流描述符标识的数据流所批准的最大比特率。
·保证流比特率(DL,UL):适用于单一流或者流的聚合的UL和DL 比特率值。它可指示对于数据流批准的保证比特率。
·会话比特率(DL,UL):适用于建立的用户会话的UL和DL比特率值。它可指示对于用户会话批准的最大比特率。
·反射QoS指示(RQI):适用于单一流或者流的聚合的DL指示。当用作U-平面标记时,它可以由UP功能确定,并且可以在流的生命期内基于每个分组被应用。
·资源类型:GBR或者非GBR。
·分组延迟预算,它可以定义在UE和UP功能之间,分组可被延迟的时间的上限。
·丢包率,它可定义已由数据链路层协议(例如,E UTRAN中的RLC) 的发送者处理,但是未被对应接收器成功递送给上层(例如,E-UTRAN 中的PDCP)的SDU(例如,IP分组)的速率的上限。
·可靠性,它可定义在等待时间范围内,传送X个字节的成功概率。例如,就URLL来说,用户平面等待时间的目标对UL来说为0.5ms,对DL来说为0.5ms,这意味着1ms的往返延迟,或者相当于最大1ms 的重传等待时间。1ms等待时间内的1-10-5的可靠性意味重传等待时间不超过1ms的1-10-5的可靠性。对于具有1ms等待时间范围内的1-10-5 的目标可靠性的URLL应用来说,情况就是这样。
·分配和保持优先权,它可包含关于优先权等级、抢占能力和被抢占能力的信息。在一些情况下,该优先权等级定义资源请求的相对重要性。
·QoS ID,它可以用作QoS规格的指针。
除非另有规定,否则本文中使用的PDU(分组数据单元)连接服务指的是在UE和数据网络之间,提供PDU的交换的服务。除非另有规定,否则PDU会话指的是UE和提供PDU连接服务的数据网络之间的关联。关联的类型可包括IP类型、以太网类型和非IP类型。IP类型的PDU会话可以指的是UE和IP数据网络之间的关联。PDU会话可包括一个或多个服务数据单元流。除非另有规定,否则本文中使用的应用检测过滤器指的是用于根据应用生成的分组的扩展检查(例如,报头和/或有效负载信息),检测这些分组的逻辑。还可以检测分组流的动态。除非另有规定,否则应用标识符指的是涉及特定应用检测过滤器的标识符。除非另有规定,否则服务数据单元流(SDF)指的是可能通过匹配服务数据流模板的执行功能和策略控制运送的分组流的聚合集。为了方便起见,这也可被称为分组流,其中分组流可以是来自和/或去往UE的特定用户数据流。分别对应于特定服务数据流过滤器的多个分组流可以属于SDF。
除非另有规定,否则本文中使用的服务数据流过滤器指的是用于识别分组流中的一个或多个的一组分组流报头参数值/范围。这也可被称为业务流过滤器(TFF),可被分类为可对于DL和/或UL规定的流描述符。服务数据流过滤器模板可以指的是为定义SDF可能需要的一组服务数据流过滤器或应用标识符。在本文中,这也可被称为业务流模板(TFT)。服务数据流过滤器标识符可以是在PDU会话内,对于(例如,在CN CP策略功能和CP UP中的执行功能之间的接口上使用的)特定服务数据流 (SDF)过滤器来说唯一的标量。服务数据流模板可以指的是涉及应用检测过滤器的一组服务数据流过滤器,并且可能是定义服务数据流所必需的。服务标识符指的是服务的标识符。服务标识符可提供服务数据流的为基于流的计费规定的最详细标识。在一些情况下,如果可获得额外的AF 信息,那么可以识别服务的具体实例。IP CAN会话可以指的是UE和IP 网络之间的关联。IP CAN会话可被视为IP类型的PDU会话。IP CAN 承载可以指的是规定的容量、延迟和比特差错率等的IP传输路径。从端到端系统的角度来看,IP CAN承载可包括EPS承载、无线接入承载(RAB) 和数据无线承载(DRB)的级联。除非另有规定,否则本文中使用的分组标记(或标记符)指的是包含在分组封装报头中,以便唯一地关联由给定业务流过滤器(TFF)或业务流过滤器模板(TFT)表征的数据分组和预定的匹配 QoS规格的标记。每个QoS规格可以由标记关联和识别。除非另有规定,否则本文中使用的QoS规格可以指的是如上定义的QoS参数的全部或子集的组合。对于下行链路业务,在一些情况下,在将分组传输给接入网络之前,位于CN中的UP功能可以对每个分组施加标记。在接入网络中,在通过无线接口,把分组传送给UE之前,UP功能可以施加分组标记。在上行链路中,在把分组传输给接入网络之前,UE可以施加分组标记。在把分组中继给核心网络之前,接入网络可以施加分组标记。QoS规则通常指的是使服务数据流的检测成为可能的信息,并定义其关联的QoS 参数或规格,例如包括QoS标记。
现在参见图11,示例系统1100图解说明服务数据流、分组流、服务数据流模板和服务数据流过滤器之间的关系。对于IP类型PDU会话,识别服务数据流的服务数据流过滤器可识别用于匹配IP 5元组(例如,源 IP地址或IPv6网络前缀、目的地IP地址或IPv6网络前缀、源端口号、目的地端口号、IP之上的协议的协议ID)的模式。识别属于服务数据流的分组的示例检测处理例示在图12(下行链路)和图13(上行链路)中。对于下行链路业务,与目的地地址的IP-CAN会话关联的服务数据流模板的下行链路部分是检测处理中的匹配候选项。对于上行链路业务,与IP CAN承载关联的所有服务数据流模板的上行链路部分都是检测处理中的匹配候选项。图14是说明3GPP TR 23.799的控制平面信令的调用流程的例子。
现在转向长期演进(LTE)中的逻辑信道,物理层向MAC层和更高层提供信息传输服务。物理层传输服务由通过无线接口传输数据的方式和特征描述。这被称为“传输信道”。传输信道是MAC和层1之间的SAP,逻辑信道是MAC和RLC之间的SAP。MAC层在逻辑信道上提供数据传输服务。对于MAC提供的不同种类的数据传输服务,定义一组逻辑信道类型。每个逻辑信道类型由传输的信息的类型定义。在LTE中, MAC提供控制信道和业务信道。传输信道上的逻辑信道的映射取决于由RRC配置的多路复用。图15描述示例的LTE数据链路(L2)结构和LTE 逻辑信道。
现在转向LTE中的调度和QoS差异化,参见图16,LTE中的调度器利用来自核心网络的QoS配置和来自UE的输入,比如来自UE的缓冲区状态报告(BSR)、功率余量报告(PHR)、和信道状态指示(CSI),来进行调度决策并为下行链路业务和上行链路业务提供QoS差异化。在LTE 中,按承载等级的粒度,提供QoS差异化。
就逻辑信道优先级来说,当进行新的发送时,对于上行链路发送可应用逻辑信道优先级处理过程。在例子中,通过对于每个逻辑信道,用信号通知其中增大的优先权值指示较低的优先权等级的优先权,设定优先比特率(PBR)的prioritisedBitRate,和设定桶大小时长(BSD)的 bucketSizeDuration,RRC控制上行链路数据的调度。对于NB-IoT,prioritisedBitRate、bucketSizeDuration和逻辑信道优先级处理过程的对应步骤(例如,下面的步骤1和步骤2)不适用。
在一些情况下,MAC实体为每个逻辑信道j保持变量Bj。Bj在相关的逻辑信道建立时,被初始化为0,并且对于各个TTI,递增乘积 PBR×TTI持续时间,其中PBR是逻辑信道j的优先比特率。不过,Bj 的值决不能超过桶大小,如果Bj的值大于逻辑信道j的桶大小,那么它被设定为桶大小。逻辑信道的桶大小等于PBR×BSD,其中PBR和BSD 由上层配置。
在一些情况下,当进行新的发送时,MAC实体进行以下逻辑信道优先级处理过程。MAC实体按照以下步骤,把资源分配给逻辑信道。在步骤1,所有Bj>0的逻辑信道都按优先权递减的顺序被分配资源。如果逻辑信道的PBR被设定为“无穷大”,那么在满足较低优先权逻辑信道的 PBR之前,MAC实体为可供在该逻辑信道上发送的所有数据分配资源。在步骤2,MAC实体把Bj递减在步骤1中服务于逻辑信道j的MAC SDU 的总大小。Bj的值可以是负值。在步骤3,在一些情况下,如果剩余任意资源,那么按照严格递减的优先权顺序(而不管Bj的值),服务所有逻辑信道,直到该逻辑信道的数据或者UL授权耗尽为止,无论哪一个先耗尽。具有相同优先权的逻辑信道应得到同等的服务。
对于示例的逻辑信道优先级处理过程,MAC实体按递减的顺序,考虑以下相对优先权:用于小区无线网络临时标识符(C-RNTI)的MAC控制元素,或者来自UL-CCCH的数据;用于BSR(为填补而包含的BSR 除外)的MAC控制元素;用于PHR、扩展PHR或双重连接PHR的MAC 控制元素;用于副链路BSR(为填补而包含的副链路BSR除外)的MAC 控制元素;除了来自UL-CCCH的数据之外,来自任意逻辑信道的数据;用于为填补而包含的BSR的MAC控制元素;用于为填补而包含的副链路BSR的MAC控制元素。
当MAC实体被请求在1个TTI中发送多个MAC PDU时,上述步骤1-3和关联规则可以单独地应用于各个授权,或者应用于授权的容量之和。另外,处理授权的顺序由UE实现决定。在MAC实体被请求在一个 TTI中发送多个MAC PDU时,由UE实现决定MAC控制元素包含在哪个MAC PDU中。当UE被请求在一个TTI中,在两个MAC实体中生成MAC PDU时,由UE实现决定按何种顺序处理授权。MAC实体按照上面所述,在MAC PDU中多路复用MAC控制元素和MACSDU。
图17中描述了用于MAC多路复用的LTE逻辑信道优先级操作的例子,其中信道1、信道2和信道3优先权递减。按照该例子,首先达到信道1的PBR来服务信道1,达到信道2的PBR来服务信道2,随后用尽可能多的可用数据来服务信道3(因为在本例中,可用数据量小于对于该信道配置的PBR将允许的数据量)。之后,MAC PDU中的剩余空间被填充来自优先权最高的信道1的数据,直到在MAC PDU中没有更多的空间,或者没有来自信道1的更多数据为止。如果在服务信道1之后仍有空间,那么可按照类似的方式服务信道2。
现在转向缓冲区状态报告,缓冲区状态报告可用于向服务eNB提供关于与MAC实体关联的UL缓冲区中的可供发送的数据量的信息。通过配置计时器(periodicBSR-Timer、retxBSR-Timer和logicalChannelSR- ProhibitTimer),并且通过对于各个逻辑信道,可选地用信号通知把逻辑信道分配给LCG的logicalChannelGroup,RRC控制BSR报告。如果发生任意下述事件,那么可以触发缓冲区状态报告(BSR):
·优先权比当前在发送缓冲区中的数据的优先权高的数据(即,优先权比当前正在发传的数据更高的逻辑信道组中的数据)的到达,因为这可能影响调度决策
·服务小区的变化,在这种情况下,缓冲区状态报告可用于向新的服务小区提供关于终端中的状况的信息
·受计时器控制周期性地触发
·代替填补。如果为匹配调度的传输块大小所需的填补量大于缓冲区状态报告,那么插入缓冲区状态报告
除了缓冲区状态之外,对于上行链路调度器来说,各个终端中可用的发送功率的大小也可能相关。在UL-SCH上,按照和BSR类似的方式向终端报告功率余量报告(PHR)。PHR可以受计时器控制周期性地触发,由路径损耗的变化触发(例如,在当前功率余量和最后的报告之间的差异大于可配置的阈值时),或者代替填补而触发。
定义了不同类型的PHR。1型报告反映在假定在载波上只有PUSCH 发送的情况下的功率余量。2型报告假定PUSCH和PUCCH发送。对于所有载波提供1型报告,而只对于主分量载波提供2型报告,因为PUCCH 只能在主分量载波上发送。图18中图解说明了缓冲区状态报告和功率余量报告的信令。
就LTE中的调度请求来说,调度器需要关于有数据要发送、于是需要被调度上行链路资源的终端的知识。不需要向没有数据要发传的终端提供上行链路资源,因为这只会导致该终端进行填补,以填充授权的资源。从而,调度器至少需要知道终端是否有数据要发送,和是否应被给予授权。这被称为调度请求。调度请求用于没有有效的调度授权的终端。调度请求是由终端建立的简单标志(比特),以向上行链路调度器请求上行链路资源。各个终端可被赋予每隔n-1个子帧出现的专用PUCCH调度请求资源。利用专用调度请求机制,不需要提供请求被调度的终端的身份,因为从在其上发送请求的资源隐含地知道终端的身份。当优先权比已存在于发送缓冲区中的数据高的数据到达终端,但终端没有授权,从而不能发送数据时,终端在下一个可能的时刻,发送调度请求。当收到该请求时,调度器可向终端赋予授权。如果直到下一个可能的调度请求时刻为止,终端未收到调度授权,那么重复调度请求。在载波聚合的情况下,与只在主分量载波上进行PUCCH发送的一般原理一致,在主分量载波上发送调度请求。无论终端能够支持多少个上行链路分量载波,都只存在一个调度请求比特。
在上行链路中,E-UTRAN可通过PDCCH上的C-RNTI,在各个发送时间间隔(TTI),向UE动态分配资源(物理资源块PRB及调制和编码方式MCS)。资源以资源块对的形式分配。资源块对对应于1ms乘以180 kHz的时间-频率单位。UE始终监视PDCCH,以便在其下行链路接收被允许时(被配置时由不连续接收(DRX)管理的活动),找出用于上行链路发送的可能分配。当配置载波聚合(CA)时,相同的C-RNTI适用于所有的服务小区。
另外,E-UTRAN可以向UE分配用于第一HARQ发送,并且可能用于重传的半永久上行链路资源。RRC可定义半永久上行链路授权的周期性,物理下行链路控制信道(PDCCH)可指示上行链路授权是否是半永久上行链路授权(例如,是否可以按照RRC定义的周期性,在接下来的 TTI中隐含地重用它)。
在UE具有半永久上行链路资源的子帧中,如果UE在PDCCH上找不到它的C-RNTI,那么可以根据UE在TTI中已被赋予的半永久分配进行上行链路发送。在一些例子中,网络按照预先定义的MCS,进行预先定义的PRB的解码。否则,在UE具有半永久上行链路资源的子帧中,例如,如果UE在PDCCH上找到其C-RNTI,那么PDCCH分配超越关于该TTI的永久分配,并且UE的发送遵循PDCCH分配,而不是半永久分配。重传可以或者是隐含地分配的,在这种情况下,UE利用半永久上行链路分配,或者是通过PDCCH明确地分配的,在这种情况下,UE 不遵循半永久分配。在一些情况下,在上行链路中不存在盲解码,当用户没有足够的数据来填充分配的资源时,使用填补。
当UE在一个TTI中,在几个服务小区中被提供有效的上行链路授权时,在一些情况下,在逻辑信道优先级处理期间处理授权的顺序,以及是应用联合处理还是串行处理,由UE实现决定,同时遵守通过LTE 增强接入(LAA)SCell的逻辑信道的发送限制。
类似地,就下行链路来说,在一些情况下,可以只为PCell配置半永久上行链路资源,只有关于PCell的PDCCH分配可以超越半永久分配。当配置下行链路控制(DC)时,在一些情况下,可以只为PCell或PSCell 配置半永久上行链路资源。在各个例子中,只有关于PCell的PDCCH 分配可超越关于Pcell的半永久分配,只有关于PSCell的PDCCH分配可以超越关于PSCell的半永久分配。
在LTE中,发送时间间隔(TTI)被定义成在UL和DL中,都具有相同值的固定持续时间(例如,1ms)。TTI持续时间(例如,TTI长度)是调度时机的最小周期性(PDCCH监视周期)。例如,在动态UL调度的情况下,网络可以在每个TTI用信号向UE通知调度授权信息。在类似半永久调度(SPS)的半静态资源分配方式的情况下,UL调度机会周期性可能大于TTI持续时间,因为网络试图通过半静态信令(例如RRC信令)向 UE提供调度授权,以减少调度开销,该调度授权指示调度授权适用于每 n个子帧,即直到进一步通知为止。一旦通过RRC信令配置后,就可以借助利用SPS C-RNTI的(E)PDCCH信令激活或撤消SPS调度授权。在 LTE中,PDCCH监视周期和UL发送时间间隔正好相同。类似地, PDCCH监视周期和DL发送时间间隔相同。下面的表1提供NR参数集及其关键参数的概要。在参数集的符号的持续时间,时隙或微时隙的持续时间之间存在比例关系。
在下面的表1、表2和表3中,参数
Figure BDA0003675931300000161
表示每个时隙的OFDM符号的数目;参数
Figure BDA0003675931300000162
表示每个无线帧的时隙的数目;参数
Figure BDA0003675931300000163
表示每个无线子帧的时隙的数目。
表1:NR参数集上的符号、时隙(或微时隙)的持续时间之间的比例关系的例示
Figure BDA0003675931300000171
表2:对于标准循环前缀,每个时隙的OFDM符号的数目
Figure BDA0003675931300000181
Figure BDA0003675931300000182
表3:对于扩展循环前缀,每个时隙的OFDM符号的数目
Figure BDA0003675931300000183
Figure BDA0003675931300000184
这里,认识到现有的LTE设计为UL服务差异化提供有限的支持。到UR授权的QoS要求和/或服务差异化映射不是确定性的。对于所有的多路复用服务,都强制最高的QoS要求。这导致无线资源的次优利用。 3GPP采用以复杂性和性能权衡分析为基础的这种基于非确定性服务的授权设计。在新一代的无线网络系统体系结构的情况下,可以重新讨论关于ULQoS差异化的LTE设计决策。这里认识到鉴于多样化的5G用例,LTE局限性可能会更糟。
正如本文所讨论的,网络切片和物理层参数集多路复用的使用可支持下一代蜂窝系统(通常称为5G系统)的目标用例的不同并且冲突的需求。根据无线接入网络(RAN),网络切片的几种体系结构模型是可能的。在一种模型(图19A中所示的模型1)中,假定存在网络切片特有控制平面,网络切片特有用户平面和网络切片特有物理资源。再一种模型(图19B中所示的模型2)设想网络切片特有控制平面,网络切片特有用户平面,网络切片特有调度器,和可选的公共的物理资源池。在该模型中,公共管理网络功能在切片之间分配/重新分配物理资源。一旦资源被分配给切片,切片就是特定于物理资源的。另一种模型(图19C中所示的模型3)设定共享网络切片控制平面,共享网络切片用户平面,共享网络切片调度器和物理资源。图20中图解说明了载波上的参数集多路复用的例子。这里认识到新无线电(NR)体系结构可以是以波束为中心的。图21中图解说明了借助波束的扇区化小区覆盖的例子。
这里说明的是NR节点分配资源授权的机制,和把UE接收的资源授权分配给UL业务的机制。具体地,现在说明设想的数据链路结构,NR 节点进行的资源授权分配,把UE接收的资源授权分配给UL业务的选项,缓冲区状态报告的选项,功率余量报告的选项,和调度请求的选项。
就L2(数据链路)结构来说,参数集可由作为例子而非限制地给出的下述参数中的一个或多个参数的组合定义:子帧持续时间、保护时间间隔、每个子帧的符号的数目、子载波间隔和发送时间间隔(TTI)。在一些情况下,一个参数集可以与不止一个TTI关联。可按时隙粒度级别(例如, 7或14个OFDM符号)或者按微时隙粒度级别定义TTI。微时隙可被定义为一个或多个符号。参数集可以与带宽部分(BWP)关联。载波的带宽可被分成BWP,每个BWP配置有给定的参数集。gNB可以为UE重新配置BWP的参数集。除非另有规定,否则本文中使用的参数集和BWP 可以可互换地使用,而没有限制。
现在转向无线承载(RB)模型,除非本文中另有规定,否则无线承载可用于表示数据无线承载或信令无线承载。现在针对无线承载(信令无线承载或数据无线承载)考虑模型。在一个例子中,RB是特定于为UE配置的各个网络切片的。例如,属于不同网络切片的数据被映射到UE上下文内的不同的RB集合,其中RB配置特定于为UE配置的各个网络切片。各个网络切片可具有按UE配置的不止一个RB。例如,任意主要的下一代系统用例(例如,eMBB、URLL或mMTC)可覆盖QoS要求不同的广泛应用。于是在UE上下文内可以配置几个RB,例如支持eMBB网络,以便提供差异化的QoS。该模型可对应于其中RAN网络被切片的情景,例如支持不同的核心网络切片,其中核心网络切片通过静态配置或半静态配置(例如,在会话建立时),与RAN网络切片关联。
在另一个示例模型中,RB是为UE配置的网络切片所共有的。例如, RB配置可能不是特定于网络切片的。在一个实施例中,来自不同网络切片的数据可能同时被映射到同一RB,来自不同RB的数据可以是由同一网络切片生成的数据。该模型可对应于其中例如RAN网络不被切片的情景。
在另一个例子中,RB配置是特定于为UE配置的各个参数集的。例如,在一些情况下,各个RB可只与UE上下文内的一个PHY参数集关联,RB携带的数据可只被映射到一个PHY参数集。每个PHY参数集可与UE上下文内的不止一个RB关联。无线承载可被重新配置给另外的 PHY参数集。作为本实施例的例子,并且由于参数集可具有不止一个 TTI,gNB可以用映射到具有一个或多个TTI的仅仅一个参数集的无线承载(数据无线承载或信令无线承载)配置UE。对于同一承载,gNB可用与无线承载(数据无线承载或信令无线承载)到下行链路方向的参数集和/ 或TTI的映射不同的无线承载(数据无线承载或信令无线承载)到上行链路方向的参数集和/或TTI的映射来配置UE。
在另一个例子中,RB配置可以是为给定UE配置的物理层(PHY)参数集所共有的。例如,RB配置可能不是特定于PHY参数集的。例如,作为MAC调度决策的结果,给定RB上的数据可被动态(随着时间)映射到不同的参数集。作为本实施例的例子,gNB可用映射到不止一个参数集的无线承载配置UE,每个参数集具有一个或多个TTI。对于同一无线承载(数据无线承载和信令无线承载),gNB可用无线承载到下行链路方向和上行链路方向的参数集和/或TTI的不同映射来配置UE。例如,对于 UE被配置有的各个无线承载,无线承载被映射到的UL方向的一组参数集和/或TTI可能不同于逻辑信道被映射到的下行链路方向的一组参数集和/或TTI。类似地,多个RB可共享相同的参数集。例如,在上行链路方向的UE中,作为MAC调度决策的结果,来自不止一个RB的数据可被映射到相同的参数集。在一些情况下,空间多路复用中的不同层可能属于不同的参数集。
在另一个方面,上面说明的示例RB模型可被组合。例如,在一些情况下,一些RB可被配置成是特定于网络切片的,而一些其他RB可被配置成两个或更多网络切片之间的公共RB。公共信令无线承载(SRB)可用于为不止一个网络切片支持UE配置和控制平面信令。例如,核心网络工作可具有一个公共控制平面网络切片。与公共控制平面关联的NAS 信令可被映射到无线接入网络中的公共SRB。无线接入网络本身可具有映射到公共核心网络控制平面切片的公共控制平面RAN切片。在另一个例子中,gNB可以用映射到具有一个或多个TTI的仅仅一个参数集的一个无线承载,和映射到被映射到一个或多个TTI的不止一个参数集的另一个无线承载来配置UE。此外,无线承载到一个方向(例如,上行链路(UL) 方向或下行链路(DL)方向)的参数集和/或TTI的映射可能从同一UE的一个无线承载到另一个无线承载各不相同。
在一些情况下,无线承载到参数集和/或TTI的映射的配置可被视为一个阶段或两个阶段的处理。在示例的一个阶段的处理中,gNB可在RRC 连接建立、RRC连接重新配置或RRC连接恢复过程期间,用信号向UE 通知无线承载到参数集和/或TTI的映射。在例子中,gNB还可以利用 MAC控制元素(MAC CE)信令,用到参数集和/或TTI的无线承载映射来配置UE。UE可以考虑例如在过程成功完成时有效的所有映射配置。在示例的两个阶段的处理中,例如在RRC连接建立或RRC连接重新配置期间,首先(阶段1)通过RRC信令,用配置的无线承载和参数集和/或TTI 之间的可能映射,配置UE。在第二个阶段,gNB通过MAC CE信令,指令UE激活(使用)在第一阶段期间接收的部分或所有的映射配置。在一个实施例中,gNB通过明确映射,用无线承载到参数集和/或TTI的映射配置UE。例如,UE可被明确地配置在上行链路和/或在下行链路,对于各个无线承载允许的参数集和/或TTI。在另一个实施例中,UE隐含地得出无线承载到参数集和/或TTI的映射。例如,对于每个无线承载,gNB 用在上行链路和/或在下行链路,对于该无线承载不允许的参数集和/或 TTI配置UE。对于每个无线承载,UE利用来自gNB的配置来识别哪些参数集和/或TTI是gNB允许的,哪些是gNB不允许的。
现在转向示例的逻辑信道模型(例如,控制和业务信道),在一个例子中,逻辑信道是特定于为UE配置的各个网络切片的。例如,包括MAC 控制元素(MAC CE)的数据的属于不同网络切片的数据被映射到UE上下文内的不同组的逻辑信道,其中对于为UE配置的各个网络切片,逻辑信道配置是特定的。各个网络切片可具有按UE配置的不止一个逻辑信道。例如,任意主要的下一代系统用例(例如,eMBB、URLL或mMTC) 可覆盖QoS要求不同的广泛应用。于是在UE上下文内可以配置几个逻辑信道,例如支持eMBB网络,以便提供到MAC层的差异化数据传送服务接入点,于是提供差异化QoS。该模型可对应于其中RAN网络被切片的情景,例如支持不同的核心网络切片,其中通过静态配置或半静态配置(例如,在会话建立时),配置与RAN网络切片关联的核心网络切片。
在另一个逻辑信道例子中,逻辑信道是为UE配置的网络切片所共有的。例如,逻辑配置可能不是特定于网络切片的。对于其中RAN不被切片,而核心网络被切片的部署情景,情况可能就是这样。来自不同网络切片的数据可能同时被映射到同一逻辑信道,来自不同逻辑信道的数据可以是由同一网络切片生成的数据。
在另一个逻辑信道例子中,逻辑信道配置是特定于为UE配置的各个参数集的。例如,在一些情况下,各个逻辑信道可只与UE上下文内的一个PHY参数集关联,逻辑信道携带的数据可只被映射到一个PHY 参数集。每个PHY参数集可与UE上下文内的不止一个逻辑信道关联。逻辑信道可被重新配置给另外的PHY参数集。作为本实施例的例子,并且由于参数集可具有不止一个TTI,gNB可以用映射到具有一个或多个 TTI的仅仅一个参数集的逻辑信道来配置UE。对于同一逻辑信道,gNB 可用与逻辑信道到下行链路方向的参数集和/或TTI的映射不同的到上行链路方向的参数集和/或TTI的映射来配置UE。
在另一个例子中,逻辑信道可以是为UE配置的物理层(PHY)参数集所共有的。例如,逻辑信道配置可能不是特定于PHY参数集的。例如,作为MAC调度决策的结果,给定逻辑信道上的数据可被动态(随着时间) 映射到不同的参数集。例如,对应于BCCH的逻辑信道的数据可被映射到专用于信息广播的物理信道(例如,PBCH)的参数集,或者映射到其他信令或数据业务使用的物理下行链路共享信道(比如PDSCH)的参数集。作为本实施例的例子,gNB可用映射到不止一个参数集的逻辑信道配置UE,每个参数集具有一个或多个TTI。对于同一逻辑信道,gNB可用逻辑信道到下行链路方向和上行链路方向的参数集和/或TTI的不同映射来配置UE。例如,对于UE被配置有的各个逻辑信道,逻辑信道被映射到的UL方向的一组参数集和/或TTI可能不同于逻辑信道被映射到的下行链路方向的一组参数集和/或TTI。
在一些情况下,上面说明的示例逻辑模型中的两个或更多个可被相互组合。例如,一些逻辑信道可被配置成是特定于网络切片的,而一些其他逻辑信道被配置成是两个或更多网络切片所共有的。映射到公共信令无线承载(SRB)的逻辑信道可用于为不止一个网络切片支持网络配置和控制平面信令。例如,核心网络工作可具有一个公共控制平面网络切片。与公共控制平面关联的NAS信令可被映射到无线接入网络中的公共 SRB。无线接入网络本身可具有映射到公共核心网络控制平面切片的公共控制平面RAN切片。在另一个例子中,gNB可以用映射到具有一个或多个TTI的仅仅一个参数集的一个无线承载,和映射到分别具有一个或多个TTI的不止一个参数集的另一个无线承载来配置UE。此外,无线承载到一个方向(例如,上行链路(UL)方向或下行链路(DL)方向)的参数集和 /或TTI的映射可能从同一UE的一个无线承载到另一个无线承载各不相同。
在一些情况下,逻辑信道到参数集和/或TTI的映射的配置可以是一步(一个阶段)的过程或者两步(两个阶段)。在示例的一个阶段的实施例中,参见图22和23,gNB可在RRC连接建立过程、RRC连接重新配置过程或RRC连接恢复过程期间,用信号向UE通知逻辑信道到参数集和/ 或TTI的映射。gNB还可以利用MAC控制元素(MAC CE)信令,用到参数集和/或TTI的逻辑信道映射来配置UE。在一些情况下,UE考虑例如在过程成功完成时有效的(例如适用的)所有映射配置。在示例的两个阶段的实施例中,参见图24和25,例如在RRC连接建立或RRC连接重新配置期间,首先(阶段1)通过RRC信令,用配置的逻辑信道和参数集和/或TTI之间的可能映射,配置UE。在第二个阶段,gNB通过MAC CE 信令,指令UE激活(使用)在第一阶段期间接收的部分或所有的映射配置。在一个实施例中,gNB通过明确映射,用逻辑信道到参数集和/或TTI的映射配置UE。例如,UE可被明确地配置在上行链路和/或在下行链路,对于各个逻辑信道允许的参数集和/或TTI。在另一个实施例中,UE隐含地得出逻辑信道到参数集和/或TTI的映射。例如,对于每个无线承载, gNB用在上行链路和/或在下行链路,对于该逻辑信道不允许的参数集和 /或TTI配置UE。对于每个逻辑信道,UE利用来自gNB的配置来识别哪些参数集和/或TTI是gNB允许的,哪些是gNB不允许的。
要明白的是进行图22-25中图解所示的步骤的实体可以是以软件 (即,计算机可执行指令)的形式实现的逻辑实体,所述软件保存在诸如图 52B和F中图解所示的为无线和/或网络通信配置的设备或计算机系统的存储器中,并在所述设备或计算机系统的处理器上运行。即,图22-25 中图解所示的方法可以保存在诸如图52B和F中图解所示的设备或计算机系统之类的设备的存储器中的软件(即,计算机可执行指令)的形式实现,当由所述设备的处理器执行时,所述计算机可执行指令进行图22-25 中图解所示的步骤。还要明白的是图22-25中图解所示的任意发送和接收步骤可以在所述设备的处理器和所述处理器执行的计算机可执行指令(例如软件)的控制下,由所述设备的通信电路进行。
现在转向示例的RRC逻辑信道配置信息元素(IE),图26图解说明 RRC逻辑信道配置IE和LogicalChannelConfig信息元素的例子。图27 是图解说明RRC配置参数集结构的例子的示图。对于各个分量载波, UE可被配置有参数集的列表,其中例如可如图27的数据结构所示那样定义每个参数集。在一些情况下,UE被配置有的整个一组参数集内的每个参数集都被索引。该结构中的参数NumerologyIndex指向为UE配置的参数集的列表中的一个参数集。每个参数集具有由参数tti-List表示的 TTI的列表。列举TTI的可能值(例如,TTI x、TTI y和TTI z)。参数集可被配置TTI的列表,它是TTI的可能值的子集。除非另有规定,否则在本文中,术语参数集索引和发送简档是可互换地使用的,而没有限制。
就MAC体系结构来说,现在说明各种示例模型。在一个例子中,在UE中配置一个MAC实体。该MAC实体是为UE配置的所有切片所共有的。在多重连接(例如,双重连接)中,按与网络中的不同调度器的连接,在UE中配置一个MAC实体。这些MAC实体中的每一个可以是为 UE配置的所有切片所共有的。多重连接可以指的是其中处于连接模式的多Rx/Tx UE被配置成利用由通过非理想回程连接的多个不同调度器提供的E-UTRA和/或NR之中的无线资源的操作模式。例如,在双重连接中,在UE中可配置两个MAC实体,一个用于MCG,一个用于SCG。每个MAC实体都是为UE配置的切片所共有的。在一些例子中,MAC 实体处理为NR定义的传输信道,例如,所述传输信道可以是以下传输信道的NR等同物:广播信道(BCH)、下行链路共享信道(DL-SCH)、寻呼信道(PCH)、上行链路共享信道(UL-SCH)、随机接入信道(RACH)、组播信道(MCH)、副链路广播信道(SL-BCH)、副链路发现信道(SL-DCH)、副链路共享信道(SL-SCH)。在一些情况下,各个MAC实体由RRC配置支持物理上行链路控制信道(例如,LTE PUCCH或等同的NR信道)发送和基于竞争的随机接入的服务小区。在例子中,对于各个MAC实体,可以按在UE中为例如业务传输信道(例如,eMBB,URLL或mMTC)配置的网络切片,配置传输信道中的一些。这可能意味即使不存在SCell,也可能存在多个DL-SCH(或者NR等同DL传输信道),并且按在UE中配置的每个MAC实体,可能存在多个UL-SCH(或NR等同UL传输信道)和RACH。如果MAC实体被配置一个或多个SCell,那么可能存在多个DL-SCH(或者NR等同DL传输信道),并且按在UE中配置的MAC 实体,可能存在多个UL-SCH(或者NR等同UL传输信道)和RACH;对于SpCell上的每个切片可能有1个DL-SCH和UL-SCH,对于每个切片可能有1个DL-SCH、0个或1个UL-SCH,以及对于每个SCell有0个或1个RACH。
作为另一个例子,对于每个切片在UE中配置一个MAC实体。在多重连接(双重连接)中,可按与网络中的不同调度器的连接,对于每个切片在UE中配置一个MAC实体。多重连接指的是其中处于连接模式的多个 Rx/Tx UE被配置成利用由通过非理想回程连接的多个不同调度器提供的E-UTRA和/或NR之中的无线资源的操作模式。例如,在双重连接中,对于每个切片在UE中配置两个MAC实体,一个用于MCG,一个用于 SCG。在这种示例情形下,为了使初始接入过程(例如,随机接入过程、寻呼或SI信息供应)为所有网络切片所共有,可在UE中配置专用于初始接入过程的处理的一个MAC实体。在多重连接(双重连接)中,按与网络中的不同调度器的连接,在UE中配置专用于初始接入过程的处理的一个MAC实体。该MAC实体由RRC配置支持物理上行链路控制信道(例如,LTE PUCCH或等同的NR信道)发送和基于竞争的随机接入的服务小区。在一些情况下,MAC实体处理为NR定义的传输信道,例如,以下传输信道的NR等同物:广播信道(BCH)、下行链路共享信道 (DL-SCH)、寻呼信道(PCH)、上行链路共享信道(UL-SCH)、随机接入信道(RACH)、组播信道(MCH)、副链路广播信道(SL-BCH)、副链路发现信道(SL-DCH)、副链路共享信道(SL-SCH)。可以按在UE中配置的网络切片,配置传输信道(例如,业务传输信道(例如,eMBB,URLL或 mMTC))。如果MAC实体被配置一个或多个SCell,那么存在多个 DL-SCH(或者NR等同DL传输信道),并且按在UE中配置的MAC实体,可能存在多个UL-SCH(或者NR等同UL传输信道)和RACH;对于 SpCell上的每个切片有1个DL-SCH和Ul-SCH,对于每个切片可能有1 个DL-SCH、0个或1个UL-SCH,以及对于每个SCell有0个或1个 RACH。
在另一个例子中,实现上述例子的组合,其中一些MAC实体为网络切片所共有,而一些MAC实体是特定于切片的。
PHY参数集对MAC子层是可见的。对于UE被配置的每个PHY参数集,UE MAC可具备相关配置(例如,TTI、子载波间隔、CP长度、频率-时间域资源映射等)。在另一个实施例中,MAC配置没有明确的参数集配置。相反,在一些情况下,对于每个分量载波定义参数集配置,作为分量载波配置的一部分。例如,参数集配置可被定义为IE结构的一部分,比如LTE中用于指定UE特有的物理信道配置的 PhysicalConfigDedicated结构的pdsch-ConfigDedicated(下行链路中)或 pucch-ConfigDedicated(上行链路中)。对于UE PHY被配置的各个参数集,UE PHY子层可以使参数集配置对UE MAC可见。在另一种备选方案中,PHY不向MAC暴露参数集配置。相反,MAC可依赖于参数集的优先权值、逻辑信道优先权、以及到参数集配置的逻辑信道映射来进行逻辑信道多路复用和调度功能。
在一些情况下,MAC调度器通过适当的分量载波调度(例如,通过确保基于就支持的参数集和/或TTI来说的各个分量载波配置信息,来自逻辑信道或来自数据无线承载的数据只被映射到只支持允许的参数集和/ 或TTI的子集或全部的分量载波)强制执行承载到正确参数集的映射,或者更具体地,(承载被映射到的)逻辑信道到正确参数集的映射。在该示例选项中,MAC调度器不把数据从逻辑信道调度到具有对该逻辑信道来说不被允许的一个或多个参数集的分配载波,即使该分量载波也配置有对所述逻辑信道来说被允许的至少一个参数和/或TTI。
可按照各个示例实施例,对HARQ进行建模。在一个例子中,在下行链路中,对于每个服务小区,在MAC实体存在一个维持若干并行HARQ进程的HARQ实体。类似地,在上行链路中,对于具有配置的上行链路的每个服务小区,在MAC实体可存在一个HARQ实体,所述 HARQ实体维持若干并行HARQ进程,从而允许在等待关于以前的发送的成功或不成功接收的HARQ反馈的时候,连续地进行发送。HARQ实体可以是网络切片所共有的。例如,在一些情况下,HARQ实体不是特定于网络切片的。来自不同网络切片的数据可被映射到同一HARQ实体,来自同一网络切片的数据可在不同的HARQ实体上配置。每个HARQ 实体的并行HARQ进程的数目可以是可配置的,例如通过RRC信令来配置。在一些情况下,HARQ实体可被配置成支持不止一个PHY参数集。例如,来自一个HARQ实体的数据可以利用来自不止一个参数集的资源发送。在同一HARQ实体内,具有不同PHY参数集(例如,归因于等待时间要求的较短TTI/符号长度等)的数据可被映射到不同的HARQ进程。这种选项的示例实施例是每个分量载波(小区)存在一个HARQ实体,其中每个分量载波支持不止一个参数集和/或TTI。可以对于每个分量载波定义参数集配置,作为分量载波配置的一部分,例如,作为IE结构的一部分,比如LTE中用于指定UE特有的物理信道配置的 PhysicalConfigDedicated结构的pdsch-ConfigDedicated(下行链路中)或 pucch-ConfigDedicated(上行链路中)。
在另一个例子中,对于具有配置的上行链路的每个服务小区,在 MAC实体对于每个网络切片存在一个HARQ实体,所述HARQ实体维持若干并行HARQ进程,从而允许在等待关于以前的发送的成功或不成功接收的HARQ反馈的时候,连续地进行发送。
在另一个例子中,HARQ实体是特定于网络切片的。例如,来自不同网络切片的数据可被映射到不同的HARQ实体。每个网络切片可具有不止一个HARQ实体。每个HARQ实体的并行HARQ进程的数目可以是可配置的,例如通过RRC信令来配置。
在另一个例子中,HARQ实体是特定于参数集的。例如,每个HARQ 实体可被配置特定的PHY参数集,从HARQ实体发送的所有数据可利用相同的PHY参数集。这种选项的示例实施例是每个分量载波(小区)存在一个HARQ实体,其中每个分量载波是利用仅仅一个参数和/或TTI 定义的。
在一些情况下,HARQ实体不是特定于参数集的。作为调度决策的结果,向从HARQ实体发送的数据的参数集赋予可以是动态的。
在另一种示例的HARQ模型中,实现上述示例选项中的两种或更多种选项的组合。例如,一些HARQ实体可被配置成是网络切片特有的,而一些其他的HARQ实体可被配置成两个或更多个网络切片之间的公共 HARQ实体。
根据关于RB、逻辑信道、MAC和HARQ的上述可能模型,现在说明NR无线数据链路(L2)体系结构的以下实施例。要明白的是尽管为了举例说明,利用UL L2结构例示了这些实施例,不过,同样的概念也可适用于下行链路。
现在参见图28,按照示例实施例,使用切片特有L2结构。图28描述支持切片特有RB、切片特有逻辑信道和切片特有MAC子层的UL L2 结构的例子。该例子支持其中在切片之间共享公共物理资源池的配置,以及其中物理资源(即,分量载波(CC)和/或波束)是特定于切片的配置。在这个例子中,参见图28,PHY的多波束性暴露给MAC子层。例如,波束配置可以为MAC子层所知。在一些情况下,如果在UE处支持多波束上的UL发送,那么可以每个波束使用单独的HARQ实体。波束配置也可以是特定于切片的。在一个实施例中,波束配置可以对MAC可见,但是不是特定于HARQ实体的,所有的HARQ实体或服务小区可以对于每个网络切片共享相同的波束配置。或者,这些细节可以对MAC子层保持透明,在这种情况下,每个CC可存在一个HARQ实体,与每个 CC、每个波束具有一个HARQ实体相反。在一些情况下,对于在本节中描述的各个体系结构例子,也可构思备选例子,其中每个服务小区存在一个HARQ实体,而与在UE或NR节点,用于发送的波束的数量无关。例如,对于UL数据结构,在UE,每个服务小区(分量载波)可存在一个HARQ实体,而与UE使用的发送波束的数量无关。图29中给出了例子。类似地,在DL中,在一些情况下,在NR节点,每个服务小区 (分量载波)可存在一个HARQ实体,而与NR节点使用的发送波束的数量无关。
在一些例子中,MAC子层负责多路复用来自逻辑信道的数据,和把生成的传输块映射到UE已获得UL授权的CC/波束。
现在参见图30,图中表示了支持切片特有RB和逻辑信道以及公共 MAC子层的ULL2结构的例子。该例子可支持其中在切片之间共享公共物理资源池的配置。在图30中所示的本实施例中,PHY的多波束性和支持的参数集暴露给MAC子层。在一些情况下,如果在UE处支持多波束上的UL发送,那么可以对于每个波束使用单独的HARQ实体。或者, PHY的这些特性之一或两者可对MAC子层保持透明。例如,在一些情况下,对于每个参数集、每个波束、每个CC不存在一个HARQ实体,而是对于每个CC存在一个HARQ实体。
MAC子层可负责多路复用来自逻辑信道的数据,和把生成的块映射到UE已获得UL授权的CC/波束/参数集。
现在参见图31,L2结构支持切片特有RB、切片特有逻辑信道、用于进行调度和多路复用的公共上部MAC层、和切片特有HARQ。在这个例子中,UL共享传输信道(或者NR中的等同信道)是特定于切片的。例如,URLL网络切片可被映射到具有连同PHY信道一起配置以满足URLL要求的传输信道的专用HARQ。每个CC可存在不止一个切片,于是,在CC内可存在不止一个HARQ和不止一个关联的传输。
图32中描述的例子类似于图31中描述的例子,不过RB和逻辑信道不是特定于切片的。
现在参见图33,BR和逻辑信道是特定于切片的。包括HARQ实体的MAC为切片所共有,从而它们不是特定于切片的。该例子类似于图 30中描述的例子,不过诸如UL传输信道(UL SCH或NR等同物)之类的传输信道是特定于切片的。在该模型中,每个HARQ实体可具有多个 UL SCH,例如每个切片一个。属于不同切片的传输信道与具有HARQ 实体的不同HARQ进程关联。
参见图34,图中表示了其中L2结构可以是特定于切片的,而对于一些其他网络切片而言只有RB和逻辑信道是特定于切片的示例体系结构。
现在转向QoS保障和承载映射,如上所示,分组标记可以是包含在分组封装报头中,以便唯一地使由给定业务流过滤器(TFF)或业务流过滤器模板表征的数据分组与预定的匹配QoS规格关联的标记。用于进行分组标记的分组标记例如可以是但不限于下述中的一个或多个:应用ID、流优先权指示符(FPI)、QoS流ID、分组优先权指示符(PPI)、分组丢弃优先权指示符(PDPI)、反射QoS指示(RQI)、或者只是任意标量值。可以规定分组标记的部分或全部的值范围,以允许AN和CN节点之间的互操作性。
参见图35,图中表示了说明在把UE附接到网络时,用于QoS规格的预批准的控制平面信令的示例流程,以便为随后的服务特有PDU会话加速和使控制平面等待时间降至最小。出现举例说明的目的,CN被分解成CN UP功能和CN CP功能。CN CP功能被进一步分解成CNCP移动性管理(MM)和会话管理(包括QoS控制)功能、CN CP策略功能和CN订阅功能。与EPS/LTE体系结构类似,CN CP功能可对应于S-GW和P-GW 托管的功能。类似地,CN CP功能可对应于例如由MME、PCRF和HSS 托管的功能。
按照该例子,在1,OA&M实体利用支持的QoS规则配置CN CP 功能,具体地,CN CP策略功能。所述规则可包括公共QoS规则和网络切片特有规则。OA&M实体可用CN CP和UP功能可支持的QoS能力,配置这些功能。配置的能力例如可用于接纳控制或者流量调节,例如,CN CP可把配置的OA&M能力用于接纳控制决策,而CN UP可利用配置的能力来进行流量调节。所述能力可以是网络切片特有能力的公共能力,例如可以各种系统能力度量(例如,DL&UL前传带宽、DL&UL 回传带宽、最大CPU使用率等)和负荷度量(例如,DL&UL最大数据速率、每个PDU会话类型的最大会话数等)的形式来定义。能力的例子可以是可通过CN UP功能流动的总聚合数据速率。类似地,OA&M实体可用AN CP功能和AN UP功能可支持的QoS能力,配置这些功能。所述能力可以是网络切片特有能力的公共能力,例如可以各种系统能力度量和负荷度量的形式来定义。OA&M实体还可用UE可支持的QoS能力,配置UE(例如,通过DM OTM过程)。所述能力可以是网络切片特有能力的公共能力,例如可以各种设备能力度量或负荷度量的形式来定义。被配置以OA&M配置参数的网络节点可向OA&M实体返回 ACK/NACK,即配置的结果(成功或失败)。
在2,按照该例子,在AN和CN之间交换配置信息。在2a,为AN CP功能和CN CP功能在AN-CN接口上正确地互操作所需的AN-CN接口应用层配置数据被更新,以支持QoS资源能力,例如网络切片特有QoS 资源能力。在一些情况下,该过程可能不会影响现有的UE相关上下文(如果有的话)。AN CP功能可发起该过程。参见2b,在例子中,更新QoS 相关参数的“CN配置更新(QoS)”的目的是更新为AN CP功能和CN CP 功能在AN-CN接口上正确地互操作所需的AN-CN接口应用层配置数据,以支持QoS资源能力,例如网络切片特有QoS资源能力。在一些情况下,该过程不影响现有的UE相关上下文(如果有的话)。CN CP功能可发起该过程。
仍然参见图35,按照该例子,在3,UE发起对于网络的登记/附接过程。UE可在附接过程中,包含可允许网络的扩展QoS预批准的辅助信息。这里使用的扩展QoS可以指的是除与UE订阅所允许的默认PDU 会话关联的QoS规则外,服务所需的一组QoS规则。辅助信息可以是特定于网络切片的,或者特定于服务系列/用例(例如,eMBB、URLL、mMTC) 的。辅助信息可包括关于UE的使用设定、优选网络行为、UE能力(包括网络能力)、(预)配置的QoS规则、和其他配置/安装的应用信息(例如应用ID和需求)的信息。附接过程可以是为了利用批准的QoS规则对UE 的预先配置,从网络侧轮询的结果(例如,DM OTA机制)。
在4,按照该例子,考虑到UE订阅信息、网络策略、来自UE的辅助信息和网络负荷,CN CP功能预先批准一组QoS规则。QoS规则可以指的是使服务数据流的检测成为可能,并定义其关联的QoS参数或规格 (包括QoS标记)的一组信息。CN CP可为多个服务数据流或者仅仅分组流预先批准QoS规则。在一些例子中,CN CP用预先批准的QoS规则配置CN UP。
在5,CN CP用信号把批准的与AN相关的QoS规则的信息通知AN CP功能,从而在AN中可以预先建立对应的承载(或L2数据链路结构)。 CN CP向AN CP功能提供批准的QoS规格和每个规格的标记(NAS级 QoS流ID的NAS级QoS标记)。如前所述,与QoS规格关联的标记被CN UP用于进行分组标记。QoS规格是QoS参数的全部或子集的组合。可选地,CN CP还可向ANCP功能提供TFT,以及它们与QoS规格的关联。CN CP还可向AN CP功能提供在PDU会话的上下文内,唯一地识别数据流的标识符。所述标识符可识别单一分组流,或者一组分组流,例如SDF。这里,这种标识可被称为分组流标识。AN CP功能可用用于预先批准的分组流的DRB,配置AN UP节点。在一些情况下,AN UP 节点中的DRB配置也可能发生在UE中的DRB的配置之后。在UP(AN UP和CN UP)中,可以创建AN UP节点(DRB)和CN UP节点(分组流) 之间的服务接入点(SAP)处的用户平面中的关联。
仍然参见图35,在6,按照该例子,AN CP节点向UE发起DRB(预) 建立。例如,这可通过与RRC重新配置过程类似的过程进行。AN CP 节点用信号向UE通知关于每个规格的标记(AS级QoS标记或AS级QoS 流ID)和关于批准的QoS规格(DL和/或UL)的DRB配置。配置还可包括关于每个DRB或一组DRB的分组流标识。图36中表示了配置的例子。在一些例子中,在DL中,UE利用分组流标识来识别匹配的一个或多个DRB,从而接收的数据被路由到上层的正确SAP。类似地,在UL 中,UE利用分组流标识来识别匹配的一个或多个DRB,从而接收的数据被路由到正确的DRB,以便进行UL发送。这里使用的这种标识可以用许多术语来表示,例如DRB-分组流绑定ID、DRB-分组流SAP ID、网络会聚协议SAP ID等。DRB和分组流之间的关联以及数据分组到 DRB的映射的细节在下面进一步讨论。
在7,UE和CN CP节点通过NAS信令,外加通过AN的直接消息传输,交换预批准的QoS规则的上层配置,它可包括批准的QoS规格和每个规格的标记(NAS级QoS流ID的NAS级QoS标记)。所述配置还包括每个分组流或一组分组流的分组流标识,它是传送给UE AS的相同分组流标识符。在8,附接完成消息(或者等同的消息)被发给网络,以指示 UE登记的完成。应注意的是此时,在一些情况下,通过预先建立的DRB 的数据传输是不可能的。不过,如果附接过程包括默认分组流连接的建立,那么通过该默认分组流连接,数据传输也许是可能的。
要明白的是进行图35中图解所示的步骤的实体可以是以软件(即,计算机可执行指令)的形式实现的逻辑实体,所述软件保存在诸如图52B和 F中图解所示的为无线和/或网络通信配置的设备或计算机系统的存储器中,并在所述设备或计算机系统的处理器上运行。即,图35中图解所示的方法可以保存在诸如图52B和F中图解所示的设备或计算机系统之类的设备的存储器中的软件(即,计算机可执行指令)的形式实现,当由所述设备的处理器执行时,所述计算机可执行指令进行图35中图解所示的步骤。还要明白的是图35中图解所示的任意发送和接收步骤可以在所述设备的处理器和所述处理器执行的计算机可执行指令(例如软件)的控制下,由所述设备的通信电路进行。
现在转向分组流和DRB激活的例子,参见图37,示例的调用流程描述了分组流和DRB激活的C平面信令。图37的步骤1-6与上面说明的图35的步骤3-8相同。
在7,触发新PDU会话建立或者现有PDU会话的更改。这可以由 UE(步骤7a)或CN CP节点(例如,CN CP策略实体,步骤7b),或者应用服务器(步骤7c)触发,或者由AN(步骤7d)触发。例如,如果AN UP 节点例如接收到UL中的分组,并且检测到在现有PDU会话的上下文内,与QoS规格不具有关联的分组标记,那么AN可以触发该PDU会话的更改。
仍然参见图37,在8,CN策略功能批准新的QoS规则,并通知用于会话管理和QoS控制的CN CP功能。给CP功能的通知可包括批准的 QoS规格,和将在CN UP功能进行的分组标记中使用的关联的分组标记。 CN UP也被通知批准的QoS规则。
在9,CN CP会话管理和QoS控制功能随后向AN CP节点发起与批准的QoS规格对应的预先建立的分组流的激活。CN CP节点向AN CP 节点提供要激活的预先建立的流的分组流标识符。在该阶段,CN CP节点还可发起以前未被批准的分组流的建立。例如,如果AN CP节点决定改变以前预先建立的分组流的标记,那么CN可将其作为非预先建立的分组流的建立来处理。这种情况下,CN CP节点向AN CP节点提供批准的QoS规格,以及每个对应的QoS规格的标记。如前所述,与QoS规格关联的标记被CN UP节点用于进行分组标记。可选地,CN CP节点还可向AN CP节点提供TFT,以及它们与QoS规格的关联。在一些情况下,AN CP节点对正在为其请求激活或建立的分组流进行接纳控制。对于各个PDU会话,AN CP节点可向AN UP节点提供DRB ID和激活的预批准分组流的分组流标识符。在一些例子中,AN CP节点还用用于新建立的分组流的DRB配置了AN UP节点。对于每个接纳的分组流,可以配置一个或多个DRB。在UP(AN UP节点和CN UP)中,对于新建立的分组流,即,对于与预批准的分组流不同的分组流,创建AN UP节点 (DRB)和CN UP节点(分组流)之间的服务接入点(SAP)处的用户平面中的关联。
在10,按照该例子,AN CP节点向UE发起DRB激活。对于每个 PDU会话,激活消息包括DRB ID,可能还包括要激活的DRB的对应分组流标识符。AN CP节点还用信号向UE通知关于不是以前预先建立的 QoS规格(DL和/或UL)的新DRB的配置和关于每个规格的标记。该配置还包括每个DRB或一组DRB的分组流标识,参见图36的配置的例子。在DL中,UE利用分组流标识来识别匹配的一个或多个DRB,从而接收的数据被路由到上层的正确SAP。类似地,在UL中,UE利用分组流标识来识别匹配的一个或多个DRB,从而接收的数据被路由到正确的DRB,以便进行UL发送。尽管我们把DRB和分组流关联标识称为分组流标识,不过该标识可以用许多其他术语来表示,例如DRB-分组流绑定 ID、DRB-分组流SAP ID、网络会聚协议SAPID等。DRB和分组流之间的关联以及数据分组到DRB的映射的细节在下面讨论。可以使用RRC信令。在一些情况下,对于DRB激活,也可以使用MAC CE信令。
在11,UE向AN CP节点发送DRB激活/新DRB建立响应消息。在 12,UE向AN CP节点发送NAS直接传输消息,以确认分组流的激活/ 新建立。在13,AN CP节点把UE响应消息中继给CN CP节点。在14, CN CP节点把UE响应消息中继给CN UP节点。在该步骤,可以执行以下动作(如果未执行过的话)。例如,对于各个PDU会话,AN CP节点可向AN UP节点提供DRB ID,以及激活的预批准分组流的分组流标识符。 AN CP节点还可用用于新建立的分组流的DRB,配置AN UP节点。对于每个接纳的分组流,可以配置一个或多个DRB。在UP(AN UP和CN UP) 中,对于新建立的分组流,即,对于与预批准的分组流不同的分组流,创建AN UP节点(DRB)和CNUP节点(分组流)之间的服务接入点(SAP) 处的用户平面中的关联。在15和16,如果需要,那么CN CP节点把UE 响应消息中继给CN策略功能和网络应用功能。
要明白的是进行图37中图解所示的步骤的实体可以是以软件(即,计算机可执行指令)的形式实现的逻辑实体,所述软件保存在诸如图52B和 F中图解所示的为无线和/或网络通信配置的设备或计算机系统的存储器中,并在所述设备或计算机系统的处理器上运行。即,图37中图解所示的方法可以保存在诸如图52B和F中图解所示的设备或计算机系统之类的设备的存储器中的软件(即,计算机可执行指令)的形式实现,当由所述设备的处理器执行时,所述计算机可执行指令进行在图37中图解所示的步骤。还要明白的是图37中图解所示的任意发送和接收步骤可以在所述设备的处理器和所述处理器执行的计算机可执行指令(例如软件)的控制下,由所述设备的通信电路进行。
现在转向控制平面(CP)中的分组流和DRB之间的关联,图38中描述了3个例子。在一个例子(选项1)中,在分组流和一个DRB之间存在静态或半静态绑定。例如,AN CP节点(例如,gNB CP功能)配置一个 DRB或选择一个DRB(如果已配置的话),所述一个DRB能够满足正配置或选择所述DRB以支持的分组流的QoS规格。AN CP节点把该DRB 绑定到分组流。作为所述绑定的一部分,AN CP节点可例示把DRB链接到分组流的内部用户平面协议栈数据结构(下行链路和上行链路)。在一个实施例中,AN CP节点把DRB、分组流标识符、QoS规格和将在用户平面中用于进行分组标记的对应分组标记之间的关联记录在其绑定表格 (内部存储器、数据库等)中。在该选项中,一个分组流(及一个标记)被绑定到仅仅一个DRB。在DRB被重新配置(由AN CP节点、UE、CN或应用服务器触发),或者PDU会话被重新配置或更改之前,该绑定仍然有效。在另一个实施例中,分组流可以与链接AN UP节点和CN UP节点的隧道(下行链路和上行链路)关联。与分组流标识符关联的分组流与相同隧道(上行链路中和下行链路中)关联。在该备选实施例中,AN CP节点绑定DRB和隧道(上行链路方向和下行链路方向)。一个DRB被绑定到仅仅一个隧道(上行链路中和下行链路中)。
对于每个配置的DRB,AN CP节点用对应的分组流标识符配置 UE(参见图36)。配置消息可以通过MAC信令(例如在DRB激活的情况下,或者在近DRB建立的情况下,通过RRC信令)。CN CP节点还用上层(AS之上的层,即NAS)配置信息(例如,与映射到该DRB的分组流关联的QoS规格以及分组流标识符和对应的QoS标记)配置UE。UE利用分组流标识符和/或标记,绑定DRB(上行链路和下行链路中)和与DRB 被配置成支持的分组流关联的上层SAP。如前所述,这里一般使用术语分组流,分组流可能指的是一组分组流(例如,服务数据流)。
在另一个例子(选项2,图38)中,在分组流和多个DRB之间存在静态/半静态绑定。按照该例子,AN CP节点配置不止一个DRB或选择不止一个DRB(如果已配置的话),所述不止一个DRB能够满足正配置或选择所述DRB以支持的分组流的QoS规格。与下面进一步说明的另一个例子(选项3)相反,本选项的目的是提供灵活的QoS支持,而不在空口上增加额外开销。例如,在下行链路中,AN UP节点可动态地从通过配置绑定到接收的分组所属的分组流的一组DRB中,选择用于发送接收的分组的DRB。AN CP节点可根据需要频繁地向AN UP节点指示通过配置绑定到分组流的一组DRB之中的要使用的DRB。AN CP节点可使这样的决策基于例如下述中的一个或多个:总体接入网络负荷情况(它可包括无线接口负荷情况、前传、回传负荷情况,和硬件负荷情况),服务订阅等级(例如,铂金用户、黄金用户、白银用户、青铜用户等),NR节点从 CN或者从另外的NR节点接收的RAT/频率优先权的订户简档ID(SPID)参数。注意,SPID是涉及用户信息(例如,移动性简档、服务使用简档) 的索引。该信息是特定于UE的,适用于其所有无线承载。
在一些情况下,AN CP节点把所述一组DRB绑定到分组流(下行链路和上行链路中)。作为所述绑定的一部分,AN CP节点可例示把所述一组DRB链接到分组流的内部用户平面协议栈数据结构。在一个实施例中, AN CP节点把所述一组DRB、分组流标识符、对应的QoS规格和将在用户平面中用于进行分组标记的对应分组标记之间的关联记录在其绑定表格(内部存储器、数据库等)中。在所述一组DRB被重新配置(由AN CP 节点、UE、CN或应用服务器触发),或者PDU会话被重新配置或更改之前,该绑定仍然有效。在另一个实施例中,分组流可以与链接AN UP 节点和CN UP节点的隧道(下行链路和上行链路)关联。与分组流标识符关联的分组流与相同隧道(上行链路中和下行链路中)关联。在该备选实施例中,AN CP节点绑定所述一组DRB和隧道(上行链路方向和下行链路方向)。在一些情况下,一组DRB被绑定到仅仅一个隧道(上行链路中和下行链路中)。
对于每组配置的DRB,AN CP节点用对应的分组流标识符配置 UE(参见图36)。配置消息可以通过MAC信令(例如在DRB激活的情况下,或者在近DRB建立的情况下,通过RRC信令)。CN CP节点还用上层(AS之上的层,即NAS)配置信息(例如,与映射到该组DRB的分组流关联的QoS规格以及分组流标识符和对应的QoS标记)配置UE。UE 利用分组流标识符和/或标记,绑定该组DRB(上行链路和下行链路中)和与该组DRB被配置成支持的分组流关联的上层SAP。如前所述,这里一般使用术语分组流,分组流可能指的是一组分组流(例如,服务数据流)。
在另一个例子(图38中的选项3)中,不存在流与DRB的绑定。分组被动态映射到DRB。例如,在一些情况下,不存在通过UE或AN中的配置,DRB和分组流之间的绑定。就用于发送接收的分组的DRB的选择是有点动态的这点来说,NR节点和UE两者的行为与在选项2中描述的类似。在下行链路中,AN CP节点动态选择用于发送的DRB,并通知 AN UP节点,AN UP节点随后利用该DRB,直到AN CP节点发出更改通知为止。AN UP节点还可自主选择在数据分组接收时使用什么DRB。类似地,在上行链路中,UE可动态选择在接收来自UE的上层的数据分组时使用哪个DRB。下面解决的一个问题是如何把接收的分组路由到正确的上层SAP,因为在DRB和上层SAP之间不存在配置的绑定。
现在转向用户平面中的数据分组到承载的映射,在例子中,假定通过配置绑定DRB和分组流,其中一个分组流只被绑定到一个DRB,并且一个DRB只被绑定到一个分组流。具有不同标识符的两个分组流被绑定到不同的DRB。就AN UP节点中的DL来说,在例子中,AN UP节点利用接收的分组的隧道来识别用于发送接收的下行链路分组的DRB。在另一个实施例中,AN UP节点利用包含在接收的分组中的标记来识别用于发送接收的下行链路分组的DRB。AN UP节点把接收的分组映射到识别的DRB,以便发送。AN UP节点可通过把发送的分组的QoS标记包含在该分组中,进行分组标记。就AN UP节点中的UL来说,在一个例子中,AN UP节点利用DRB数据链路结构和与DRB关联的隧道或数据链路结构之间的内部绑定/关联,向CN UP节点路由接收的分组。在另一个实施例中,AN UP节点利用包含在接收的分组中的标记来识别该分组的分组流和到CN UP节点的路由路径。就UE中的DL来说,在例子中,当在下行链路中收到分组时,UE把该分组转发给与收到该分组的 DRB关联的上层服务接入点(SAP)。在一个实施例中,UE利用DRB和上层SAP之间的其内部绑定/关联。在另一个实施例中,UE利用接收的分组中的标记来识别与该DRB关联的上层SAP。就UE中的UL来说,在一个例子中,在上行链路中,UE从与分组流标识符关联的上层SAP 接收分组数据。UE例如从其内部数据库,识别与SAP关联的DRB,在所述内部数据库中,保持SAP和DRB之间的映射。UE把来自上层SAP 的接收分组传送给与识别的DRB关联的PDCP实体(或者NR等同物)。 UE可通过把与分组流标识符关联的QoS标记包含在发送的分组的报头中,进行分组标记。
在其中在分组流和多个DRB之间存在静态/半静态绑定的另一个例子中,假定通过配置绑定DRB和分组流,其中一个分组流被绑定到一组 DRB,而一组DRB只被绑定到具有一个分组流标识符的一个分组流。两组不同的DRB被绑定到具有不同的分组流标识符的不同分组流。在RB 建立(预先建立的承载的激活或者新的承载的建立)期间,AN CP节点识别能够满足分组流的QoS要求的一组QoS规格,并把匹配这些QoS规格的一组DRB绑定到该分组流。
该例子可允许灵活的QoS差异化,其中用于特定分组的DRB可在接收该分组时决定,或者至少可随时间而变化,而不存在AN CP节点和 UE之间的重新配置信令。
在一个实施例中,AN UP节点利用接收的分组的隧道来识别可用于发送接收的下行链路分组的一组DRB。在另一个实施例中,AN UP节点利用包含在接收的分组中的标记来识别可用于发送接收的下行链路分组的一组DRB。
以下实施例可用于在一组DRB中确定要用于发送接收的分组的 DRB。在一个实施例中,AN CP节点(例如,控制平面中的gNB)可从通过配置绑定到分组流的一组DRB中,动态选择用于发送接收的分组的 DRB。AN CP节点随后把选择的用于发送该分组的DRB通知ANUP节点。AN CP节点可使这样的决策基于例如下述中的一个或多个:总体接入网络负荷情况(它可包括无线接口负荷情况,前传、回传负荷情况,和硬件负荷情况),服务订阅等级(例如,铂金用户、黄金用户、白银用户、青铜用户等),NR节点从CN或者从另外的NR节点接收的RAT/频率优先权的订户简档ID(SPI)参数。注意,SPID是涉及用户信息(例如,移动性简档、服务使用简档)的索引。该信息是特定于UE的,适用于其所有无线承载。在从AN UP节点触发时,或者在预先配置的周期性的情况下定期地触发时。AN UP节点可以例如在分组接收时或者按照预先配置的周期性定期地触发AN CP节点进行DRB选择。在另一个实施例中,AN UP节点可自主地从通过配置绑定到分组流的一组DRB中,动态选择用于发送接收的分组的DRB。AN UP节点把接收的分组映射到选择的 DRB,以便发送。AN UP节点可通过在发送的分组中包含该分组的QoS 标记,进行分组标记。
在一个实施例中,AN UP节点利用DRB数据链路结构和与DRB关联的隧道或数据链路结构之间的内部绑定/关联,向CN UP节点路由接收的分组。在另一个实施例中,AN UP节点利用包含在接收的分组中的标记来识别该分组的分组流和到CN UP节点的路由路径。就UE中的DL 来说,当在下行链路中收到分组时,UE把该分组转发给与收到该分组的 DRB关联的上层服务接入点(SAP)。在一个实施例中,UE利用DRB和上层SAP之间的其内部绑定/关联。在另一个实施例中,UE利用接收的分组中的标记来识别与该DRB关联的上层SAP。就UE中的UL来说,在例子中,UE从与分组流标识符关联的上层SAP接收分组数据。UE例如从其内部数据库,识别与SAP关联的一组DRB,在所述内部数据库中,保持SAP和DRB之间的映射。UE随后从识别的一组DRB中选择DRB。 UE可按照下述实施例之一来选择DRB。UE在UL中使用与用于对应的下行链路分组流的DRB相同的DRB。应注意的是DRB可被映射到下行链路分组流和上行链路分组流。本实施例设想UE以前已接收同一分组流(即,相同分组标识符)的下行链路分组。在另一个实施例中,UE自主地从识别的一组DRB中选择DRB。这样的选择可基于(通过RRC信令或MAC CE信令)来自AN CP的指示。或者,UE可使其选择基于下述中的一个或多个:总体接入网络负荷情况(它可包括无线接口负荷情况,前传、回传负荷情况,和硬件负荷情况),服务订阅等级(例如,铂金用户、黄金用户、白银用户、青铜用户等),关于QoS规格使用的运营商策略(例如,基于负荷估计和订阅简档)。
UE把把来自上层SAP的接收分组传送给与选择的DRB关联的 PDCP实体(或者NR等同物)。UE可通过在发送的分组的报头中包含与分组流标识符关联的QoS标记,进行分组标记。
在其中不存在流与DRM的绑定的另一个方面中,不存在通过配置在DRB与分组流之间的绑定,就用于发送接收的分组的DRB的选择是动态的这点来说,NR节点和UE两者的行为与在选项2中描述的类似。在下行链路中,NR节点动态选择在接收数据分组时使用的DRB。类似地,在上行链路中,UE动态选择在接收来自UE的上层的数据分组时使用哪个DRB。
这里认识到要解决的一个问题是如何把接收的分组路由到正确的上层SAP,因为在DRB和上层SAP之间不存在配置的绑定。为了解决该问题,在这里说明的一个例子中,位于下层的接入层(AS)SAP(例如, PDCH或NR等同物)之上的新的分组流封装协议(FEP)。在一些情况下, FEP在网络/传输层(例如,在IP数据的情况下,UDP/IP或PDCP/IP)之下。尽管这里使用了术语流封装协议,不过也可以使用术语数据服务自适应协议(SDAP)。从而,FEP和SDAP在本文中可以互换使用,而没有限制。
就AN UP节点中的下行链路来说,在一个实施例中,AN UP节点利用包含在接收的分组中的标记来识别并选择QoS规格,于是识别并选择可用于接收的下行链路分组的发送的DRB。
这可允许灵活的QoS差异化,其中用于特定分组的DRB可在接收该分组时决定,或者至少可随时间变化而不存在AN CP节点和UE之间的重新配置信令。各种示例机制可用于确定QoS规格,于是,确定用于接收的分组的发送的DRB。在一个例子中,AN CP节点(例如,控制平面中的gNB)可根据作为例子而非限制地给出的下述中的一个或多个,动态选择QoS规格:总体接入网络负荷情况(它可包括无线接口负荷情况,前传、回传负荷情况,和硬件负荷情况),服务订阅等级(例如,铂金用户、黄金用户、白银用户、青铜用户等),NR节点从CN或者从另外的NR 节点接收的RAT/频率优先权的订户简档ID(SPID)参数。AN CP节点可依据来自AN UP节点的触发或者按预先配置的周期性定期地动态选择 QoS规格。AN UP节点可以例如在分组接收时或者按照预先配置的周期性定期地触发AN CP节点进行DRB选择。在另一个实施例中,AN UP 节点可自主动态选择QoS规格,于是选择用于接收的分组的发送的DRB。在选择QoS规格时,如果不存在具有与选择的QoS规格匹配的QoS规格的已建立的DRB,那么可能需要建立新的DRB。选择DRB的节点(AN CP节点或AN UP节点)可触发新的DRB建立。AN UP节点可触发AN CP 节点发起新的DRB建立。
在一些情况下,AN UP节点把接收的分组映射到选择的DRB,以便发送。AN UP节点可通过在发送的分组的报头(FEP报头)中包含该分组的QoS标记,进行分组标记。AN UP节点还可把另外的信息(例如,绑定标识符、分组流标识符等)包含在分组报头中,以帮助UE中的分组到正确的上层服务接入点(SAP)的路由。
就AN UP节点中的上行链路来说,按照一个例子,AN UP节点可利用包含在接收的分组的报头(FEP报头)中的信息(例如,QoS标记、绑定标识符、分组流标识符)来识别该分组的分组流和到CN UP节点的路由路径。类似于下行链路情况,AN UP节点可自主识别到CN UP节点的上行链路路由路径。或者,CP CP节点可以向CN UP节点通知用于把接收的分组路由到CN UP的路由路径。AN CP节点可以利用QoS标记(和/或来自分组报头的信息,比如绑定标识符、分组流标识符)与路由路径之间的关联表格,预先配置AN UP节点。AN UP节点可触发AN CP节点获取关于路由路径与接收分组的报头的内容之间的关联的信息。所述触发可以在分组接收时发生,或者是基于预先定义的周期性的定期请求。
就UE中的下行链路来说,在一个例子中,当在下行链路中收到分组时,UE利用包含在接收的分组的报头(FEP报头)中的QoS标记来识别上层服务接入点(SAP),以便递送接收的分组。在另一个实施例中,UE 可以利用封装在分组报头中的绑定标识符(例如,隧道标识符、分组流标识符等)来识别上层服务接入点(SAP),以便递送接收的分组。在另一个实施例中,UE可利用接收的分组的报头中的信息(例如,QoS标记、绑定标识符、分组流标识符)的组合来识别上层服务接入点(SAP),以便递送接收的分组。在反射QoS指示符(RQI)包含在接收的分组的报头中的情况下,用户可以使该信息与对应分组流的QoS规格关联。
在上行链路中,在例子中,UE从与分组流关联的上层SAP接收分组数据。UE例如从其内部数据库,为该SAP识别(接收的分组所属的分组流的)QoS规格。在利用RQI的情况下,该QoS规格应匹配与该UL 分组流关联的DL分组流的QoS规格。在一个实施例中,UE选择能够满足识别的QoS的DRB。UE可按照下述实施例之一选择DRB。UE在UL 中,使用和用于对应的下行链路分组流的DRB相同的DRB。应注意的是DRB可被映射到下行链路分组流和上行链路分组流。本实施例假定 UE以前已接收同一分组流(即,相同分组标识符)的下行链路分组。在另一个实施例中,UE自主地从识别的一组DRB中选择DRB。这样的选择可基于(通过RRC信令或MAC CE信令)来自AN CP节点的指示。或者, UE可使其选择基于下述中的一个或多个:总体接入网络负荷情况(它可包括无线接口负荷情况,前传、回传负荷情况,和硬件负荷情况),服务订阅等级(例如,铂金用户、黄金用户、白银用户、青铜用户等),关于 QoS规格使用的运营商策略(例如,基于负荷估计和订阅简档)。
在一些情况下,UE把来自上层SAP的接收分组传送给与选择的 DRB关联的PDCP实体(或者NR等同物)。UE可通过在所发送分组的分组报头中包含下述中的一个或多个:与分组流标识符关联的QoS标记、绑定标识符、分组流标识符,来进行分组标记。
从而,如上所述,设备可接收第一数据分组,该第一数据分组包含识别与该数据分组关联的服务质量规格的标记。基于服务质量规格,设备可选择发送该分组的目的地,并且设备可把数据分组发送给该目的地,其中数据分组包括所述标记。例如,可在网络中的下行链路通信中接收数据分组,目的地可包括设备的上层服务接入点。此外,在另一个例子中,基于服务质量规格,设备可选择用于发送分组的数据无线承载,从而选择目的地。设备可通过选择的数据无线承载,把数据分组发送给该目的地。
按照另一个例子,如上关于RQI所述,设备可在网络中的第一方向上接收第一分组。第一分组第一分组可包括识别与第一分组关联的服务质量规格的标记。稍后,设备可在与第一方向相反的网络中的第二方向上接收第二分组。设备可识别第二分组中的过滤器,并判定该过滤器与第一分组中的标记关联。基于判定该过滤器与所述标记关联,设备可把所述标记插入第二分组中,并在第二方向上发送第二分组,其中第一方向是上行链路或下行链路方向之一,第二方向是上行链路或下行链路方向中的另一个方向。
现在转向流封装协议的例子,在一个例子中,RRC控制FEP配置。在另一个例子中,FEP子层的功能由FEP实体进行。对于在NR节点(例如,gNB)处配置的FEP实体,存在在UE处配置的对等PEP实体,反之亦然。在一个例子中,就所有的UE承载来说,eNB中有一个FEP实体,UE中有一个FEP实体。在备选例子中,可以对于每个PDU会话配置单个FEP实体。在双重连接或多重连接的情况下,UE可被配置每个小区组一个FEP协议实体,所述小区组由主gNB(MgNB)或辅gNB (SgNB)控制。例如,在双重连接的情况下,其中来自同一PDU会话的不同QoS流被映射到不同的小区组,例如,MgNB和SgNB,UE可被配置对于每个小区组每个会话一个FEP实体,即,在这种情况下,对于该会话,MgNB中一个FEP实体,SgNB中一个FEP实体。
在一些情况下,FEP实体往来于上层(例如,UE中的UDP/IP或 TCP/IP和网络侧的CNUP节点)接收/递送FEP SDU,并通过Uu无线接口或NR等同物往来于其对等FEP实体发送/接收FEP PDU。在NR节点,当FEP实体从上层收到FEP SDU时,它可构建对应的FEP PDU,并将其递送给下层。在UE,当FEP实体从下层收到FEP PDU时,它可以重装对应的FEP SDU,并将其递送给上层。图39和40分别图解说明下行链路和上行链路中的FEP子层的示例概览模型。在例子中,FEP实体往来于下层实体递送/接收以下FEP PDU:FEP数据PDU。就提供给上层的服务来说,FEP可提供向上层(例如,IP)的用户数据平面服务的传送。例如,预期来自下层(例如PDCP)的服务可包括用户平面数据的传送。 FEP子层可支持例如但不限于:用户平面数据的传送;FEP SDU所属的分组流(于是上层SAP)的标识;QoS流和数据无线承载之间的映射;以及在DL和UL分组中标记QoS流。
现在转向示例的FEP操作模式,FEP实体可被配置两种操作模式:透明操作模式(TM)和非透明操作模式(NTM)。例如,对于等待时间敏感的应用、以及其中QoS流和数据无线承载之间的绑定是静态或半静态地配置的(在UE中或无线接入网络中,不存在作为接入层的分组处理的一部分的分组到数据无线承载的动态映射)或者可由接收器隐含地得出的任何其他用例,可能需要TM操作模式。操作模式可被更好地理解为在本公开中广泛定义的QoS流ID或分组标记的存在与否。在NTM模式下, QoS流ID或分组标记存在于FEP报头中。在一个实施例中,UE可由 gNB通过控制平面信令(例如,RRC信令)配置操作模式。在这种情况下,UE可被配置对于每个小区组每个会话一个TM模式实体和一个NTM实体。在另一个实施例中,TM模式或NTM模式的使用是通过用户平面中的带内信令的。在该选项中,同一FEP实体负责每个会话和每个小区组的TM和NTM操作模式。FEP PDU的发送器(DL中的gNB和UL中的UE)把向接收器通知操作模式是TM模式还是NTM的指示符包含在FEP 报头中。
在示例的透明操作模式中(当UE被配置TM实体时),FEP不把FEP 报头包含在FEPPDU中。
在示例的发送操作中,当向下层提交新的透明模式数据(TMD)PDU 时,作为TM FEP实体配置的发送FEP实体把FEP SDU原样提交给下层。在示例的接收操作中,当从下层接收新的TMD PDU时,作为TM FEP 实体配置的接收FEP实体把TMD PDU原样递送给上层。
在一些情况下,DL数据传送过程由支持NTM操作模式或带内信令 TM操作模式的FEP实体进行。在这种情形下,FEP把FEP报头包含在 FEP PDU中。在示例的接收操作中,当从下层(例如,PDCP)收到FEP 数据PDU时,如果模式指示符指示NTM操作模式,那么UE中的FEP实体:根据包含在FEP报头中的信息(例如包含在FEP报头中的分组流ID)识别FEP SDU去往的上层实体;通过从FEP数据PDU中除去FEP 报头,从FEP数据PDU重装FEP SDU;和/或把重装的FEP SDU递送给由分组流ID识别的上层实体。UE可以通过把上行链路QoS规格更新为DRB映射(在AS中)和/或把上行链路流过滤器更新为QoS规格映射(在 NAS中),进行反射QoS关联。如果模式指示符指示TM操作模式,那么UE接收实体可基于其对上层SAP的隐含知识,将TMD PDU递送给上层。
在示例的发送操作中,当从上层(例如,IP)收到FEP数据SDU时,如果模式指示符指示NTM操作模式,那么UE中的FEP实体可以:通过进行DRB选择(例如,进行QoS流分组到DRB的映射),识别FEP PDU 去往的下层实体;通过向FEP SDU添加FEP报头,组装FEP PDU;和/ 或把组装的PDU递送给与选择的DRB对应的下层实体。如果模式指示符指示TM操作模式,那么UE发送实体可基于对QoS规格/SAP到DRB 映射的隐含知识,把FEP SDU提交给下层。
当FEP实体收到包含保留值或无效值的FEP PDU时,FEP实体可丢弃接收的PDU。
在例子中,FEP PDU是长度按字节对齐(即,8比特的倍数)的比特串。在图41中,比特串用其中最高有效比特是表格的第一行的最左侧比特,最低有效比特是表格的最后一行的最右侧比特的表格表示,更一般地,比特串是从左向右,于是按各行的读取顺序读取的。FEP PDU内的每个参数字段的比特顺序用最左侧比特中的第一个的最高有效比特和最右侧比特中的最后的最低有效比特表示。FEP SDU可以是长度按字节对齐 (即,8比特的倍数)的比特串。从第一个比特开始,FEP SDU被包含在 FEP PDU中。FEP实体可忽略FEP报头中的保留比特(如果有的话)的值。
示例的FEP报头可包括作为例子而非限制地给出的下述中的一个或多个:分组流标识、QoS标记、绑定标识符、一个或多个保留比特。此外,QoS标记(或标记符)可以是特定于AS层QoS标记的,或者特定于 NAS层QoS标记的,或者可包括AS层QoS标记和NAS层QoS标记两者。AS QoS标记的存在可以用单个比特指示,其中值1指示在FEP报头中存在AS QoS标记,而0指示在FEP报头中不存在QoS标记。类似地,NAS QoS标记的存在可以用单个比特指示,其中值1指示在FEP报头中存在NAS QoS标记,而0指示在FEP报头中不存在NAS QoS标记。操作模式指示符可以用AS QoS标记比特和/或NAS QoS标记比特表示。例如,UE FEP实体可把设定为0的AS QoS标记符比特和设定为0的 NAS QoS标记符比特的接收判读为TM模式操作。
现在转向支持UL调度的示例过程,可以在时间-频率域中定义的基本物理资源块、以及调制和编码方式和冗余版本信息方面,定义UL资源授权。UL授权还可包括用于UL发送的功率控制信息,和用于UL ACK/NACK发送的指示/资源。由于在NR中,UE可以借助同时对不止一个参数集的操作来提供差异化的QoS,其中各个参数集可能在每个子帧的符号数、子载波间隔、TTI、时隙和微时隙大小方面不同,因此调度授权可以是参数集的函数。资源授权在时间-频率域中的基本单元可被定义为一对资源块,所述一对资源块在时域中占据我们将其在下文中称为l 个符号的持续时间ds的子帧的规定的基本时间单位的持续时间,并在频域中占据被细分成k个子载波的m KHz。参数k和/或m可以是特定于参数集的。或者,参数k和/或m可在多个参数集之间是公共的。类似地,符号持续时间ds可以是特定于参数集的,或者在参数集之间是公共的。另外,参数l可以是特定于参数集的,或者在参数集之间是公共的。可参考参数lref,dref,kref和mref,定义参考参数集。利用对于各个参数lref,dref,kref和mref定义的比例因子,其他指定的参数集可被定义为参考参数集的函数。
网络可以把资源授权分配给UE,所述资源授权是特定于参数集的(图42),或者非特定于参数集的(图43)。UE可再把接收的非参数集特有资源授权分割成参数集特有授权,并在UE被配置的逻辑信道之间分布这些参数集特有资源(图44)。不论分配的授权是特定于参数集的,还是为不止一个参数集所共有的,授权都可明确地携带一个或多个发送规格值。或者,UE可隐含地得出与授权关联的发送规格。其中UE可隐含地得出资源授权的发送规格的一种情形是小区或分量载波被配置仅仅一种发送规格的情形。在这种情况下,UE可在无gNB的明确指示的情况下,知道与在该分量载波上分配的资源授权关联的发送规格。其中UE可隐含地得出资源授权的发送规格的情形的另一个例子是其中配置默认发送规格的情形。这样的默认发送规格可能是UE级别的,或者小区或分组载波级别的,或者一组小区或分量载波级别的。在这种情形下,当UE收到未指示发送规格的授权时,UE可将发送规格推导为配置的默认发送规格。
就网络控制的资源授权分配来说,在一个例子(选项1)中,资源/调度授权为网络切片所共有(即,授权不是特定于网络切片的)。来自不同网络切片的数据可被映射到同一授权。作为本实施例的例子,gNB可以用可用于从不止一个逻辑信道的上行链路数据的发送的资源授权来配置UE,其中至少一些的逻辑信道属于不同的网络切片。UE把接收的授权分配给从逻辑信道的UL数据的发送,其中至少一些的逻辑信道是为不同的网络切片配置的。UE通过逻辑信道优先级处理过程,确定接收的授权相对于为其分配资源授权的逻辑信道的分配。UE可把资源授权分配给逻辑信道,其中至少两个或更多个逻辑信道属于不同的网络切片。在逻辑信道优先级处理过程内,UE强制执行逻辑信道到从gNB接收的参数集的映射的限制。
在另一个例子(选项2)中,资源/调度授权为物理层(PHY)参数集所共有,即,授权不是特定于PHY参数集的。PHY参数集可共享相同的资源授权。例如,在上行链路方向的UE中,来自不止一个参数集的数据可被映射到相同的资源授权。这种情况下,通过利用调度授权中的用信号通知的参数集参数/格式,可在调度授权中的PHY信道资源上携带不同PHY参数集的数据。在示例实施例中,gNB可向UE分配不是特定于参数集的时间-频率域中的UL资源授权。例如,可按为参考参数集定义的、或者定义为所有参数集或者参数集的子集所共有的基本时间-频率单元的物理资源块的粒度等级,表示授权(参见图43)。UE通过逻辑信道优先级处理过程,确定接收的授权相对于为其分配资源授权的逻辑信道的分配(图44)。UE可把资源授权分配给逻辑信道,其中至少两个或更多个逻辑信道属于不同的参数集。在逻辑信道优先级处理过程内,UE强制执行逻辑信道到从gNB接收的参数集的映射的限制。
在另一个例子(选项3)中,资源授权是特定于网络切片的(即,来自不同网络切片的数据被映射到不同的授权)。在任意特定TTI或时间间隔X 中,每个网络切片可具有不止一个资源授权。
在另一个例子(选项4)中,资源授权是特定于参数集的(即,来自不同 PHY参数集的数据被分配不同的资源授权)。例如,作为映射到参数集的数据流、服务、应用或网络切片的函数,在一个TTI或时间间隔X中,每个PHY参数集可能被分配不止一个资源授权。在示例实施例中,UE 可被配置为特定参数集定义的资源(参见图42)。UE按照逻辑信道优先级规则,把接收的授权分配给逻辑信道。在逻辑信道优先级处理过程中, UE会把不被允许映射到所配置的资源的参数集的逻辑信道排除在考虑之外。此外,资源授权可以是特定于逻辑信道的,或者特定于逻辑信道组的(选项5)。在另一示例情况下,资源授权是特定于应用的(选项6)。在另一个例子(选项7)中,资源授权是特定于数据流的。在另一个例子(选项 8)中,组合上述选项中的两个或更多个选项的组合。例如,一些资源授权可被配置成是特定于网络切片的,而一些其他资源授权被配置成两个或更多个网络切片之间的公共资源授权。
NR资源授权示例选项1
现在转向UE控制的UL资源授权分配,就选项1来说,参考图45,资源授权为网络切片所共有,即,授权不是特定于网络切片的。不同的网络切片生成的数据(控制平面数据或用户平面数据)可被映射到同一授权。在例子中,在1,本选项中的UE决定如何在网络切片之间分配接收的授权,例如,如何把接收的授权分配给各个网络切片的逻辑信道。UE 可以从最高优先权切片开始到最低优先权切片,在网络切片之间使用严格的优先权顺序(参见图45)。例如,网络切片被配置以切片优先权顺序。例如,优先权值最低的网络切片是最高优先权切片,而具有最高优先权值的网络切片是最低优先权切片。UE可由NR节点配置网络切片配置。一个网络切片配置参数可以是网络切片优先权。网络切片的优先权可以是为映射到该网络切片的服务(例如,无线承载、逻辑信道)配置的一个或多个TTI的函数。在为服务配置不止一个TTI的情况下,网络切片的优先权可以是为映射到该网络切片的服务配置的TTI之中的最小TTI的函数。网络切片的优先权随着TTI值的增大而降低,例如,具有最小TTI 值的网络切片对应于最高优先权网络切片,而具有最大TTI值的网络切片对应于最低优先权网络切片。在该选项中,网络切片按优先权递减的顺序被分配资源。只有在较高优先权网络切片的数据被分配资源之后,仍然剩余任意资源时,较低优先权的网络切片才会被分配资源。配置有同等优先权的网络切片应该得到同等的服务。或者,在优先权同等的网络切片的情况下,选择具有最高SPBR的网络(如在下面的步骤3中所定义)。在一些情况下,这里使用的LCP过程和现有的LTE LCP过程相同。在逻辑信道优先级处理过程中,UE会把不被允许映射到所配置的资源、或者不被允许映射到所配置的资源的网络切片的逻辑信道排除在考虑之外。
在2,按照例示的例子,UE可利用切片特有SPBR。UE可由网络对于每个逻辑信道配置切片特有SPBR或者切片特有PBR。或者,切片特有PBR可以由UE隐含地得出,例如,作为网络切片的逻辑信道的PBR 之和。在一些情况下,所有的网络切片都按优先权递减的顺序被分配资源(至少对于PBR)。MAC实体在满足较低优先权切片的PBR之前,为可供在网络切片上发送的所有数据分配资源。如果剩余任意资源,那么按严格的优先权递减顺序服务所有的网络切片,直到网络切片的数据或者UL授权耗尽为止,无论哪个先耗尽。配置有同等优先权的网络切片应该得到同等的服务。图46中突出显示了该过程。
通过对于各个网络切片用信号通知以下内容,网络可控制上行链路数据的调度:其中递大的切片优先权值指示较低的切片优先权等级的切片优先权,设定切片的切片优先比特率(SPBR)的slicePrioritisedBitRate,设定切片桶大小时长(SBSD)的slicebucketSizeDuration。切片的桶大小等于SPBR x SBSD。MAC实体为每个切片i保持变量SBi。SBi在切片i 建立其第一个逻辑信道时,被初始化为0,并且对于每个TTI,被递增乘积SPBRi×TTI持续时间(适用于切片),其中SPBRi是切片j的优先比特率。SBi的值决不能超过切片的桶大小,如果SBi的值大于切片i的桶大小,那么它被设定为切片i的桶大小。
在其中设想特定于网络切片的逻辑信道的示例情况下,每个切片内的逻辑信道可按照现有的LTE LCP过程被分配资源(图45的步骤3或图 46的步骤3)。在逻辑信道优先级处理过程中,UE会把不被允许映射到所配置的资源、或者不被允许映射到所配置的资源的网络切片的逻辑信道排除在考虑之外。
要明白的是进行图45和46中图解所示的步骤的实体可以是以软件 (即,计算机可执行指令)的形式实现的逻辑实体,所述软件保存在诸如图 52B和F中图解所示的为无线和/或网络通信配置的设备或计算机系统的存储器中,并在所述设备或计算机系统的处理器上运行。即,图45和46 中图解所示的方法可以保存在诸如图52B和F中图解所示的设备或计算机系统之类的设备的存储器中的软件(即,计算机可执行指令)的形式实现,当由所述设备的处理器执行时,所述计算机可执行指令进行图45和 46中图解所示的步骤。还要明白的是图45和46中图解所示的任意发送和接收步骤可以在所述设备的处理器和所述处理器执行的计算机可执行指令(例如软件)的控制下,由所述设备的通信电路进行。
NR资源授权示例选项2
假设:在本选项中,资源授权为物理层(PHY)参数集(或TTI)所共有,即,授权不是特定于PHY参数集的(或者特定于TTI的)。PHY参数集可共享相同的资源授权。例如,在上行链路方向的UE中,来自不止一个参数集的数据可被映射到相同的资源授权。
在例子中,UE决定如何在参数集之间分配接收的授权。UE可在PHY 参数集之间使用严格的优先权顺序。例如,PHY参数集被配置参数集优先权顺序。例如,优先权值最低的参数集是最高优先权参数集,而具有最高优先权值的参数集是最低优先权参数集。UE可由NR节点配置参数集配置。一个参数集配置参数可以是参数集优先权。参数集的优先权可以是为映射到该参数集的服务(例如,无线承载、逻辑信道)配置的一个或多个TTI的函数。在为服务配置不止一个TTI的情况下,参数集的优先权可以是为映射到该参数集的服务配置的TTI之中的最小TTI的函数。参数集的优先权随着TTI值的增大而降低,例如,具有最小TTI值的参数集对应于最高优先权参数集,而具有最大TTI值的参数集对应于最低优先权参数集。在本选项中,参数集按优先权递减的顺序被分配资源。只有在较高优先权参数集的数据被分配资源之后,仍然剩余任意资源时,较低优先权的参数集才会被分配资源。这种情况下,通过利用调度授权中的用信号通知的参数集参数/格式,可在调度授权中的PHY信道资源上携带不同PHY参数集的数据。配置有同等优先权的网络切片应该得到同等的服务。或者,在优先权同等的参数集的情况下,选择具有最高NPBR 的网络(如在下面的步骤3中所定义)。在一些情况下,这里使用的LCP 过程和现有的LTE LCP过程相同。在逻辑信道优先级处理过程中,UE 会把不被允许映射到所配置的资源、或者不被允许映射到所配置的资源的参数集(例如TTI)的逻辑信道排除在考虑之外。图47中突出显示了该示例过程。
在一些情况下,UE可利用参数集特有PBR。UE可由网络配置参数集特有PBR。或者,参数集特有PBR可以由UE隐含地得出,例如,作为参数集的逻辑信道的PBR之和。在一些情况下,所有的参数集都按优先权递减的顺序被分配资源(至少对于PBR)。MAC实体在满足较低优先权参数集的PBR之前,为可供在最高优先权参数集上发送的所有数据分配资源。如果剩余任意资源,那么按严格的优先权递减顺序服务所有的参数集,直到参数集的数据或者UL授权耗尽为止,无论哪个先耗尽。配置有同等优先权的网络切片应该得到同等的服务。通过对于每个允许的参数集用信号向UE通知如下内容,网络控制上行链路数据的调度:其中递增的参数集优先权值指示较低的参数集优先权等级的参数集优先权,设定参数集的优先比特率(NPBR)的numerologyPrioritisedBitRate,设定参数集桶大小时长(NBSD)的numerologybucketSizeDuration。参数集的桶大小等于NPBR x NBSD。MAC实体为每个参数集i保持变量NBi。 NBi在参数集i建立其第一个逻辑信道时,被初始化为0,并且对于每个TTI,被递增乘积NPBRi x TTI持续时间(其中NPBRi是参数集j的优先比特率)。NBi的值决不能超过参数集的桶大小,如果NBi的值大于参数集i的桶大小,那么它应被设定为参数集i的桶大小。图48中描述了该过程的例子。在其中假设参数集特有逻辑信道的示例情况下,各个参数集内的逻辑信道可按照现有的LTE LCP过程被分配资源。在逻辑信道优先级处理过程中,UE会把不被允许映射到所配置的资源、或者不被允许映射到所配置的资源的参数集(例如TTI)的逻辑信道排除在考虑之外。
就参数集优先级来说,参数集的优先权可以是为映射到该参数集的服务(例如,无线承载、逻辑信道)配置的一个或多个TTI的函数。在为服务配置不止一个TTI的情况下,参数集的优先权可以是为映射到该参数集的服务配置的TTI之中的最小TTI的函数。参数集的优先权随着TTI 值的增大而降低,例如,具有最小TTI值的参数集对应于最高优先权参数集,而具有最大TTI值的参数集对应于最低优先权参数集。
例如(但不限于),可进一步如下表述定义为TTI的函数的参数集优先权。在一个例子中,参数集的优先权随k2*D(TTI)的值增大而降低,例如,具有最小的k2*D(TTI)值的参数集对应于最高优先权参数集,而具有最大k2*D(TTI)值的参数集对应于最低优先权参数集。参数k2表示 UL赋予到UL数据发送的持续时间,即TTI n内的UL授权调度的最后符号和对应的PUSCH发送的TTI n+k2之间的以TTI为单位表示的持续时间。参数D(TTI)表示TTI的持续时间,可以微秒或毫秒为单位表示 D(TTI)。
在其他例子中,参数集的优先权随k1*D(TTI)的值增大而降低,例如,具有最小的k1*D(TTI)值的参数集对应于最高优先权参数集,而具有最大的k1*D(TTI)值的参数集对应于最低优先权参数集。参数k1表示 DL数据到UL ACK发送的持续时间,它可以TTI为单位表示。换句话说,可如下定义k1。参考PUCCH发送用时隙,如果UE在PDCCH中检测到在其中最后的符号在TTI n内的若干符号内调度PDSCH接收的 DCI格式,那么UE会在TTI n+k1内的PUCCH发送中,提供对应的 HARQ-ACK信息,其中k1是TTI的数量,它可由DCI格式中的 [DL-data-DL-acknowledgement]字段指示。 [DL-data-DL-acknowledgement]字段值映射到在下表(来自3GPP TS 38.213)中定义的时隙的数量的值:
[DL-data-DL-acknowledgement] k
'00' 高层配置的时隙的数量的第一值
'01' 高层配置的时隙的数量的第二值
'10' 高层配置的时隙的数量的第三值
'11' 高层配置的时隙的数量的第四值
在另一个例子中,参数集的优先权随k3*D(TTI)的值增大而降低,例如,具有最小的k3*D(TTI)值的参数集对应于最高优先权参数集,而具有最大的k3*D(TTI)值的参数集对应于最低优先权参数集。参数k3表示与该参数集关联的最小往返时间(RTT)。RTT可以用TTI的函数来表示,例如k3*TTI。RTT的持续时间可进一步表示成k3*D(TTI)。
在一些情况下,参数集的优先权随k4*D(TTI)的值增大而降低,例如,具有最小的k4*D(TTI)值的参数集对应于最高优先权参数集,而具有最大的k4*D(TTI)值的参数集对应于最低优先权参数集。参数k2表示 DL赋予到DL数据接收的持续时间,即TTI n内的DL授权调度的最后符号和对应的PDSCH接收的TTI n+k4之间的以TTI为单位表示的持续时间。参数D(TTI)表示TTI的持续时间。例如,可以微秒或毫秒为单位表示D(TTI)。
NR资源授权示例选项3:
假设:资源授权是特定于网络切片的(即,来自不同网络切片的数据被映射到不同的授权)。在任意特定TTI或时间间隔X中,每个网络切片可具有不止一个资源授权。
这里,UE根据特定于网络切片的授权,为各个网络切片的数据分配资源。假定逻辑信道是特定于网络切片的,那么现有的LTE LCP过程可以重新用于各个网络切片。如果逻辑信道不是特定于切片的,那么逻辑信道可被视为为了由UE进行资源分配(逻辑信道优先级)的目的而特定于网络切片。例如,当两个或更多个网络切片的数据被映射到逻辑信道时,该逻辑信道可被视为特定于具有资源授权的切片。如果具有资源授权的这种切片不止一个,那么逻辑信道可被视为特定于具有最高优先权的切片。如果剩余任意授权,那么在用于切片的数据/逻辑信道被分配资源之后,UE(MAC)可把给定切片的未用授权用于为其他网络切片分配资源授权。为此,UE可把未用授权视为公共授权,并且可以使用针对公共授权分配描述的资源方式中的任何一个,例如上面的“NR资源授权选项1”或“NR资源授权选项2”的资源分配方式。UE可按照规范中的预定规则或者预先规定的规则,分配未用授权,例如,UE可以顺序地把未用授权分配给URLLC数据、eMBB数据以及接着mMTC数据。
在一个实施例中,各个切片特有资源授权可与切片特有PBR关联。 UE可被明确地配置这样的PBR,或者UE可基于在规范中规定的规则或者通过预先规定,隐含地得出这样的切片特有PBR。UE分配资源,以满足第一个片特有PBR。如果剩余任意授权,那么UE可如下使用所用授权:所述使用按照例如上面的“NR资源授权选项1”或“NR资源授权选项2”描述的资源分配方式之一来分配授权。UE可按照规范中的预定规则或者预先规定的规则,分配未用授权,例如,UE可以顺序地把未用授权分配给URLLC数据、eMBB数据以及接着mMTC数据。
在另一个实施例中,UE可把由NR节点分配给网络切片的部分或全部资源授权重新分配给另外的网络切片。例如,UE可自主地把由网络赋予给定网络切片的资源授权重新分配给优先权更高的网络切片。例如, UE可按照规范中的预定规则或者按照网络配置所定义的规则或者通过 UE的预先规定来这样做。例如,UE可自主地把与eMBB切片授权关联的资源重新分配给URLLC。或者,UE可自主地把与URLLC切片授权关联的资源重新分配给eMBB。
NR资源授权示例选项4
假设:资源授权是特定于参数集的(即,不同PHY参数集的数据被分配不同的资源授权)。例如,作为映射到参数集的数据流、服务、应用或网络切片的函数,在一个TTI或时间间隔X中,每个PHY参数集可能被分配不止一个资源授权。
在例子中,UE(MAC)根据特定于参数集的授权,为配置成使用给定参数集的数据分配资源。假设逻辑信道是特定于参数集的,那么现有的LTE LCP过程可以重新用于映射到同一参数集的各个逻辑信道。如果剩余任意授权,那么在参数集的数据/逻辑信道被分配资源之后,UE(MAC) 可把给定参数集的未用授权用于为其他参数集分配资源授权。为此,UE 可把未用授权视为公共授权,并且可以使用针对公共授权分配描述的资源方式中的任何一个,例如上面的“NR资源授权选项1”或“NR资源授权选项2”的资源分配方式。UE可按照规范中的预定规则或者预先规定的规则,分配未用授权,例如,UE可以顺序地把未用授权分配给URLLC 数据、eMBB数据以及接着mMTC数据。
在一个实施例中,每个参数集特有资源授权可与参数集特有PBR关联。UE可被明确地配置这样的PBR,或者UE可基于在规范中规定的规则或者通过预先规定,隐含地得出这样的切片特有PBR。UE分配资源,以满足第一参数集特有PBR。如果剩余任意授权,那么例如(但不限于)UE 可如下使用所用授权。所述使用按照说明的公共资源分配方式之一(例如上面的“NR资源授权选项1”或“NR资源授权选项2”)分配授权。UE可按照规范中的预定规则或者预先规定的规则,分配未用授权,例如,UE可以顺序地把未用授权分配给URLLC数据、eMBB数据以及接着mMTC 数据。
在另一个实施例中,UE可把由NR节点分配给参数集的部分或全部资源授权重新分配给另外的参数集。例如,UE可自主地把由网络赋予给定参数集的资源授权重新分配给优先权更高的参数集。例如,UE可按照规范中的预定规则或者按照网络配置所定义的规则或者通过UE的预先规定来这样做。
NR资源授权选项5:
假设:资源授权是特定于逻辑信道的,或者特定于逻辑信道组的。逻辑信道组可以是下述之一:为BSR报告目的配置的逻辑信道组,配置成允许使用相同参数集或相同TTI值的一组逻辑信道。在例子中,UE 根据特定于逻辑信道的授权,为各个逻辑信道的数据分配资源。如果授权针对的是逻辑信道组,那么UE可把与用于资源分配的传统LTE逻辑信道优先级处理过程类似的过程应用于具有相同逻辑信道组的逻辑信道。UE按逻辑信道优先权的递减顺序,向各个逻辑信道分配资源,以满足PBR。在备选实施例中,可以定义新的优先权等级。例如,这种新的优先权等级可以基于逻辑信道被配置成映射到的参数集/TTI。逻辑信道(或者与逻辑信道关联的无线承载)可被映射到不止一个参数集或者TTI。这种情况下,用于定义提出的逻辑信道的优先权的TTI是逻辑信道被配置的所有TTI之中的值最大的TTI。该优先权是(例如,LTE中目前定义的)逻辑信道优先权之上的覆盖优先权。我们把这种新的类型的优先权表示为逻辑信道优先权类型1,把LTE似的传统逻辑信道优先权表示为优先权类型2。UE如下区分逻辑信道优先次序:基于优先权类型1,进行第一排序,之后是基于优先权类型2的第二排序。优先权类型1的值越高,逻辑信道优先权越低,例如,TTI值越高,对应逻辑信道的优先权越低。具有基于优先权类型1的相同优先权的逻辑信道进一步按照优先权类型2排序。优先权类型2的值越高,在相同优先权类型1的逻辑信道之中,逻辑信道优先权越低。在一些情况下,UE利用根据上面所述得到的逻辑信道排序,应用LTE LCP过程。图49中图解说明了上述过程。
在一些情况下,如果剩余任意资源,那么按严格递减的优先权顺序,服务在UE收到授权的逻辑信道组之外、并且不被限制使用接收的资源授权的具有数据的所有逻辑信道,直到逻辑信道的数据或者UL授权耗尽为止,不论哪个先耗尽。配置有同等优先权的逻辑信道应得到同等的服务。
替代上述步骤3,如果剩余任意授权,那么UE(MAC)可以例如(但不限于)如下使用未用。UE可把未用授权视为公共授权,可以使用针对公共授权分配描述的资源方式中的任何一个,例如上面的“NR资源授权选项1”或“NR资源授权选项2”的资源分配方式。UE可按照规范中的预定规则或者预先规定的规则,分配未用授权,例如,UE可以顺序地把未用授权分配给URLLC数据、eMBB数据以及接着mMTC数据。
在另一个实施例中,可以为映射到逻辑信道的应用或数据流,定义逻辑信道子优先权。UE可按映射到逻辑信道的数据流或应用的子优先权的严格递减顺序,分配资源。或者,可为映射到逻辑信道的数据子流或应用,定义PBR。UE按逻辑信道子优先权的递减顺序,向各个数据流或应用分配资源,以满足子优先权PBR。如果剩余任意授权,那么按严格的递减优先权顺序,服务逻辑信道内的所有数据流或应用,直到逻辑信道的数据或UL授权耗尽为止,不论哪个先耗尽。配置有同等逻辑信道子优先权的数据流或应用应得到同等的服务。
现在转向增强LTE逻辑信道优先级,现在,考虑到上面所述的NR 资源授权分配选项,给出各种例子。
在一个实施例中,当进行新的发送时,进行逻辑信道优先级处理过程。在例子中,通过对于各个逻辑信道,用信号通知如下内容,RRC控制上行链路数据的调度:其中递增的优先权值指示较低的优先权等级的 priority,设定优先比特率(PBR)的PrioritisedBitRate,设定桶大小时长 (BSD)的bucketSizeDuration,允许的发送规格的值(其指示逻辑信道的数据是否可以利用具有相同发送规格值的授权的资源来发送)。对于NB-IoT,PrioritisedBitRate、bucketSizeDuration和逻辑信道优先级处理过程的对应步骤(即,下面的步骤1和步骤2)不适用。
MAC实体可为每个逻辑信道j保持变量Bj。Bj在相关的逻辑信道建立时,被初始化为0,并且对于各个TTI,递增乘积PBR×TTI持续时间,其中PBR是逻辑信道j的优先比特率。不过,Bj的值决不能超过桶大小,如果Bj的值大于逻辑信道j的桶大小,那么它应被设定为桶大小。逻辑信道的桶大小等于PBR×BSD,其中PBR和BSD由上层配置。
在例子中,当进行新的发送时,MAC实体可进行各种逻辑信道优先级处理过程。例如,MAC实体可按以下步骤,向配置授权的发送规格(或者对该授权来说允许)的逻辑信道分配资源。在1,按递减的优先权顺序, Bj>0的逻辑信道被分配资源。如果逻辑信道的PBR被设定为“无穷大”,那么在满足较低优先权逻辑信道的PBR之前,MAC实体应为可供在该逻辑信道上发送的所有数据分配资源。在2,MAC实体把Bj递减在步骤1中服务于逻辑信道j的MACSDU的总大小。Bj的值可以是负值。在3,如果剩余任意资源,那么按照严格递减的优先权顺序(而不管Bj的值),服务逻辑信道,直到逻辑信道的数据或者UL授权耗尽为止,无论哪一个先耗尽。具有相同优先权的逻辑信道应得到同等的服务。
当MAC实体被请求在一个TTI中发送多个MAC PDU时,上述步骤1-3和关联规则可以独立地应用于各个授权或者应用于授权的容量之和。另外,处理授权的顺序由UE实现决定。在MAC实体被请求在一个 TTI中发送多个MAC PDU时,由UE实现决定MAC控制元素包含在哪个MAC PDU中。当UE被请求在一个TTI中在两个MAC实体中生成MAC PDU时,由UE实现决定按何种顺序处理授权。当收到多个UL 授权时,处理授权的顺序由UE实现决定。
在另一个例子中,通过对于各个逻辑信道,用信号通知如下内容, RRC控制上行链路数据的调度:其中递增的优先权值指示较低的优先权等级的priority,设定优先比特率(PBR)的prioritisedBitRate,设定桶大小持续时间(BSD)的bucketSizeDuration,允许的发送规格的值(其指示逻辑信道的数据是否可以利用具有相同发送规格值的授权的资源来发送)。通过用信号向UE通知各个发送规格的绝对优先权,而不管它们到逻辑信道的映射,RRC也控制上行链路数据的调度,其中递增的优先权值指示较低的优先权。对于NB-IoT,PrioritisedBitRate、bucketSizeDuration和逻辑信道优先级处理过程的对应步骤(即,下面的步骤1和步骤2)不适用。
MAC实体为每个逻辑信道j保持变量Bj。Bj在相关的逻辑信道建立时,被初始化为0,并且对于各个TTI,递增乘积PBR×TTI持续时间,其中PBR是逻辑信道j的优先比特率。不过,Bj的值决不能超过桶大小,如果Bj的值大于逻辑信道j的桶大小,那么它应被设定为桶大小。逻辑信道的桶大小等于PBR×BSD,其中PBR和BSD由上层配置。
当进行新的发送时,MAC实体可进行以下逻辑信道优先级处理过程。对于各个授权,按发送规格优先权的递减顺序,MAC实体应例如按以下步骤,向配置授权的发送规格的逻辑信道分配资源。在1,按递减的优先权顺序,Bj>0的逻辑信道被分配资源。如果逻辑信道的PBR被设定为“无穷大”,那么在满足较低优先权逻辑信道的PBR之前,MAC实体应为可供在该逻辑信道上发送的所有数据分配资源。在2,MAC实体应把Bj递减在步骤1中服务于逻辑信道j的MAC SDU的总大小。Bj 的值可以是负值。在3,如果剩余当前授权的任意资源,那么按照严格递减的优先权顺序(而不管Bj的值),服务逻辑信道,直到逻辑信道的数据或者UL授权耗尽为止,无论哪一个先耗尽。配置有相同优先权的逻辑信道应得到同等的服务。
在一些情况下,当MAC实体被请求在一个TTI中发送多个MAC PDU时,步骤1-3和关联规则可以独立地应用于各个授权,或者应用于授权的容量之和。另外,处理授权的顺序由UE实现决定。在MAC实体被请求在一个TTI中发送多个MAC PDU时,由UE实现决定MAC控制元素包含在哪个MAC PDU中。当UE被请求在一个TTI中在两个 MAC实体中生成MAC PDU时,由UE实现决定按何种顺序处理授权。当收到具有优先权相同的参数集的多个UL授权时,处理授权的顺序由 UE实现决定。
在另一个例子中,通过对于每个逻辑信道,用信号通知如下内容, RRC控制上行链路数据的调度:其中递增的优先权值指示较低的优先权等级的priority,设定优先比特率(PBR)的prioritisedBitRate,设定桶大小持续时间(BSD)的bucketSizeDuration,允许的发送规格的值(其指示逻辑信道的数据是否可以利用具有相同发送规格值的授权的资源来发送),其中递增的优先权值指示较低的优先权等级的发送规格特有优先权。对于 NB-IoT,PrioritisedBitRate、bucketSizeDuration和逻辑信道优先级处理过程的对应步骤(即,下面的步骤1和步骤2)不适用。
MAC实体为每个逻辑信道j保持变量Bj。Bj在相关的逻辑信道建立时,被初始化为0,并且对于各个TTI,递增乘积PBR×TTI持续时间,其中PBR是逻辑信道j的优先比特率。不过,Bj的值决不能超过桶大小,如果Bj的值大于逻辑信道j的桶大小,那么它应被设定为桶大小。逻辑信道的桶大小等于PBR×BSD,其中PBR和BSD由上层配置。
当进行新的发送时,MAC实体可进行以下逻辑信道优先级处理过程。例如,MAC实体可按以下步骤,向配置授权的发送规格(或者对该授权来说允许)的逻辑信道分配资源。在1,按递减的优先权顺序,Bj>0 的逻辑信道被分配资源。配置相同优先权的逻辑信道按递减的发送规格特有优先权顺序被分配资源。如果逻辑信道的PBR被设定为“无穷大”,那么在满足较低优先权逻辑信道的PBR之前,MAC实体应为可供在该逻辑信道上发送的所有数据分配资源。在2,MAC实体把Bj递减在步骤1中服务于逻辑信道j的MAC SDU的总大小。Bj的值可以是负值。在3,如果剩余任意资源,那么按照严格递减的优先权顺序(而不管Bj的值),服务逻辑信道,直到逻辑信道的数据或者UL授权耗尽为止,无论哪一个先耗尽。应按严格递减的发送规格特有优先权顺序(而不管Bj的值),服务配置有相同优先权的逻辑信道,直到逻辑信道的数据或者UL 授权耗尽为止,无论哪一个先耗尽。配置有相同发送规格特有优先权的逻辑信道应得到同等的服务。
注意,当MAC实体被请求在一个TTI中发送多个MAC PDU时,步骤1-3和关联规则可以独立地应用于各个授权,或者应用于授权的容量之和。另外,处理授权的顺序由UE实现决定。在MAC实体被请求在一个TTI中发送多个MAC PDU时,由UE实现决定MAC控制元素包含在哪个MAC PDU中。当UE被请求在一个TTI中在两个MAC实体中生成MAC PDU时,由UE实现决定按何种顺序处理授权。另外注意,当收到多个UL授权时,处理授权的顺序可由UE实现决定。
在另一个例子中,通过对于每个逻辑信道用信号通知如下内容,RRC 控制上行链路数据的调度:其中递增的优先权值指示较低的优先权等级的priority,设定优先比特率(PBR)的prioritisedBitRate,设定桶大小持续时间(BSD)的bucketSizeDuration,允许的发送规格的值(其指示逻辑信道的数据是否可以利用具有相同发送规格值的授权的资源来发送),其中递增的优先权值指示较低的优先权等级的发送规格特有优先权。通过用信号向UE通知各个发送规格的绝对优先权,而不管它们到逻辑信道的映射,RRC也可控制上行链路数据的调度,其中递增的优先权值指示较低的优先权。对于NB-IoT,PrioritisedBitRate、bucketSizeDuration和逻辑信道优先级处理过程的对应步骤(即,下面的步骤1和步骤2)不适用。
MAC实体可为每个逻辑信道j保持变量Bj。Bj在相关的逻辑信道建立时,被初始化为0,并且对于各个TTI,递增乘积PBR×TTI持续时间,其中PBR是逻辑信道j的优先比特率。不过,Bj的值决不能超过桶大小,如果Bj的值大于逻辑信道j的桶大小,那么它应被设定为桶大小。逻辑信道的桶大小等于PBR×BSD,其中PBR和BSD由上层配置。
在本实施例中,当进行新的发送时,MAC实体可进行以下逻辑信道优先级处理过程。对于各个授权,按发送规格绝对优先权的递减顺序, MAC实体可例如按以下步骤,向配置授权的发送规格(或者对该授权来说允许的)逻辑信道分配资源。在1,
步骤1:按递减的优先权顺序,Bj>0的逻辑信道被分配资源。配置相同优先权的逻辑信道按逻辑信道的发送规格特有优先权的递减顺序被分配资源。如果逻辑信道的PBR被设定为“无穷大”,那么在满足较低优先权逻辑信道的PBR之前,MAC实体应为可供在该逻辑信道上发送的所有数据分配资源。在2,MAC实体把Bj递减在步骤1中服务于逻辑信道j的MACSDU的总大小。Bj的值可以是负值。在3,如果剩余任意资源,那么按照严格递减的优先权顺序(而不管Bj的值),服务逻辑信道,直到逻辑信道的数据或者UL授权耗尽为止,无论哪一个先耗尽。应按严格递减的逻辑信道的发送规格特有优先权顺序(而不管Bj的值),服务配置有相同优先权的逻辑信道,直到该逻辑信道的数据或者UL授权耗尽为止,无论哪一个先耗尽。配置有相同发送规格特有优先权的逻辑信道应得到同等的服务。
在一些情况下,MAC实体被请求在一个TTI中发送多个MAC PDU,步骤1-3和关联规则可以独立地应用于各个授权,或者应用于授权的容量之和。另外,处理授权的顺序由UE实现决定。在MAC实体被请求在一个TTI中发送多个MAC PDU时,由UE实现决定MAC控制元素包含在哪个MAC PDU中。当UE被请求在一个TTI中在两个MAC实体中生成MAC PDU时,由UE实现决定按何种顺序处理授权。
在NR中,和在LTE中一样,发送时间间隔(TTI)也可被视为连续的数据发送时机之间的持续时间。
如表1中例示,时隙或微时隙的持续时间(例如,单位为微秒)是特定于参数集的,于是随着参数集而变化,不过在参数集之间保持比例关系。就微时隙内的符号的数量来说,每个参数集可能存在不止一个微时隙配置。于是,微时隙可具有不止一个TTI,每个TTI具有以毫秒或微秒为单位的不同持续时间。假定NR系统支持时隙级调度和微时隙级调度,并且假定gNB可在同一参数集内或者在不止一个参数集上,在时隙级或微时隙级调度相对于同一UE的数据发送,数据发送计时器间隔(即,连续的数据发送时机之间的持续时间)是可变而不是固定的。为了具有固定持续时间的TTI来支持比如LTE中的MAC过程,提出了固定持续时间的UE特有TTI(表示为TTI*),作为用于MAC过程的基本NR时间单位 (NR-UNIT)。在本文的剩余部分中,与参数集特有变量TTI相反,关于固定持续时间的固定基本NR时间单位,将使用TTI*。除非另有规定,否则,这里使用的NR-UNIT和TTI*可互换地使用,而没有限制,这两个术语也可以仅仅指的是预定时间单位或者预定时间段。
作为NR系统中的符号、微时隙或时隙的持续时间之间的比例关系的结果,两个连续发送时机之间的时间间隔也相互成比例。在假设UE 的时隙级调度的情况下,两个连续发送时机之间的时间间隔于是必定是 UE可被配置的时隙持续时间中的最小者的倍数。类似地,在假设UE的微时隙和时隙级调度的情况下,两个连续发送时机之间的时间间隔会是UE可被配置的微时隙持续时间中的最小者的倍数。
从而,可按各种方式,定义NR-UNIT(即,TTI*)。例如(但不限于), NR-UNIT或者所述预定时间单位可被定义为:
·按照UE能力,对于时隙级调度(相应地,微时隙级调度),UE能够支持的可能时隙(相应地,微时隙)持续时间中的最小者。UE还可考虑到其他信息,比如UE电池电量、设备类别、节电模式设定等。
·UE被配置的参数集之中可能时隙(相应地,微时隙)持续时间中的最小者。配置可以是静态的,或者通过半静态RRC信令。
·UE被配置的带宽部分(BWP)之中可能时隙(相应地,微时隙)持续时间中的最小者。配置可以是静态的,或者通过半静态RRC信令。
·由gNB用信号向UE通知的,将用作UL发送(PUSCH、PUCCH、或者要么PUSCH要么PUCCH)时机之间的最小时间间隔、,或者将用作 DL接收(PDSCH、PDCCH、或者要么PDSCH要么PDCCH)时机之间的最小时间间隔的时隙(相应地,微时隙)持续时间。
·在多个有效参数集上获得的时隙(相应地,微时隙)持续时间中的最小者,其中有效参数集被定义为其中UE可能期望进行UL发送(PUSCH、 PUCCH、或者要么PUSCH要么PUCCH)或DL接收(PDSCH、PDCCH、或者要么PDSCH要么PDCCH)的所配置的参数集之中的激活参数集。 UE可通过来自gNB的配置信令确定有效参数集,即,其中UE可能期望进行UL发送或DL接收的参数集,其中所述配置信令可以是半静态 RRC信令、MAC信令(例如,随机接入响应)或DCI信令中的一种或多种。
·在激活的UL BWP或DL BWP上获得的时隙(相应地,微时隙)持续时间中的最小者。UE可由上层参数[activated-DL-BWP]配置激活的DL BWP,其中参数[activated-DL-BWP]定义用于DL接收的配置的DL BWP 集合中的DL BWP子集。类似地,UE可由上层参数[activated-UL-BWP] 配置激活的UL BWP,其中参数[activated-UL-BWP]定义用于UL发送的配置的UL BWP集合中的UL BWP子集。
·参考或默认参数集的时隙(相应地,微时隙)持续时间。
此外,可对于UL发送,或者对于DL方向,定义NR-UNIT。
对于UL方向,例如(但不限于),可如下定义NR-UNIT:
·按照UE能力,对于时隙级UL调度(相应地,微时隙级UL调度), UE能够支持的可能时隙(相应地,微时隙)持续时间中的最小者。UE还可考虑到其他信息,比如UE电池电量、设备类别、节电模式设定等。
·UE被配置的UL参数集之中可能时隙(相应地,微时隙)持续时间中的最小者。配置可以是静态的,或者通过半静态RRC信令。
·UE被配置的UL BWP之中可能时隙(相应地,微时隙)持续时间中的最小者。配置可以是静态的,或者通过半静态RRC信令。
·由gNB用信号向UE通知的,将用作UL发送(PUSCH、PUCCH、或者要么PUSCH要么PUCCH)时机之间的最小时间间隔的时隙(相应地,微时隙)持续时间。
·在多个有效UL参数集上获得的时隙(相应地,微时隙)持续时间中的最小者,其中有效UL参数集被定义为其中UE可能期望进行UL发送 (PUSCH、PUCCH、或者要么PUSCH要么PUCCH)的配置的UL参数集之中的激活UL参数集。UE可通过来自gNB的配置信令确定有效UL参数集,即,其中UE可能期望进行UL发送的参数集,其中所述配置信令可以是半静态RRC信令、MAC信令(例如,随机接入响应)或DCI信令中的一种或多种。
·在激活的UL BWP上获得的时隙(相应地,微时隙)持续时间中的最小者。UE可由上层参数[activated-UL-BWP]配置激活的UL BWP,其中参数[activated-UL-BWP]定义用于UL发送的配置的UL BWP集合中的 UL BWP子集。
·参考或默认参数集(例如参考或默认UL参数集)的时隙(相应地,微时隙)持续时间。
对于DL方向,例如(但不限于),可如下定义NR-UNIT:
·按照UE能力,对于时隙级DL调度(相应地,微时隙级DL调度), UE能够支持的可能时隙(相应地,微时隙)持续时间中的最小者。UE还可考虑到其他信息,比如UE电池电量、设备类别、节电模式设定等。
·UE被配置的DL参数集之中可能时隙(相应地,微时隙)持续时间中的最小者。配置可以是静态的,或者通过半静态RRC信令。
·UE被配置的DL BWP之中可能时隙(相应地,微时隙)持续时间中的最小者。配置可以是静态的,或者通过半静态RRC信令。
·由gNB用信号向UE通知的,将用作DL接收(PDSCH、PDCCH、或者要么PDSCH要么PDCCH)时机之间的最小时间间隔的时隙(相应地,微时隙)持续时间。
·在多个有效DL参数集上获得的时隙(相应地,微时隙)持续时间中的最小者,其中有效DL参数集被定义为其中UE可能期望进行DL接收 (PDSCH、PDCCH、或者要么PDSCH要么PDCCH)的配置的DL参数集之中的激活DL参数集。UE可通过来自gNB的配置信令确定有效DL参数集,即,其中UE可能期望进行DL传输的参数集,其中所述配置信令可以是半静态RRC信令、MAC信令(例如,随机接入响应)或DCI信令中的一种或多种。
·在激活的DL BWP上获得的时隙(相应地,微时隙)持续时间中的最小者。UE可由上层参数[activated-DL-BWP]配置激活的DL BWP,其中参数[activated-DL-BWP]定义用于DL接收的配置的DL BWP集合中的 DL BWP子集。
·参考或默认参数集(例如参考或默认DL参数集)的时隙(相应地,微时隙)持续时间。
不管上面的任意NR-UNIT或TTI*定义,在一些例子中,在UE中, NR-UNIT可被表示或配置成整数的OFDM符号。这种情况下,例如以微秒或毫秒为单位的符号的持续时间取决于使用NR-UNIT的上述定义中的哪种定义。
为了简单起见,在本公开的剩余部分中,除非另有规定,否则 NR-UNIT(即TTI*)的定义与传输方向无关。
在一些情况下,NR-UNIT可以是固定的,不过可随着时间而更新。例如,如果参数集或相应地具有最小微时隙或时隙持续时间的BWP被撤消、或者从UE的配置的参数集集合或者相应地BWP集合中被除去,那么NR-UNIT可被更新。尽管不是绝对需要考虑在本文中提出的 NR-UNIT的定义,不过,这样的更新可能是有益的,例如在节电和电池寿命延长方面,因为UE将以更高的时间粒度工作,这意味着例如包括协议变量和计数器在内的UE上下文的更新频率较低。
现在转向对于LCP的各种示例增强,在一些情况下,UL资源授权 R(i)可用UL授权赋予时间和UL赋予到UL数据发送的持续时间(即,授权的总寿命)表征。我们用k2表示NR_UNIT中的UL赋予到UL数据发送的持续时间。以绝对时间为单位,在本说明中表示成D(NR-UNIT)的 NR-UNIT的持续时间可以微秒或毫秒为单位表示。这里,用于UL授权资源R(i)的UL授权赋予时间被理解为在UE处收到所述授权的时刻(例如,公共UE-gNB时间线中的NR-UNIT数)。在由初始发送和随后的利用同一资源授权的周期发送组成的类似SPS的UL授权赋予方式的情况下,UL授权赋予时间也可被理解成利用同一授权的最后UL发送的时刻。
在例子中,对于给定授权R(i),终端可用的最大处理时间预算是 k2(即,授权的总寿命)和适用的时间提前量TA(或者等同地,终端到基站距离)的值的函数。我们用T_PROC_UE表示终端可用的最大处理时间预算。表示成T_LCP的LCP过程的时间预算是T_PROC_UE的分量,上限为T_PROC_UE。理想地,为了使在存在进行中的LCP过程的情况下,必须考虑到新的UL授权的可能性降至最小,考虑到UE的处理能力和预计的UE负荷,应尽可能小地设定T_LCP。对于各个授权R(i),可以定义参数T_LCP(i),其中T_LCP(i)是在授权寿命到期之前处理授权的LCP 过程时间预算。在一些例子中,T_LCP可能对于所有授权都相同。
在一些例子中,每当进行新的发送时,可以应用逻辑信道优先级处理过程。对于每个可用的调度资源授权R(i),按照示例实施例维持计数器LCP_START(i)。计数器LCP_START(i)可被解释成授权R(i)的年龄。对于各个授权R(i),UE在UL授权赋予时间,把计数器LCP_START(i) 初始化为0,之后每个NR-UNIT递增计数器LCP_START(i)。当对于至少一个资源授权R(i),计数器LCP_START(j)=k2(j)-T_LCP(j)时,UE 进行LCP过程。UE把满足关系T_LCP(j)≥(k2(h)-T_LCP(h))- LCP_START(h)的所有资源授权R(h)视为对于向逻辑信道的资源授权赋予的允许授权。关系T_LCP(j)≥(k2(h)-T_LCP(h))-LCP_START(h)暗示利用授权R(j)的数据的发送时段与利用授权R(h)的数据的发送时段重叠,换句话说,在利用授权R(h)的数据的发送时段之前,利用授权R(j) 触发的LCP过程将未完成。图53中图解说明了例子。
图54中图解说明示例LCP过程的第一部分(部分1)。LCP过程的该部分对应于图53中的步骤9。
就确定资源授权的优先权来说,对于各个资源允许授权R(h),UE 可基于授权的剩余寿命(即,基于在授权寿命到期之间的剩余时间量)就 LCP过程的目的确定资源授权的优先权。对于授权R(h),在时刻t,在授权寿命到期之前的该剩余时间量被计算为k2(h)-LCP_START(h,t),其中LCP_START(h,t)是对应于时刻t的NR_UNIT下的计数器 LCP_START(h)的当前值。对于满足触发LCP过程的关系 LCP_START(j)=k2(j)-T_LCP(j)的授权R(j),在LCP被触发时,授权 R(j)的剩余寿命为T_LCP(j)。UE按照剩余寿命值的严格递减顺序,区分允许授权R(h)的优先次序。剩余寿命最小的授权是优先权最高的授权,而剩余寿命最大的授权是优先权最低的授权。
在另一个实施例中,UE可基于参数k2(即,UL赋予到UL数据发送的持续时间)确定资源授权的优先权。UE按照k2的值的严格递减顺序,区分允许授权R(h)的优先次序。k2值最小的授权是优先权最高的授权,而k2值最大的授权是优先权最低的授权。
在平局的情况下,在一些情况下,选择最大的授权作为优先权较高的授权。最大的授权可被定义为资源元素的数量最大的授权。或者。最大的授权可被定义为UE已估计在MACSDU内能够发送最大数量的数据的授权。在另一种备选方案中,在平局的情况下,随机选择优先权较高的授权。
现在转向逻辑信道的选择,就LCP过程而言,授权可被认为是特定于参数集的。逻辑信道可被映射到不止一个参数集,于是,逻辑信道上的数据可由不止一个参数集服务。不止一个逻辑信道可被映射到不止一个参数集,于是,参数集特有授权可服务来自不止一个逻辑信道的更多数据。类似地,逻辑信道可能被限制使用一些参数集上的资源授权。LCP 过程应考虑到逻辑信道到参数集映射的限制。
在例子中,对于每个选择的UL授权,可以为LCP过程选择逻辑信道,如果该逻辑信道满足各种条件的话。例如,如果逻辑信道没有由于参数集映射限制(例如,由于子载波间隔(SCS)的限制),而被限制使用所选的授权,那么可以选择该逻辑信道。在另一个例子中,如果逻辑信道没有由于数据复制限制,而被限制使用所选的授权,那么可以选择该逻辑信道。例如,如果DRB被映射到两个逻辑信道LC1和LC2,以支持至少两个分量载波CC1和CC2上的数据复制(CA或DC数据复制情况),那么LC1可被限制使用CC2上的授权,而LC2被限制使用CC1上的授权。如果选择的授权在分量载波CC2上,那么LC1被限制使用所选的授权。类似地,如果选择的授权在CC1上,那么逻辑信道LC2被限制使用所选的授权。在另一个例子中,逻辑信道可被赋予参数k2值。如果逻辑信道的在NR-UNIT中表述的其k2值、或者以微秒或毫秒为单位的持续时间大于或等于以与逻辑信道的参数k2相同的时间单位表述的所选授权的参数k2,那么可选择该逻辑信道。如前所述,与UL授权关联的参数 k2表示NR-UNIT中的UL赋予到UL数据发送的持续时间。以绝对时间为单位,在本说明中表示成D(NR-UNIT)的NR-UNIT的持续时间可以微秒或毫秒为单位表示。这里,UL授权资源R(i)的UL授权赋予时间被理解成在UE处收到所述授权的时刻(例如,公共UE-gNB时间线中的NR-UNIT数)。在由初始发送和随后的利用同一资源授权的周期发送组成的类似SPS的UL授权赋予方式的情况下,UL授权赋予时间也可被理解成利用同一授权的最后UL发送的时刻。
可如下描述上述条件的替代方案:逻辑信道可被映射到一个或多个参数集,即,可以利用一个或多个参数集,为数据发送配置逻辑信道。如本文中在前面所述,参数集可具有不止一个TTI,每个TTI具有以毫秒或微秒为单位的不同持续时间。从而,如本文中前面所定义的,可以利用一个或多个TTI,为数据发送配置逻辑信道。假定NR系统支持时隙级调度和微时隙级调度,并且假定gNB可在同一参数集内或者在不止一个参数集上在时隙级或微时隙级调度相对于同一UE的数据发送,给定逻辑信道的数据的数据发送计时器间隔(即,连续的数据发送时机之间的持续时间)可以是可变而不是固定的。我们假设每个逻辑信道被配置实际上表示成TTI的数量的参数k2。逻辑信道被配置的每个TTI可被转换成微秒或毫秒的一定数量d的NR_UNIT。用固定的持续时间单位来表示,UL数据授权赋予时间和UL数据发送时间之间的持续时间可被表示成k2*d。我们用MaxLatency(LCH)表示在为逻辑信道LCH配置的所有 TTI上获得的k2*d的最大值。如果MaxLatency值大于或等于以与 Maxlatency相同的时间单位表述的所选授权的参数k2,那么选择逻辑信道LCH。在备选实施例中,逻辑信道LCH的可接受等待时间可被定义为在由MinLatency(LCH)和MaxLatency(LCH)表征的等待时间窗口之内。如果与授权关联的等待时间(即,授权的参数k2)落入由下端的 MinLatency(LCH)和上端的MaxLatency(LCH)定义的等待时间窗口中,那么为该授权选择该逻辑信道,即,该逻辑信道不被限制使用该授权。
从而,按照上面的说明,包括配置成连接到网络的多个逻辑信道的设备可从通过网络连接到设备的网络节点接收资源的第一授权。所述资源的第一授权可指示与第一授权关联的第一寿命,以致当第一寿命到期时,所述第一授权不可用。基于与第一授权关联的寿命,设备(UE)可选择设备的多个逻辑信道中的逻辑信道,并利用所述资源的第一授权,通过选择的逻辑信道发送数据。此外,所述资源的第一授权还可指示与所述资源的第一授权关联的参数集,可基于所述参数集,进一步选择所选的逻辑信道。此外,所述设备可判定数据无线承载是否被映射到所述多个逻辑信道中的不止一个逻辑信道,并且当数据无线承载被映射到所述多个逻辑信道中的不止一个逻辑信道时,所述设备可限制所述多个逻辑信道中的至少一个逻辑信道利用所述资源的第一授权。
现在转向逻辑信道优先权,在一些情况下,可以重复使用现有的LTE 逻辑信道优先权定义。在这种方案中,每个逻辑信道被赋予一个优先权值。优先权值越小,逻辑信道优先权越高。
如已在本公开中所述那样,在各个例子中,可以引入新的逻辑信道优先权类型。在一个实施例中,可相对于映射到逻辑信道的服务数据流或QoS流的等待时间要求,定义该新的优先权类型。每个逻辑信道被赋予引入的参数k2的值。赋予逻辑信道的参数k2的值越小,逻辑信道优先权越高。
在备选实施例中,可以联合地使用上面定义的两种优先权类型。例如,逻辑信道可被赋予两种类型的优先权,基于参数k2的优先权和基于 LTE的优先权类型。随后可首先根据基于参数k2的优先权,区分逻辑信道的优先次序。在平局的情况下,在一些情况下,可按照传统LTE优先权定义,利用逻辑信道优先权来区分逻辑信道的优先次序。
图55、56和57中图解说明LCP过程的第二部分(部分2)的不同选项。示例的LCP过程的部分2对应于图53中的步骤10。
在例子中,当存在供发送的新数据,并且由于对于授权grant R(j),条件LCP_START(j)=k2(j)-T_LCP(j)被满足,从而触发LCP过程时,有可能新的授权R(l)在m个NR-UNIT之后变得可用,并且满足关系 T_LCP(j)≥m*NR-UNIT和T_LCP(j)-m*NR_UNIT≥k2(l)-T_LCP(l),即,在授权R(l)处理的开始时间之前,授权R(j)触发的LCP过程将未完成。
对于其中在新近可用的授权R(l)的允许逻辑信道集合和现有的容许授权R(h)的允许逻辑信道集合之间,至少存在一个公共逻辑信道的这种示例情况,可以实现如在图55和56中图解所示的各种选项。
在一个例子中,参考图55,在1,LCP被中断。在2,已由进行中的LCP分配的授权由它们被分配给的逻辑信道使用。在步骤2之后的剩余授权可在下面的步骤4中使用。在3,新近可用的授权可被加入容许授权的集合中。在4,LCP可被重新初始化,例如,考虑到步骤2的剩余资源授权加上新近可用的授权R(l),可利用容许授权的新的集合开始新的LCP过程。
在另一个例子中,参考图56,重新开始进行中的LCP。例如,在1,停止进行中的LCP。在2,按照该例子,已由现在在步骤1被停止的LCP 过程分配的资源授权被放回可供赋予的授权池。例如,允许的授权R(h) 的值可被重置为它们在现在在步骤1被停止的LCP过程开始之前的相应值。在3,新近可用的授权R(1)可被添加到可用授权的集合中。在4,利用容许授权的新的集合,重新开始LCP过程。或者,考虑到剩余的LCP 时间预算可能不足的事实,在一些情况下,可以开始两个或更多个并行的LCP过程,每个LCP过程被赋予允许的逻辑信道的特定非重叠集合。
当在新近可用的授权R(l)的允许逻辑信道集合和现有的容许授权 R(h)的允许逻辑信道集合之间,不存在公共的逻辑信道时,对于资源授权赋予,可以实现图57中图解所示的另一个例子。参见图57,按照图解所示的例子,在1,不中断进行中的LCP。在2,利用为新近允许的授权 R(l)特有的允许逻辑信道的集合,开始新的LCP过程。
从而,按照上面的说明,包括配置成通过其通信电路连接到网络的多个逻辑信道的设备(UE)可从通过网络连接到所述设备的网络节点接收资源的第一授权,其中所述资源的第一授权指示与第一授权关联的第一寿命,以致当第一寿命到期时,所述第一授权不可用。基于与第一授权关联的第一寿命,所述设备可选择设备的多个逻辑信道中的逻辑信道,并利用所述资源的第一授权通过选择的逻辑信道发送数据。在例子中,当收到所述资源的第一授权时,所述设备可建立与所述授权关联的计数器。在第一授权未被使用的情况下,每当预定的时间单位到期时,所述设备可递增所述计数器,以便追踪所述第一授权的年龄。在例子中,所述设备比较所述多个逻辑信道每一个的等待时间要求与第一授权的等待时间,以识别可以利用所述授权的逻辑信道的子集,其中选择的逻辑信道是所述逻辑信道的子集中的一个。可以基于逻辑信道的预定优先级,从逻辑信道的子集中选择所选逻辑信道,所述预定优先级可以基于所选逻辑信道的等待时间要求或所选逻辑信道的服务质量要求中的至少一个。
此外,如参考图53-57所述,所述设备可从通过网络连接到该设备的网络节点接收资源的第二授权,其中所述资源的第二授权指示与所述第二授权关联的第二寿命,以致当第二寿命到期时,所述第二授权不可用。在例子中,第一授权的第一寿命与第二授权的第二寿命重叠。所述设备可以判定第二寿命会在第一寿命之前到期。基于该判定,所述设备可使用资源的第二授权而不是资源的第一授权来通过所述多个逻辑信道之一发送数据。在另一个例子中,所述设备可中断利用资源的第一授权通过选择的逻辑信道发送数据,以利用资源的第二授权通过另外的逻辑信道发送数据,在资源的第二授权到期之后,所述设备可重新开始通过选择的逻辑信道发送数据。在上行链路通信中,数据可由设备(UE)发送给网络,或者在设备间通信中,数据可由设备发送给其他设备。
现在转向缓冲区状态报告(BSR),UE可基于各种缓冲区状态报告模型,报告缓冲区状态,即,与(一个或多个)MAC实体关联的UL缓冲区中的可供发送的数据的数量。
在一种示例的缓冲区状态报告选项(选项1)中,BSR为网络切片所共有,即,缓冲区状态报告不是特定于网络切片的。在一些情况下,不为各个网络切片单独报告缓冲区状态。UE(MAC)可以聚合来自不同网络切片的缓冲区状态,并将它作为适用于与所有网络切片关联的UL缓冲区中的可供发送的数据的单一缓冲区状态报告来报告。通过例如利用RRC 信令用为网络切片所共有的以下示例计时器配置UE,网络可控制缓冲区状态报告信令:周期性BSR计时器、重传BSR计时器和缓冲区状态报告禁止计时器。在一些例子中,如果发生作为例子而非限制地给出的任意下述事件,UE可触发BSR:数据的到达,服务小区的变更,基于周期性BSR计时器周期性地,代替MAC PDU填补的BSR。
在另一种示例的缓冲区状态报告选项(选项2)中:BSR为PHY参数集所共有。例如,缓冲区状态报告不是特定于PHY参数集的。在一些情况下,不为各个参数集单独报告缓冲区状态。UE(MAC)可以聚合来自不同参数集的缓冲区状态,并将它作为适用于与所有PHY参数集关联的 UL缓冲区中的可供发送的数据的单一缓冲区状态来报告。在一个示例实施例中,UE可在不考虑逻辑信道到参数集的映射的情况下,报告配置的逻辑信道或一组逻辑信道的缓冲区状态。通过例如利用RRC信令用作为例子而非限制地给出的为所有PHY参数集共有的以下计时器配置UE,网络可控制缓冲区状态报告信令:周期性BSR计时器、重传BSR计时器和缓冲区状态报告禁止计时器。如果发生任意下述事件,UE可触发 BSR:数据的到达,服务小区的变更,基于周期性BSR计时器周期性地,代替MAC PDU填补的BSR。
在另一种示例的缓冲区状态报告选项(选项3)中:BSR是特定于网络切片的。例如,UE(MAC)可能同时地为每个网络切片单独向NR节点报告来自不同网络切片的缓冲区状态。在任意特定TTI或时间间隔X中,每个网络切片可具有不止一个缓冲区状态报告。例如,UE(MAC)可以为各个网络切片单独报告网络切片的不同逻辑信道或不同逻辑信道组的缓冲区状态。在另一种备选方案中,UE(MAC)可对于每个网络切片报告单一缓冲区状态,即,UE可聚合来自属于同一网络切片的所有逻辑信道的缓冲区状态,并将它作为单一缓冲区状态报告向NR节点报告。通过例如利用RRC信令用作为例子而非限制地给出的用于每个网络切片的以下示例计时器配置UE,网络可控制缓冲区状态报告信令:周期性BSR 计时器、重传BSR计时器和缓冲区状态报告禁止计时器。如果发生作为例子而非限制地给出的任意下述事件,UE可触发BSR:网络切片的数据的到达,服务小区的变更,基于周期性BSR计时器周期性地,代替MAC PDU填补的BSR。
在另一种示例的缓冲区状态报告选项(选项4)中,BSR是特定于参数集的。例如,UE(MAC)可能同时地为每个参数集单独向NR节点报告来自不同参数集的缓冲区状态。在任意特定TTI或时间间隔X中,每个参数集可具有不止一个缓冲区状态报告。例如,UE(MAC)可以为各个参数集,单独报告参数集的不同逻辑信道或不同逻辑信道组的缓冲区状态。在另一种备选方案中,UE(MAC)对于每个参数集报告单一缓冲区状态,即,UE可聚合来自属于同一PHY参数集的所有逻辑信道的缓冲区状态,并将它作为单一缓冲区状态报告向NR节点报告。通过例如利用RRC信令用作为例子而非限制地给出的用于每个参数集的以下示例计时器配置 UE,网络可控制缓冲区状态报告信令:周期性BSR计时器、重传BSR 计时器和缓冲区状态报告禁止计时器。如果发生作为例子而非限制地给出的任意下述事件,UE可触发BSR:网络切片的数据的到达,服务小区的变更,基于周期性BSR计时器周期性地,代替MAC PDU填补的BSR。
在另一种示例的缓冲区状态报告选项(选项5)中:BSR是特定于应用的。UE为每个应用单独报告BSR。通过例如利用RRC信令用针对每个应用的以下示例计时器配置UE,网络可控制缓冲区状态报告信令:周期性BSR计时器、重传BSR计时器和缓冲区状态报告禁止计时器。如果发生作为例子而非限制地给出的任意下述事件,UE可触发BSR:应用的数据的到达,服务小区的变更,基于周期性BSR计时器周期性地,代替 MAC PDU填补的BSR。
在另一种示例的缓冲区状态报告选项(选项6)中:BSR是特定于数据流的。UE为每个数据流单独报告BSR。通过例如利用RRC信令用针对每个数据流的以下示例计时器配置UE,网络可控制缓冲区状态报告信令:周期性BSR计时器、重传BSR计时器和缓冲区状态报告禁止计时器。如果发生作为例子而非限制地给出的任意下述事件,UE可触发BSR:数据流的数据的到达,服务小区的变更,基于周期性BSR计时器周期性地,代替MAC PDU填补的BSR。
在另一种示例的缓冲区状态报告选项(选项7)中,BSR是特定于逻辑信道的,或者特定于逻辑信道组的。UE为每个逻辑信道或者逻辑信道组,单独报告BSR。逻辑信道或逻辑信道组可以是特定于切片的。例如,可将BSR报告为特定于切片,并且在各个切片内,可以基于逻辑信道或者基于逻辑信道组,例如,基于特定于切片或者基于切片组,报告BSR。通过例如利用RRC信令用针对各个逻辑信道或逻辑信道组的以下示例计时器配置UE,网络可控制缓冲区状态报告信令:周期性BSR计时器、重传BSR计时器和缓冲区状态报告禁止计时器。如果发生作为例子而非限制地给出的任意下述事件,UE可触发BSR:逻辑信道或逻辑信道组的数据的到达,服务小区的变更,基于周期性BSR计时器周期性地,代替 MAC PDU填补的BSR。
在另一种缓冲区状态报告选项(选项8)中:可以进行上述选项中的两种或更多种的组合。例如,UE可将一些缓冲区状态报告为网络特有缓冲区状态,同时UE可报告为所有网络切片共有的一些其他缓冲区状态。
UE BSR报告方法和配置可(由较高层)配置成与UL资源授权分配一致。这样,网络可以适当地利用报告的BSR来恰当地确定用于UE的(一个或多个)上行链路调度授权。
现在转向功率余量报告,可以按载波、按网络切片、按波束等定义 UE最大允许发射功率。取决于UE最大允许发射功率的定义,将相应地定义对应的功率余量。UE(例如,MAC)可报告功率余量(1型功率余量或 2型功率余量),所述功率余量可以是基于各种功率状态报告模型在UE 中可用的发射功率的数量。
在一种示例的功率余量报告选项(选项1)中:PHR为网络切片所共有,即,功率余量报告不是特定于网络切片的。不为各个网络切片单独报告功率余量。通过例如利用RRC信令用作为例子而非限制地给出的为所有网络切片共有的以下参数配置UE,网络可控制PHR信令:周期性 PHR计时器、禁止PHR计时器、路径损耗的变化(当前功率余量和最后的报告之间的差异大于可配置的阈值)。
在另一种功率余量报告选项(选项2)中:PHR为PHY参数集所共有,即,功率余量报告不是特定于PHY参数集的。不为各个参数集单独报告功率余量。通过例如利用RRC信令用作为例子而非限制地给出的为所有 PHY参数集共有的以下参数配置UE,网络可控制PHR信令:周期性PHR计时器、禁止PHR计时器、路径损耗的变化(当前功率余量和最后的报告之间的差异大于可配置的阈值)。
在另一种功率余量报告选项(选项3)中:PHR是特定于网络切片的,即,UE(MAC)可能同时地为每个网络切片,单独向NR节点报告不同网络切片的功率余量。在任意特定TTI或时间间隔X中,每个网络切片可具有不止一个功率余量报告。例如,UE(MAC)可以为各个网络切片,单独报告不同服务小区的功率余量。在另一种备选方案中,UE(MAC)可对于每个网络切片报告单一功率余量。通过例如利用RRC信令用作为例子而非限制地给出的用于每个网络切片的以下参数配置UE,网络可控制 PHR信令:周期性PHR计时器、禁止PHR计时器、路径损耗的变化(当前功率余量和最后的报告之间的差异大于可配置的阈值)。
在另一种功率余量报告选项(选项4)中,PHR是特定于参数集的,即, UE(MAC)可能同时地为每个参数集,单独向NR节点报告不同PHY参数集的功率余量。在任意特定TTI或时间间隔X中,每个参数集可具有不止一个功率余量报告。例如,UE(MAC)可以为各个参数集,单独报告不同服务小区的功率余量。在另一种备选方案中,UE(MAC)可对于每个参数集报告单一功率余量。通过例如利用RRC信令用作为例子而非限制地给出的用于每个参数集的以下参数配置UE,网络可控制PHR信令:周期性PHR计时器、禁止PHR计时器、路径损耗的变化(当前功率余量和最后的报告之间的差异大于可配置的阈值)。
在另一种功率余量报告选项(选项5)中:功率余量是特定于应用的。 UE为每个应用单独报告功率余量。通过例如利用RRC信令用作为例子而非限制地给出的用于每个应用的以下参数配置UE,网络可控制PHR 信令:周期性PHR计时器、禁止PHR计时器、路径损耗的变化(当前功率余量和最后的报告之间的差异大于可配置的阈值)。
在另一种功率余量报告选项(选项6)中:PHR是特定于数据流的。 UE为每个数据流单独报告PHR。通过例如利用RRC信令用作为例子而非限制地给出的用于每个应用的以下参数配置UE,网络可控制PHR信令:周期性PHR计时器、禁止PHR计时器、路径损耗的变化(当前功率余量和最后的报告之间的差异大于可配置的阈值)。
在另一种缓冲区状态报告选项(选项7)中,可进行上述选项中的两种或更多种的组合。例如可能同时地,UE可将为一些功率余量报告为网络特有功率余量地报告,同时UE可报告为所有网络切片共有的一些其他功率余量。
现在转向调度请求(SR),UE可基于各种示例SR模型,向NR节点发送调度请求(SR)。在一个例子中,SR为网络切片所共有,即,调度请求不是特定于网络切片的。不为每个网络切片单独发送调度请求。在一些情况下,SR周期性在所有切片之间是公共的。依据作为例子而非限制地给出的下述事件,UE可触发SR:优先权比已存在于任何配置的网络切片的发送缓冲区中的数据高的数据的到达。
作为存在优先权比已存在于任意配置的网络切片的发送缓冲区中的数据高的可供在TTI中发送的数据、然而在该TTI中不存在发送用 UL-SCH资源的结果,可以发送SR。在一个实施例中,调度请求可以向 gNB指示为其请求资源授权的网络切片。为其请求资源授权的各个网络切片可以用SR中的单一比特表示。gNB用信号向UE通知的授权分配还可包括为其分配授权的网络切片的指示。gNB可在给UE的授权分配信令中,设定用于为其分配授权的各个网络切片的单一比特,其中“1”指示被分配授权,而“0”指示不被分配授权,反之亦然。在另一个实施例中,调度请求不具有为其请求资源授权的网络切片的指示。当UE请求为网络切片所共有(即,可用于UE被配置的任意网络切片)的资源时,UE可不在SR中设定切片指示比特。UE利用从gNB接收的资源授权消息中的与各个网络切片关联的比特的值,来识别对于该网络切片是否分配了授权。如果没有为任意网络切片设定比特,那么UE可将此理解成接收的授权可用于UE被配置的所有网络切片。
在另一种调度请求例子中:SR为PHY参数集所共有,即,调度请求不是特定于PHY参数集的。不为各个参数集单独地报告缓冲区状态。不为各个参数集单独地发送调度请求。在所有参数集之间,SR周期性是公共的。UE可依据以下事件触发SR:优先权比已存在于任意配置的参数集的发送缓冲区中的数据高的数据的到达。在一个实施例中,调度请求可以向gNB指示为其请求资源授权的参数集。为其请求资源授权的各个参数集可用SR中的单一比特表示。gNB用信号向UE通知的授权分配还可包括为其分配授权的参数集的指示。gNB可设定用于为其分配授权的各个参数集的单一比特,其中“1”指示被分配授权,而“0”指示不被分配授权,反之亦然。在另一个实施例中,调度请求可不具有为其请求资源授权的参数集的指示。当UE请求为参数集所共有(即,可用于UE被配置的任意参数集)的资源时,UE可不设定参数集指示比特。在一些情况下,UE利用从gNB接收的资源授权消息中的与各个参数集关联的比特的值,来识别对于该特定参数集是否分配了授权。如果没有为任意参数集设定比特,那么UE可将此理解成接收的授权可用于UE被配置的所有参数集。
在另一种调度请求选项或例子中,SR是特定于网络切片的,即,UE 可由gNB配置网络切片特有SR,UE可能同时地为每个网络切片单独向 NR节点发送调度请求。调度周期性是特定于网络切片的,例如对于切片 x,每n_x个子帧出现调度请求子帧,而对于切片y,每n_y个子帧出现调度请求子帧。依据作为例子而非限制地给出的下述事件,UE可触发 SR:优先权比已存在于与该SR关联的网络切片的发送缓冲区中的数据高的数据的到达。
在另一种调度请求例子中,SR是特定于参数集的,即,UE可由gNB 配置参数集特有SR,UE可能可以同时地为每个参数集,单独向NR节点发送调度请求。调度周期性是特定于参数集的,例如对于参数集x,每 n_x个子帧出现调度请求子帧,而对于参数集y,每n_y个子帧出现调度请求子帧。依据作为例子而非限制地给出的下述事件,UE可触发SR:优先权比已存在于与该SR关联的参数集的发送缓冲区中的数据高的数据的到达。
在另一种调度请求例子中,SR是特定于应用的,即,UE可由gNB 配置应用特有SR,UE可能可以同时地为每个应用单独发送SR。调度周期性是特定于应用的,例如对于应用x,每n_x个子帧出现调度请求子帧,而对于应用y,每n_y个子帧出现调度请求子帧。依据下述事件,UE可触发SR:优先权比已存在于与该SR关联的应用的发送缓冲区中的数据高的数据的到达。
在另一种调度请求例子中,SR是特定于数据流的,即,UE可由gNB 配置数据流特有SR,UE可能可以同时地为每个数据流单独发送SR。调度周期性是特定于数据流的,例如对于数据流x,每n_x个子帧出现调度请求子帧,而对于数据流y,每n_y个子帧出现调度请求子帧。依据下述事件,UE可触发SR:优先权比已存在于与该SR关联的数据流的发送缓冲区中的数据高的数据的到达。
在另一种调度请求例子中:SR是特定于逻辑信道的,或者特定于逻辑信道组的,即,UE可由gNB配置逻辑信道或逻辑信道组特有SR,UE 可以为每个逻辑信道或逻辑信道组单独发送SR。逻辑信道或逻辑信道组可以是特定于切片的。例如,可特定于切片来报告BSR,并且在各个切片内,可以基于逻辑信道或者基于逻辑信道组(例如,基于特定于切片或者基于切片组)报告SR。依据下述事件,UE可触发SR:优先权比已存在于与该SR关联的逻辑信道或逻辑信道组的发送缓冲区中的数据高的数据的到达。
在另一个调度请求例子中,上述选项中的两个或更多个选项的组合。例如,UE可能可以同时地报告特定于网络的一些SR,同时UE可报告为所有网络切片共有的一些其他SR。
现在转向UE、接入网络(例如,RAN)和核心网络之间的UE能力协调的例子,如上所述,正在设计下一代移动电信系统,以支持诸如eMBB、 URLLC和mMTC之类的一系列应用场景。这些主要用例在等待时间、数据速率、移动性、设备密度、可靠性、UE电池寿命、网络能量消耗等方面,具有不同并且冲突的服务要求。为了有效地支持这些不同并且冲突的服务要求,将使用网络切片。有可能不同的UE在他们支持哪些网络切片或网络切片的组合或者网络切片特征方面,具有不同的能力。下面讨论在下一个工作切片的上下文中的UE能力处理方法。对于本讨论来说,我们还将把切片类型称为主要用例的切片,比如eMBB切片类型、URLL切片类型或mMTC切片类型。
可以用UE RAN切片能力来定义UE能力,UE能力可以是诸如UE 无线能力之类的能力。也可以用UE核心网络切片能力来定义UE能力。对UE来说,UE能力信令的一种方法是基于特定于切片或者基于特定于切片类型用信号向网络通知RAN切片能力。类似地,UE可基于特定于切片或基于特定于切片类型用信号向网络通知UE核心网络能力。我们可把切片特有能力信令称为网络切片硬分割UE能力信令。在这种方法中,UE用信号向网络通知网络切片或网络切片类型特有UE能力。网络能力信令的另一种方法是组合的UE能力信令方法。在这种方法中,UE 可用信号向网络通知包括UE无线通信的组合的UE RAN能力。类似地, UE可用信号通知组合的UE核心网络能力。第三种方法可以是两个方法的组合,其中基于特定于切片或特定于切片类型用信号通知一些UE能力(UE RAN/RAT能力或UE核心网络能力),同时用信号通知一些其他 UE能力作为网络切片之间的组合的能力。
在网络切片硬分割UE能力处理的例子中,切片或切片类型的UE能力(例如,诸如频带、支持的频带组合之类的无线能力,诸如NAS安全算法之类的核心网络能力等)可能未被充分利用,而另一切片或切片类型的 UE能力被充分利用,并且可能受益于能力扩展或能力升级。在这样的情形下,对网络来说,可以从未充分利用的切片重新分配UE能力。网络可以利用网络切片或网络切片类型之间的新的能力分割,重新配置UE。 UE还可以自动检测重新平衡UE被配置的网络切片之间的能力分割的需要。例如,假设UE被配置涉及NR RAT的网络切片。随后,UE被配置涉及LTE RAT或WLAN RAT的另一切片。这可能触发UE依据其更新的能力信息(例如,无线能力),向网络(接入网络和核心网络)发起UE能力更新。例如,这可能是特定网络切片的使用水平,或者RAT之间的干扰水平(设备内干扰)的结果。例如,UE可把能力更新发送给网络,以指示例如新的频带组合或者网络切片之间的新的能力分割。网络可接受新的能力分割或者拒绝和/或提出新的能力分割。UE可在RRC连接状态下发起UE能力更新过程。该RRC连接状态可以是在NR上下文中讨论的任意RRC连接状态,例如,RRC连接活动状态或RRC连接非活动状态。
诸如图形用户界面(GUI)之类的界面可用于帮助用户控制和/或配置与下一代移动电信系统的体系结构方面和QoS相关的功能。
用户界面(UI)可用于配置与记载在本文中的发明关联的参数中的一个或多个参数。用户界面可以是文本的,文本用户界面(TUI),或者图形的,图形用户界面(GUI)。
UI可向用户提供配置如何将应用/服务映射到网络资源的给定集合 (即切片)的能力。例如,UI可允许用户手动选择应用/服务可访问哪个或哪些切片。图50中表示了用于应用/切片映射的示例UI。对于其中不止一个切片满足应用/服务要求的情形,可以提供切片的列表,其中切片可按照用户偏好排序。
对于其中UE检测到的切片都不能满足服务要求的情形,可在UE上显示指示服务要求不能被满足的通知。随后可提示用户确认该指示。或者,可以向用户提供在能够满足服务要求的切片可用以前,把应用/服务映射到可用于提供“尽力而为”服务的网络切片的选项。图51中表示了这种情形的UI和调制解调器之间的示例信令。
UI可向用户提供配置缓冲区状态报告(BSR)和/或功率余量报告 (PHR)的报告的能力。UI可向用户提供设定用于BSR/PHR的默认值或者超越由RRC实体配置的值的能力。UI还可向用户提供选择哪个切片用于BSR/PHR报告的选项。
UI可向用户提供配置资源授权分配选项的能力。例如,在网络控制的资源授权分配的情况下,授权分配可被配置成NR资源授权选项之一;例如,为网络切片所共有(NR资源授权选项1),为物理层参数集所共有 (NR资源授权选项2)等。在UE控制的资源授权分配的情况下,授权分配可被配置成NR资源授权选项之一;例如,为网络切片所共有(NR资源授权选项1),为物理层参数集所共有(NR资源授权选项2)等。要明白的是可利用如在下面说明的图52B和F中所示的显示器,产生图50的界面。
示例的通信系统/网络
第三代合作伙伴计划(3GPP)研发蜂窝电信网络技术的技术标准,包括无线接入、核心传输网络和服务能力-包括关于编解码器、安全性和服务质量的工作。近来的无线接入技术(RAT)标准包括WCDMA(通常称为 3G)、LTE(通常称为4G)和LTE-Advanced标准。3GPP已经开始致力于称为新无线电(NR)(也被称为“5G”)的下一代蜂窝技术的标准化。预期 3GPPNR标准研发包括下一代无线接入技术(新的RAT)的定义,预计它包括低于6GHz的新的灵活无线接入的提供,以及高于6GHz的新的超移动宽带无线接入的提供。预计灵活无线接入由低于6GHz的新频谱中的新的不向下兼容的无线接入组成,预计包括可在相同频谱中一起被多路复用以解决具有不同要求的一组广泛的3GPP NR用例的不同操作模式。预计超移动宽带包括cmWave和mmWave频谱,这将为例如室内应用和热点提供超移动宽带接入的机会。特别地,在cmWave和mmWave 特有设计优化的情况下,预计超移动宽带与低于6GHz的灵活无线接入共享公共的设计框架。
3GPP确定了预计NR支持的各种用例,结果产生对于数据速率、等待时间和移动性的各种各样的用户体验要求。用例包括以下一般类别:增强移动带宽(例如,密集区域中的宽带接入、室内超高宽带接入、人群中的宽带接入、50+Mbps无处不在、超低成本宽带接入、交通工具中的移动宽带)、应急通信、大规模机器类型通信、网络运行(例如,网络切片、路由、迁移和互通、节能)、以及增强车辆-万物(eV2X)通信。仅举几例,这些类别中的具体服务和应用例如包括监视和传感器网络、设备远程控制、双向远程控制、个人云计算、视频流式传输、无线云办公、第一响应者连接、汽车紧急呼叫、灾难警报、实时游戏、多个视频通话、自动驾驶、增强实现、触觉互联网、和虚拟现实。本文中设想了所有这些和其他用例。
图52A图解说明其中可以体现本文中说明和要求保护的方法和设备的示例通信系统100的一个实施例。如图所示,示例的通信系统100可包括无线发送/接收单元(WTRU)102a、102b、102c和/或102d(它们可一般称为或者统称为WTRU 102)、无线接入网络(RAN)103/104/105/103b/ 104b/105b、核心网络106/107/109、公共交换电话网络(PSTN)108、因特网110和其他网络112,不过要意识到公开的实施例可设想任意数量的 WTRU、基站、网络和/或网络元件。各个WTRU 102a、102b、102c、 102d可以是配置成在无线环境中工作和/或通信的任意类型的设备或装置。尽管在图52A-52E中,各个WTRU 102a、102b、102c、102d被描述成手持无线通信设备,不过要明白就关于5G无线通信设想的各种各样的用例来说,各个WTRU可以包含配置成发送和/或接收无线信号的任意类型的设备或装置,或者体现在其中,仅仅作为例子,包括用户设备 (UE)、移动站、固定或移动订户单元、寻呼机、蜂窝电话机、个人数字助手(PDA)、智能电话机、膝上型计算机、平板电脑、上网本、笔记本计算机、个人计算机、无线传感器、消费电子产品、诸如智能手表或智能服装之类的可穿戴式装置、医疗或电子健康装置、机器人、工业设备、无人机、诸如汽车、卡车、火车或飞机之类的交通工具,等等。
通信系统100还可包括基站114a和基站114b。基站114a可以是配置成与WTRU102a、102b、102c至少之一无线对接以便利接入一个或多个通信网络(比如核心网络106/107/109、因特网110和/或其他网络112) 的任意类型的装置。基站114b可以是配置成与RRH(远程无线电头端)118a、118b和/或TRP(发送和接收点)119a、119b至少之一有线和/或无线对接以便利接入一个或多个通信网络,比如核心网络106/107/109、因特网110和/或其他网络112的任意类型的装置。RRH 118a、118b可以是配置成与WTRU 102c至少之一无线对接以便利接入一个或多个通信网络(比如核心网络106/107/109、因特网110和/或其他网络112)的任意类型的装置。TRP 119a、119b可以是配置成与WTRU 102d至少之一无线对接以便利接入一个或多个通信网络(比如核心网络106/107/109、因特网110和/或其他网络112)的任意类型的装置。例如,基站114a、114b 可以是基站收发器(BTS)、Node-B、eNode B、家庭节点B、家庭eNode B、站点控制器、接入点(AP)、无线路由器等。尽管基站114a、114b都被描述成单一元件,不过要意识到基站114a、114b可包括任意数目的互连基站和/或网络元件。
基站114a可以是RAN 103/104/105的一部分,RAN 103/104/105还可包括其他基站和/或网络元件(未图示),比如基站控制器(BSC)、无线网络控制器(RNC)、中继节点等。基站114b可以是RAN 103b/104b/105b 的一部分,RAN 103b/104b/105b还可包括其他基站和/或网络元件(未图示),比如基站控制器(BSC)、无线网络控制器(RNC)、中继节点等。基站 114a可被配置成在特定地理区域(它可被称为小区(未图示))内,发送和/ 或接收无线信号。基站114b可被配置成在特定地理区域(它可被称为小区 (未图示))内,发送和/或接收有线和/或无线信号。小区可被进一步分成小区扇区。例如,与基站114a关联的小区可被分成3个扇区。从而,在实施例中,基站114a可包括3个收发器,例如,小区的每个扇区一个收发器。在实施例中,基站114a可采用多入多出(MIMO)技术,于是可对于小区的每个扇区,使用多个收发器。
基站114a可通过空口115/116/117,与WTRU 102a、102b、102c中的一个或多个通信,空口115/116/117可以是任何适当的无线通信链路(例如,射频(RF)、微波、红外(IR)、紫外(UV)、可见光、cmWave、mmWave 等)。可以利用任意适当的无线接入技术(RAT),建立空口115/116/117。
基站114b可通过有线接口或空口115b/116b/117b,与RRH 118a、 118b和/或TRP119a、119b中的一个或多个通信,有线接口或空口 115b/116b/117b可以是任何适当的有线链路(例如,电缆、光纤等)或无线通信链路(例如,射频(RF)、微波、红外(IR)、紫外(UV)、可见光、cmWave、 mmWave等)。可以利用任何适当的无线接入技术(RAT),建立空口 115b/116b/117b。
RRH 118a、118b和/或TRP 119a、119b可通过空口115c/116c/117c,与WTRU 102c、102d中的一个或多个通信,空口115c/116c/117c可以是任何适当的无线通信链路(例如,射频(RF)、微波、红外(IR)、紫外(UV)、可见光、cmWave、mmWave等)。可以利用任何适当的无线接入技术 (RAT),建立空口115c/116c/117c。
更具体地,如上所述,通信系统100可以是多址接入系统,可以采用一种或多种信道接入方式,比如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,RAN 103/104/105中的基站114a和WTRU 102a、 102b、102c,或者RAN 103b/104b/105b中的RRH 118a、118b及TRP 119a、119b和WTRU 102c、102d可实现诸如通用移动电信系统(UMTS)陆地无线接入(UTRA)之类的无线技术,UTRA可利用宽带CDMA(WCDMA) 分别建立空口115/116/117或115c/116c/117c。WCDMA可包括诸如高速分组接入(HSPA)和/或演进HSPA(HSPA+)之类的通信协议。HSPA可包括高速下行链路分组接入(HSDPA)和/或高速上行链路分组接入 (HSUPA)。
在实施例中,基站114a和WTRU 102a、102b、102c,或者RAN 103b/104b/105b中的RRH 118a、118b及TRP 119a、119b和WTRU 102c、 102d可实现诸如演进UMTS陆地无线接入(E-UTRA)之类的无线技术, E-UTRA可利用长期演进(LTE)和/或LTE-Advanced(LTE-A)分别建立空口115/116/117或115c/116c/117c。未来,空口115/116/117可实现3GPP NR 技术。
在实施例中,基站114a和WTRU 102a、102b、102c,或者RAN 103b/104b/105b中的RRH 118a、118b及TRP 119a、119b和WTRU 102c、 102d可实现诸如IEEE 802.16(例如,微波存取全球互通(WiMAX))、 CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暂行标准 2000(IS-2000)、暂行标准95(IS-95)、暂行标准856(IS-856)、全球移动通信系统(GSM)、增强数据速率GSM演进(EDGE)、GSM EDGE(GERAN) 之类的无线技术。
图52A中的基站114c可以是例如无线路由器、家庭节点B、家庭 eNode B或接入点,可以利用任何适当的RAT来便利局部区域,比如商 业场所、家庭、车辆、校园等中的无线连接。在实施例中,基站114c和 WTRU 102e可实现诸如IEEE 802.11之类的无线技术,以建立无线局域 网(WLAN)。在实施例中,基站114c和WTRU 102d可实现诸如IEEE 802.15之类的无线技术,以建立无线个域网(WPAN)。在另一个实施例中, 基站114c和WTRU 102e可利用基于蜂窝的RAT(例如,WCDMA、 CDMA2000、GSM、LTE、LTE-A等)建立皮小区或飞小区。如图52A 中所示,基站114b可直接连接到因特网110。从而,可不要求基站114c 通过核心网络106/107/109接入因特网110。
RAN 103/104/105和/或RAN 103b/104b/105b可以与核心网络 106/107/109通信,核心网络106/107/109可以是配置成向WTRU 102a、 102b、102c、102d中的一个或多个提供语音、数据、应用和/或网际协议语音(VoIP)服务的任意类型的网络。例如,核心网络106/107/109可提供呼叫控制、计费服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分送等,和/或进行诸如用户认证之类的高级安全功能。
尽管未在图52A中图示,不过要意识到RAN 103/104/105和/或RAN 103b/104b/105b和/或核心网络106/107/109可以与采用和RAN 103/104 /105和/或RAN 103b/104b/105b相同的RAT或者不同的RAT的其他 RAN直接或间接通信。例如,除了连接到可能利用E-UTRA无线技术的 RAN 103/104/105和/或RAN 103b/104b/105b之外,核心网络106/107/109还可与采用GSM无线技术的其他RAN(未图示)通信。
核心网络106/107/109还可充当WTRU 102a、102b、102c、102d、 102e接入PSTN108、因特网110和/或其他网络112的网关。PSTN 108 可包括提供普通老式电话服务(POTS)的线路交换电话网络。因特网110 可包括利用公共通信协议(比如TCP/IP网际协议组中的传输控制协议 (TCP)、用户数据报协议(UDP)和网际协议(IP))的互连计算机网络和装置的全球系统。网络112可包括其他服务提供商拥有和/或运营的有线或无线通信网络。例如,网络112可包括连接到一个或多个RAN的另一个核心网络,所述一个或多个RAN可采用和RAN103/104/105和/或RAN 103b/104b/105相同的RAT或者不同的RAT。
通信系统100中的WTRU 102a、102b、102c、102d中的一些或全 部可包括多模式能力,例如,WTRU 102a、102b、102c、102d和102e 可包括通过不同的无线链路与不同的无线网络通信的多个收发器。例如, 图52A中所示的WTRU 102e可被配置成与可以采用基于蜂窝的无线技 术的基站114a通信,和与可以采用IEEE 802无线技术的基站114c通信。
图52B是按照本文中例示的实施例的为无线通信配置的示例设备或装置(例如WTRU 102)的方框图。如图52B中所示,示例的WTRU 102 可包括处理器118、收发器120、发送/接收元件122、扬声器/麦克风124、小键盘126、显示器/触控板/指示器128、不可拆卸存储器130、可拆卸存储器132、电源134、全球定位系统(GPS)芯片组136和其他外设138。要意识到WTRU 102可包括上述元件的任意子组合,同时仍然与实施例保持一致。另外,实施例设想基站114a和114b,和/或基站114a和114b 可代表的节点,比如(但不限于)基站收发器(BTS)、Node-B、站点控制器、接入点(AP)、家庭node-B、演进的家庭node-B(eNodeB)、家庭演进node-B (HeNB)、家庭演进node-B网关和代理节点等可包括图52B中描述并在这里说明的一些或所有的元件。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA) 电路、任意其他类型的集成电路(IC)、状态机等。处理器118可以进行信号编码、数据处理、功率控制、输入/输出处理、和/或使WTRU 102能够在无线环境中工作的任何其他功能。处理器118可耦接到收发器120,收发器120可耦接到发送/接收元件122。尽管图52B把处理器118和收发器120描述成独立的组件,不过要意识到处理器118和收发器120可以一起集成在电子封装或芯片中。
发送/接收元件122可被配置成通过空口115/116/117,往来于基站(例如,基站114a)发送或接收信号。例如,在实施例中,发送/接收元件122 可以是配置成发送和/或接收RF信号的天线。尽管未在图52A中图示,不过要意识到RAN 103/104/105和/或核心网络106/107/109可以与采用和 RAN 103/104/105相同的RAT或者不同的RAT的其他RAN直接或间接通信。例如,除了连接到可能利用E-UTRA无线技术的RAN 103/104/105 之外,核心网络106/107/109还可与采用GSM无线技术的其他RAN(未图示)通信。
核心网络106/107/109还可充当WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可包括提供普通老式电话服务(POTS)的线路交换电路网络。因特网110可包括利用公共通信协议(比如TCP/IP网际协议组中的传输控制协议(TCP)、用户数据报协议(UDP)和网际协议(IP))的互连计算机系统和装置的全球系统。网络112可包括由其他服务提供商拥有和/或运营的有线或无线通信网络。例如,网络112可包括连接到一个或多个RAN的另外的核心网络,所述一个或多个RAN可采用与RAN 103/104/105相同的RAT或者不同的RAT。
通信系统100中的部分或全部WTRU 102a、102b、102c、102d可包括多模式能力,例如,WTRU 102a、102b、102c、102d可包括通过不同的无线链路与不同的无线网络通信的多个收发器。例如,图52A中所示的WTRU 102c可被配置成与可以采用基于蜂窝的无线技术的基站 114a通信,以及与可以采用IEEE 802无线技术的基站114b通信。
图52B是按照本文中例示的实施例的为无线通信配置的示例设备或装置,例如WTRU 102的方框图。如图52B中所示,示例的WTRU 102 可包括处理器118、收发器120、发送/接收元件122、扬声器/麦克风124、小键盘126、显示器/触控板/指示器128、不可拆卸存储器130、可拆卸存储器132、电源134、全球定位系统(GPS)芯片组136和其他外设138。要意识到的是WTRU 102可包括上述元件的任意子组合,同时仍然与实施例保持一致。另外,实施例设想基站114a和114b,和/或基站114a和114b 可代表的节点,比如(但不限于)基站收发器(BTS)、Node-B、站点控制器、接入点(AP)、家庭node-B、演进的家庭node-B(eNodeB)、家庭演进node-B (HeNB)、家庭演进node-B网关和代理节点等可包括图52B中描述并在这里说明的一些或所有的元件。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA) 电路、任何其他类型的集成电路(IC)、状态机等。处理器118可进行信号编码、数据处理、功率控制、输入/输出处理、和/或使WTRU 102能够在无线环境中工作的任何其他功能。处理器118可耦接到收发器120,收发器120可耦接到发送/接收元件122。尽管图52B把处理器118和收发器120描述成单独的组件,不过要意识到处理器118和收发器120可以一起集成在电子封装或芯片中。
发送/接收元件122可被配置成通过空口115/116/117,往来于基站(例如,基站114a)发送或接收信号。例如,在实施例中,发送/接收元件122 可以是配置成发送和/或接收RF信号的天线。在实施例中,发送/接收元件122可以是配置成发送和/或接收例如IR、UV或可见光信号的发送器/ 检测器。在另一个实施例中,发送/接收元件122可被配置成发送和接收 RF信号和光信号两者。要意识到发送/接收元件122可被配置成发送和/ 或接收无线信号的任意组合。
另外,尽管发送/接收元件122在图52B中被描述成单一元件,不过,WTRU 102可包括任意数目的发送/接收元件122。更具体地,WTRU 102 可采用MIMO技术。从而,在实施例中,WTRU 102可包括用于通过空口115/116/117发送和接收无线信号的两个或更多个发送/接收元件 122(例如,多个天线)。
收发器120可被配置成调制将由发送/接收元件122发送的信号和解调由发送/接收元件122接收的信号。如上所述,WTRU 102可具有多模式能力。从而,收发器120可包括使WTRU 102能够通过多种RAT(比如UTRA和IEEE 802.11)通信的多个收发器。
WTRU 102的处理器118可以耦接到扬声器/麦克风124、小键盘126 和/或显示器/触控板/指示器128(例如,液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并可以接收来自它们的用户输入数据。处理器118还可把用户数据输出给扬声器/麦克风124、小键盘126、和/或显示器/触控板/指示器128。另外,处理器118可以从任意类型的适当存储器(比如不可拆卸式存储器130和/或可拆卸式存储器132)访问信息,和把数据保存在其中。不可拆卸式存储器130可包括随机存取存储器 (RAM)、只读存储器(ROM)、硬盘或任何其他类型的存储装置。可拆卸式存储器132可包括用户标识模块(SIM)卡、记忆棒、安全数据(SD)存储卡等。在实施例中,处理器118可以从物理上不位于WTRU 102上(比如服务器或家庭计算机(未图示)上)的存储器访问信息,和把数据保存在其中。
处理器118可从电源134获得电力,可被配置成把电力分配给WTRU 102中的其他组件,和/或控制给WTRU 102中的其他组件的电力。电源 134可以是用于向WTRU 102供电的任何适当装置。例如,电源134可包括一个或多个干电池、太阳能电池、燃料电池等。
处理器118还可耦接到GPS芯片组136,GPS芯片组136可被配置成提供关于WTRU102的当前位置的位置信息(例如,经度和纬度)。除了来自GPS芯片组136的信息之外,或者代替来自GPS芯片组136的信息,WTRU 102还可通过空口115/116/117,从基站(例如,基站114a、 114b)接收位置信息,和/或根据从两个或更多个附近的基站接收信号的定时确定其位置。要意识到的是WTRU 102可以利用任何适当的位置确定方法,获取位置信息,同时仍然与实施例保持一致。
处理器118可进一步耦接到其他外设138,外设138可包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,外设138可包括诸如加速度计、生物统计(例如指纹)传感器之类的各种传感器、电子指南针、卫星收发器、数字摄像头(用于照片或视频)、通用串行总线(USB)端口或者其他互连接口、振动设备、电视收发器、免提耳机、蓝牙
Figure BDA0003675931300000911
模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏播放器模块、互联网浏览器等。
WTRU 102可以用其他设备或装置体现,比如传感器、消费电子产品、诸如智能手表或智能服装之类的可穿戴式装置、医疗或电子健康装置、机器人、工业设备、无人机、诸如汽车、卡车、火车或飞机之类的交通工具。WTRU 102可通过一个或多个互连接口(比如可包含外设138 之一的互连接口)连接到这样的设备或装置的其他组件、模块或系统。
图52C是按照实施例的RAN 103和核心网络106的系统图。如上所述,RAN 103可采用UTRA无线技术,通过空口115与WTRU 102a、102b和102c通信。RAN 103也可与核心网络106通信。如图52C中所示,RAN 103可包括Node-B 140a、140b、140c,Node-B 140a、140b、 140c都可包括用于通过空口115,与WTRU 102a、102b和102c通信的一个或多个收发器。Node-B140a、140b、140c都可与RAN 103内的特定小区(未图示)关联。RAN 103还可包括RNC 142a、142b。要意识到 RAN 103可包括任意数目的Node-B和RNC,同时仍然与实施例保持一致。
如图52C中所示,Node-B 140a、140b可以与RNC 142a通信。另外,Node-B 140c可以与RNC 142b通信。Node-B 140a、140b、140c可通过Iub接口,与相应的RNC 142a、142b通信。RNC 142a、142b可通过Iur接口相互通信。各个RNC 142a、142b可被配置成控制它所连接到的相应Node-B 140a、140b、140c。另外,各个RNC 142a、142b可被配置成执行或支持其他功能,比如外环功率控制、负荷控制、接纳控制、分组调度、越区切换控制、宏分集、安全功能、数据加密等。
图52C中所示的核心网络106可包括媒体网关(MGW)144、移动交换中心(MSC)146、服务GPRS支持节点(SGSN)148、和/或网关GPRS 支持节点(GGSN)150。尽管各个上述元件都被描述成核心网络106的一部分,不过要意识到这些元件任意之一可由除核心网络运营商外的实体拥有和/或运营。
RAN 103中的RNC 142a可通过IuCS接口,连接到核心网络106 中的MSC 146。MSC146可连接到MGW 144。MSC 146和MGW 144 可以向WTRU 102a、102b、102c提供对诸如PSTN108之类的线路交换网络的接入,以便利WTRU 102a、102b、102c和传统的陆线通信装置之间的通信。
RAN 103中的RNC 142a也可通过IuPS接口,连接到核心网络106 中的SGSN 148。SGSN 148可连接到GGSN 150。SGSN 148和GGSN 150 可以向WTRU 102a、102b、102c提供对诸如因特网110之类的分组交换网络的接入,以便利WTRU 102a、102b、102c和具有IP功能的装置之间的通信。
如上所述,核心网络106还可连接到网络112,网络112可包括由其他服务提供商拥有和/或运营的其他有线或无线网络。
图52D是按照实施例的RAN 104和核心网络107的系统图。如上所述,RAN 104可采用E-UTRA无线技术,通过空口116与WTRU 102a、 102b和102c通信。RAN 104还可与核心网络107通信。
RAN 104可包括eNode-B 160a、160b、160c,不过要意识到RAN 104 可包括任意数目的eNode-B,同时仍然与实施例保持一致。eNode-B 160a、 160b、160c都可包括用于通过空口116与WTRU 102a、102b、102c通信的一个或多个收发器。在实施例中,eNode-B 160a、160b、160c可实现MIMO技术。从而,例如,eNode-B 160a可利用多个天线往来于WTRU 102a发送和接收无线信号。
各个eNode-B 160a、160b和160c可以与特定小区(未图示)关联,可被配置成处理无线资源管理决策、越区切换决策、上行链路和/或下行链路中的用户的调度等。如图52D中所示,eNode-B 160a、160b、160c可通过X2接口相互通信。
图52D中所示的核心网络107可包括移动性管理网关(MME)162、服务网关164和分组数据网络(PDN)网关166。尽管各个上述元件都被描述成核心网络107的一部分,不过要意识到这些元件任意之一可由除核心网络运营商外的实体拥有和/或运营。
MME 162可通过S1接口连接到RAN 104中的eNode-B 160a、160b 和160c每一个,可充当控制节点。例如,MME 162可负责认证WTRU 102a、102b、102c的用户,承载激活/撤消,在WTRU 102a、102b、102c 的初始附接期间选择特定服务网关,等等。MME 162还可提供用于在RAN 104和采用其他无线技术(比如GSM或WCDMA)的其他RAN(未图示)之间进行切换的控制平面功能。
服务网关164可通过S1接口,连接到RAN 104中的eNode-B 160a、 160b和160c每一个。服务网关164通常可以往来于WTRU 102a、102b、 102c路由和转发用户数据分组。服务网关164还可以进行其他功能,比如在eNode B间越区切换期间锚定用户平面,当下行链路数据可供WTRU 102a、102b、102c利用时触发寻呼,管理和保存WTRU 102a、 102b、102c的上下文等。
服务网关164也可连接到PDN网关166,PDN网关166可向WTRU 102a、102b、102c提供对分组交换网络(比如因特网110)的接入,以便利 WTRU 102a、102b、102c和具有IP功能的设备之间的通信。
核心网络107可便利与其他网络的通信。例如,核心网络107可向 WTRU 102a、102b、102c提供对线路交换网络(比如PSTN 108)的接入,以便利WTRU 102a、102b、102c和传统的陆级通信装置之间的通信。例如,核心网络107可包括或者可以与IP网关(例如,IP多媒体子系统(IMS) 服务器)通信,所述IP网关充当核心网络107和PSTN 108之间的接口。另外,核心网络107可向WTRU 102a、102b、102c提供对网络112的接入,网络112可包括由其他服务提供商拥有和/或运营的其他有线或无线网络。
图52E是按照实施例的RAN 105和核心网络109的系统图。RAN 105 可以是采用IEEE 802.16无线技术通过空口117与WTRU 102a、102b和 102c通信的接入服务网络(ASN)。如下进一步所述,核心网络109、RAN 105和WTRU 102a、102b、102c的不同功能实体之间的通信链路可被定义为参考点。
如图52E中所示,RAN 105可包括基站180a、180b、180c和ASN 网关182,不过应意识到RAN 105可包括任意数目的基站和ASN网关,同时仍然与实施例保持一致。基站180a、180b、180c都可以与RAN 105 中的特定小区关联,可包括用于通过空口117与WTRU 102a、102b、102c 通信的一个或多个收发器。在实施例中,基站180a、180b、180c可实现 MIMO技术。从而,例如,基站180a可利用多个天线向WTRU 102a发送无线信号,和从WTRU 102a接收无线信号。基站180a、180b、180c 还可提供移动性管理功能,比如切换触发、隧道建立、无线资源管理、业务分类、服务质量(QoS)策略强制执行等。ASN网关182可充当业务聚合点,可负责寻呼、订户简档的高速缓存、到核心网络109的路由等。
WTRU 102a、102b、102c和RAN 105之间的空口117可被定义为实现IEEE 802.16规范的R1参考点。另外,各个WTRU 102a、102b和 102c可以与核心网络109建立逻辑接口(未图示)。WTRU 102a、102b、 102c和核心网络109之间的逻辑接口可被定义为R2参考点,它可用于认证、授权、IP主机配置管理和/或移动性管理。
各个基站180a、180b和180c之间的通信链路可被定义为R8参考点, R8参考点包括便利WTRU越区切换以及基站之间的数据的传送的协议。基站180a、180b、180c和ASN网关182之间的通信链路可被定义为R6 参考点。R6参考点可包括便利基于与各个WTRU 102a、102b、102c关联的移动性事件的移动性管理的协议。
如图52E中所示,RAN 105可连接到核心网络109。RAN 105和核心网络109之间的通信链路可定义为R3参考点,R3参考点包括例如便利数据传送和移动性管理能力的协议。核心网络109可包括移动IP家乡代理(MIP-HA)184,认证、授权、记账(AAA)服务器186,和网关188。尽管各个上述元件都被描述成核心网络109的一部分,不过要意识到这些元件任意之一可由除核心网络运营商外的实体拥有和/或运营。
MIP-HA可负责IP地址管理,可使WTRU 102a、102b和102c在不同的ASN和/或不同的核心网络之间漫游。MIP-HA 184可以向WTRU 102a、102b、102c提供对分组交换网络(比如因特网110)的接入,以便利 WTRU 102a、102b、102c和具有IP功能的设备之间的通信。AAA服务器186可负责用户认证和支持用户服务。网关188可便利与其他网络的互通。例如,网关188可以向WTRU 102a、102b、102c提供对线路交换网络(比如PSTN 108)的接入,以便利WTRU102a、102b、102c和传统的陆线通信设备之间的通信。另外,网关188可以向WTRU 102a、102b、 102c提供对网络112的接入,网络112可包括其他服务提供商拥有和/或运营的其他有线或无线网络。
尽管未在图52E中图示,不过要意识到RAN 105可连接到其他ASN,核心网络109可连接到其他核心网络。RAN 105和其他ASN之间的通信链路可被定义为R4参考点,它可包括用于协调WTRU 102a、102b、102c 在RAN 105和其他ASN之间的移动性的协议。核心网络109和其他核心网络之间的通信链路可被定义为R5参考,它可包括用于便利家乡核心网络和拜访核心网络之间的互通的协议。
这里说明并在图52A、52C、52D和52E中例示的核心网络实体是利用赋予某些现有3GPP规范中的那些实体的名称识别的,不过要明白的是未来的这些实体和功能可以用其他名称识别,并且在3GPP发布的未来规范,包括未来的3GPP NR规范中,某些实体或功能可能被组合。从而,在图52A、52B、52C、52D和52E中说明和例示的特定网络实体和功能只是作为例子提供的,要明白的是这里公开的要求保护的主题可以在任何类似的通信系统(不论是目前定义还是未来定义的)中体现或实现。
图52F是其中可具体体现在图52A、52C、52D和52E中图解所示的通信网络的一个或多个设备(比如RAN 103/104/105、核心网络106/107/ 109、PSTN 108、因特网110或其他网络112中的某些节点或功能实体) 的示例计算系统90的方框图。计算系统90可包含计算机或服务器,可以主要由计算机可读指令控制,所述计算机可读指令可以采取软件的形式,无论在任何地方保存或访问这类软件,或者以任何方式保存或访问这类软件。这样的计算机可读指令可以在处理器91中执行,以使计算系统90工作。处理器91可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、任何其他类型的集成电路(IC)、状态机等。处理器91可进行信号编码、数据处理、功率控制、输入/输出处理、和/或使计算系统 90能够在通信网络中工作的任何其他功能。协处理器81是不同于主处理器91的可进行另外的功能或者辅助处理器91的可选处理器。处理器91 和/或协处理器81可接收、生成和处理与本文中公开的方法和设备相关的数据。
操作中,处理器91取回、解码和执行指令,并通过计算机系统的主要数据传送路径,系统总线80往来于其他资源传送信息。这样的系统连接计算系统90中的组件,并定义数据交换用介质。系统总线80一般包括用于发送数据的数据线、用于发送地址的地址线,和用于发送中断和用于操纵系统总线的控制线。这种系统总线80的例子是PCI(外围组件互连)总线。
耦接到系统总线80的存储器包括随机存取存储器(RAM)82和只读存储器(ROM)93。这样的存储器包括允许信息被保存和取回的电路。 ROM 93通常包含不能被轻易更改的保存数据。保存在RAM 82中的数据可以被处理器91或其他硬件装置读取或更改。对RAM 82和/或ROM 93的访问可由存储控制器92控制。存储控制器92可提供在指令被执行时,把虚拟地址转换为物理地址的地址转换功能。存储控制器92还可提供将系统内的进程隔离开来、并将系统进程与用户进程隔离开来的存储器保护功能。因此,按第一模式运行的程序只能访问由它自己的进程虚拟地址空间映射的存储器;它不能访问在其他进程的虚拟地址空间内的存储器,除非建立了进程之间的存储器共享。
另外,计算系统90可包含负责把来自处理器91的指令传达给外设(比如打印机94、键盘84、鼠标95和磁盘驱动器85)的外设控制器83。
由显示控制器96控制的显示器86用于显示计算系统90生成的可视输出。这样的可视输出可包括文本、图形、动画图形和视频。可以图形用户界面(GUI)的形式,提供可视输出。显示器86可以利用基于CRT的视频显示器、基于LCD的平板显示器、基于气体等离子体的平板显示器、或者触摸面板来实现。显示控制器96包括为生成发给显示器86的视频信号所需的电子组件。
此外,计算系统90可包含可用于把计算系统90连接到外部通信网络(比如图52A、52B、52C、52D和52E的RAN 103/104/105、核心网络 106/107/109、PSTN 108、因特网110或其他网络112)以使计算机90能够与这些网络的其他节点或功能实体通信的通信电路,比如网络适配器97。单独地或者与处理器91结合地,所述通信电路可用于进行记载在本文中的某些设备、节点或功能实体的发送和接收步骤。
要明白的是这里说明的任意或者所有设备、系统、方法和处理可以用保存在计算机可读存储介质上的计算机可执行指令(例如,程序代码) 的形式具体体现,当由处理器,比如处理器118或91执行时,所述指令使处理器进行和/或实现这里说明的系统、方法和处理。具体地,这里说明的任意步骤、操作或功能可以在为无线和/或有线网络通信而配置的设备或计算系统的处理器上运行的这类计算机可执行指令的形式实现。计算机可读存储介质包括以用于信息的存储的任何非临时性(例如,有形或物理)方法或技术实现的易失性和非易失性、可拆卸和不可拆卸介质,不过这样的计算机可读存储介质不包括信号。计算机可读存储介质包括(但不限于)RAM、ROM、EEPROM、闪存或其他存储技术,CD-ROM,数字通用光盘(DVD)或其他光盘存储器、磁带盒、磁带、磁盘存储器或者其他磁存储装置、或者可用于保存期望的信息并且可被计算系统访问的任何其他有形或物理介质。
以下是与可能出现在上述说明中的服务等级技术相关的缩略词的列表:
3GPP 第三代合作伙伴计划
ACK 确认
AF 应用功能
AN 接入网络
AS 接入层
APN 接入点名称
BCH 广播信道
BCCH 广播控制信道
BS 基站
BSD 桶大小时长
BSR 缓冲区状态报告
CAN 连接接入网络
CC 分量载波
CCCH 公共控制信道
CE 控制元素
CN 核心网络
CP 控制平面
CPU 中央处理器
CQI 信道质量指示符
C-RNTI 小区无线网络临时标识符
CSI 信道状态指示符
DL 下行链路
DM 设备管理
DN 数据网络
DRB 数据无线承载
eMBB 增强移动宽带
eNB 演进节点B
EPC 演进分组核心
E-UTRA 演进通用陆地无线接入
FEP 流封装协议
FPI 流优先权指示符
FPL 流优先权等级
GBR 保证比特率
GW 网关
HARQ 混合自动重传请求(HARQ)
ID 标识符
IMS IP多媒体子系统
IMT 国际移动电信
IOT 或IoT物联网
IP 网际协议
L2 数据链路层
LCG 逻辑信道组
LCP 逻辑信道优先级
LTE 长期演进
MAC 媒体接入控制
MCG 主小区组
MCH 组播信道
mIOT 大规模物联网
MTC 机器类型通信
mMTC 大规模机器类型通信
NAS 非接入层
NB 窄带
NextGen 下一代
NG 下一代
NGC 下一代核心网络
NR 新无线电
OAM 操作维护和管理
OTA 空中
PBCH 物理广播信道
PBR 优先比特率
PCH 寻呼信道
PDCP 分组数据会聚协议
PDSCH 物理下行链路共享信道
PDU 分组数据单元
PHY 物理层
PHR 功率余量报告
PUCCH 物理上行链路控制信道
PUSCH 物理上行链路共享信道
PHY 物理层(物理层或子层)
QoS 服务质量
RAB 无线接入承载
RACH 无线接入信道
RAN 无线接入网络
RAT 无线接入技术
RB 资源块或无线承载
RLC 无线链路控制
RNTI 无线网络临时标识符
RRC 无线资源控制
RQI 反射QoS指示
Rx 接收器
SA2 服务和系统方面工作组2
SAP 服务接入点
SCell 辅小区
SpCell 特殊小区
SCG 辅小区组
SCH 共享信道
SDU 服务数据单元
SL 副链路
SPID 订户简档ID
SR 调度请求
SRB 信令无线承载
TFF 业务流过滤器
TFT 业务流模板
TRP 发送和接收点
TTI 发送时间间隔
Tx 发送器
UCI 上行链路控制信息
UDP 用户数据报协议
UE 用户设备
UL 上行链路
UP 用户平面
URLLC 超可靠低等待时间通信
UTRAN 通用陆地无线接入网络

Claims (12)

1.一种设备,所述设备包括处理器、存储器和通信电路,所述设备包括配置成通过所述设备的通信电路连接到网络的多个逻辑信道,所述设备还包括保存在所述设备的存储器中的计算机可执行指令,所述计算机可执行指令当由所述设备的处理器执行时,使所述设备进行包括以下的操作:
接收数据无线承载DRB配置,其中通过DRB配置而配置的DRB在第一层中被映射到服务质量QoS流;
接收对于上行链路授权指示逻辑信道的一个或多个限制的资源配置;
准备具有包括第一QoS流标识符ID作为第一层中的分组标记的报头的第一数据分组,第一QoS流ID根据映射到DRB的QoS流被设置,其中,第一层高于PDCP层;
通过第一逻辑信道发送第一数据分组,其中,第一逻辑信道是在高于第一层的第二层中基于逻辑信道的所述一个或多个限制而选择的。
2.按照权利要求1所述的设备,其中,所述资源配置包括逻辑信道关于子载波间隔SCS的参数集限制、逻辑信道关于一个或多个分量载波CC的复制限制以及与上行链路授权的逻辑信道关联的寿命限制中的至少一项,
其中,所述复制限制用于限制与DRB中的一个或多个DRB关联的逻辑信道在PDCP层中具有复制。
3.按照权利要求1所述的设备,所述设备还包括保存在所述设备的存储器中的计算机可执行指令,所述计算机可执行指令当由所述设备的处理器执行时,使所述设备进行包括以下的操作:
接收具有包括第二QoS流ID作为第一层中的分组标记的报头的第二数据分组;
准备具有包括第三QoS流ID作为第一层中的分组标记的报头的第三数据分组,第三QoS流ID根据第二QoS流ID被设置;以及
通过第二逻辑信道发送第三数据分组,其中第二逻辑信道是在第二层中基于逻辑信道的所述一个或多个限制而选择的。
4.按照权利要求1所述的设备,其中,在上行链路通信中将第一数据分组发送给网络,或在设备间通信中将第一数据分组发送给其他设备。
5.一种设备,所述设备包括处理器、存储器和通信电路,所述设备包括配置成通过所述设备的通信电路连接到网络的多个逻辑信道,所述设备还包括保存在所述设备的存储器中的计算机可执行指令,所述计算机可执行指令当由所述设备的处理器执行时,使所述设备进行包括以下的操作:
发送数据无线承载DRB配置,其中通过DRB配置而配置的DRB在第一层中被映射到服务质量QoS流;
发送对于上行链路授权指示逻辑信道的一个或多个限制的资源配置;以及
通过第一逻辑信道接收具有包括第一QoS流标识符ID作为第一层中的分组标记的报头的第一数据分组,第一QoS流ID根据映射到DRB的QoS流被设置,其中,第一层高于PDCP层,以及
其中,第一逻辑信道是在高于第一层的第二层中基于逻辑信道的所述一个或多个限制而选择的。
6.按照权利要求5所述的设备,其中,所述资源配置包括逻辑信道关于子载波间隔SCS的参数集限制、逻辑信道关于一个或多个分量载波CC的复制限制以及与上行链路授权的逻辑信道关联的寿命限制中的至少一项,
其中,所述复制限制用于限制与DRB中的一个或多个DRB关联的逻辑信道在PDCP层中具有复制。
7.按照权利要求5所述的设备,所述设备还包括保存在所述设备的存储器中的计算机可执行指令,所述计算机可执行指令当由所述设备的处理器执行时,使所述设备进行包括以下的操作:
发送具有包括第二QoS流ID作为第一层中的分组标记的报头的第二数据分组;以及
通过第二逻辑信道接收具有包括第三QoS流ID作为第一层中的分组标记的报头的第三数据分组,第三QoS流ID根据第二QoS流ID被设置,
其中,第二逻辑信道是在第二层中基于逻辑信道的所述一个或多个限制而选择的。
8.按照权利要求5所述的设备,其中,在上行链路通信中将第一数据分组发送给网络,或在设备间通信中将第一数据分组发送给其他设备。
9.一种用于网络系统的方法,所述方法包括:
发送数据无线承载DRB配置,其中通过DRB配置而配置的DRB在第一层中被映射到服务质量QoS流;
发送对于上行链路授权指示逻辑信道的一个或多个限制的资源配置;以及
通过第一逻辑信道接收具有包括第一QoS流标识符ID作为第一层中的分组标记的报头的第一数据分组,第一QoS流ID根据映射到DRB的QoS流被设置,其中,第一层高于PDCP层,以及
其中,第一逻辑信道是在高于第一层的第二层中基于逻辑信道的所述一个或多个限制而选择的。
10.按照权利要求9所述的方法,其中,所述资源配置包括逻辑信道关于子载波间隔SCS的参数集限制、逻辑信道关于一个或多个分量载波CC的复制限制以及与上行链路授权的逻辑信道关联的寿命限制中的至少一项,
其中,所述复制限制用于限制与DRB中的一个或多个DRB关联的逻辑信道在PDCP层中具有复制。
11.按照权利要求9所述的方法,所述设备还包括:
发送具有包括第二QoS流ID作为第一层中的分组标记的报头的第二数据分组;以及
通过第二逻辑信道接收具有包括第三QoS流ID作为第一层中的分组标记的报头的第三数据分组,第三QoS流ID根据第二QoS流ID被设置,
其中,第二逻辑信道是在第二层中基于逻辑信道的所述一个或多个限制而选择的。
12.按照权利要求9所述的方法,其中,在上行链路通信中将第一数据分组发送给网络,或在设备间通信中将第一数据分组发送给其他设备。
CN202210624080.2A 2016-10-19 2017-10-19 用于无线通信的装置 Pending CN115297559A (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201662410049P 2016-10-19 2016-10-19
US62/410,049 2016-10-19
US201762501397P 2017-05-04 2017-05-04
US62/501,397 2017-05-04
US201762545747P 2017-08-15 2017-08-15
US62/545,747 2017-08-15
US201762564529P 2017-09-28 2017-09-28
US62/564,529 2017-09-28
CN201780071969.XA CN110024466B (zh) 2016-10-19 2017-10-19 装置
PCT/US2017/057483 WO2018075828A1 (en) 2016-10-19 2017-10-19 Apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780071969.XA Division CN110024466B (zh) 2016-10-19 2017-10-19 装置

Publications (1)

Publication Number Publication Date
CN115297559A true CN115297559A (zh) 2022-11-04

Family

ID=60263040

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780071969.XA Active CN110024466B (zh) 2016-10-19 2017-10-19 装置
CN202210624080.2A Pending CN115297559A (zh) 2016-10-19 2017-10-19 用于无线通信的装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201780071969.XA Active CN110024466B (zh) 2016-10-19 2017-10-19 装置

Country Status (6)

Country Link
US (3) US11425752B2 (zh)
EP (1) EP3530053A1 (zh)
JP (2) JP7187452B2 (zh)
KR (1) KR102567727B1 (zh)
CN (2) CN110024466B (zh)
WO (1) WO2018075828A1 (zh)

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294002B1 (en) * 2015-05-29 2021-09-01 Huawei Technologies Co., Ltd. Method for bearer establishment, user equipment and base station
CN110199537B (zh) 2016-11-04 2022-10-04 瑞典爱立信有限公司 用于紧密互通的ue能力信令
CN112671525A (zh) 2016-11-04 2021-04-16 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
CN112888022B (zh) * 2016-11-16 2024-02-02 华为技术有限公司 数据迁移方法及装置
CN109906647B (zh) * 2016-12-16 2023-05-05 富士通株式会社 数据复用装置、方法以及通信系统
CN110073686B (zh) * 2016-12-23 2021-01-29 华为技术有限公司 一种会话激活方法及装置和系统
EP3566530B1 (en) * 2017-01-06 2021-04-14 LG Electronics Inc. Method and user equipment for transmitting data unit
CN108390830B (zh) * 2017-02-03 2024-03-05 华为技术有限公司 一种QoS流处理方法、设备和通信系统
EP3606125B1 (en) * 2017-03-23 2022-08-03 Sony Group Corporation Device, method, and recording medium
CN108633088B (zh) * 2017-03-24 2020-12-15 华为技术有限公司 资源调度的方法和装置
CN108738157B (zh) * 2017-04-14 2021-11-16 华硕电脑股份有限公司 无线通信中请求半静态调度资源传送复制本的方法和设备
US20180324631A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Using sdap headers for handling of as/nas reflective qos and to ensure in-sequence packet delivery during remapping in 5g communication systems
CN108513726B (zh) * 2017-05-08 2020-02-14 华为技术有限公司 一种通信系统间移动方法及装置
BR112019023333A2 (pt) * 2017-05-09 2020-06-16 Huawei Technologies Co., Ltd. Método de controle de qos e dispositivo
JP6961718B2 (ja) * 2017-05-12 2021-11-05 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおいて送信電力制御のための方法及びそのための装置
US11516747B2 (en) 2017-05-12 2022-11-29 Lg Electronics Inc. Method for controlling transmit power in wireless communication system and apparatus therefor
CN108370572B (zh) * 2017-05-24 2021-11-23 北京小米移动软件有限公司 无线资源控制消息的传输方法及装置
CN110679175B (zh) * 2017-05-29 2023-08-22 Lg电子株式会社 管理上行链路服务质量的方法和执行所述方法的基站
US11310810B2 (en) * 2017-06-15 2022-04-19 Samsung Electronics Co., Ltd. Method and apparatus for performing scheduling request to support plurality of services efficiently
US10608797B2 (en) * 2017-06-16 2020-03-31 Ofinno, Llc Distributed unit connection issue
CN116685000A (zh) * 2017-06-16 2023-09-01 华为技术有限公司 一种无线通信方法和设备
CN109151915B (zh) * 2017-06-16 2023-11-17 夏普株式会社 用于数据分组递送的方法、用户设备和基站
EP3637862A4 (en) * 2017-06-16 2020-06-17 NTT DoCoMo, Inc. USER DEVICE, WIRELESS COMMUNICATION SYSTEM AND WIRELESS COMMUNICATION METHOD
EP3634024B1 (en) * 2017-06-28 2022-06-22 Huawei Technologies Co., Ltd. Carrier power control method and apparatus, and computer readable storage medium
EP3665924A4 (en) 2017-08-09 2020-10-21 ZTE Corporation SERVICE QUALITY IMPLEMENTATIONS FOR THE SEPARATION OF USER LEVELS
EP3666017A4 (en) * 2017-08-09 2021-03-17 Nokia Technologies Oy HIGH RELIABILITY, LOW LATENCY DATA TRANSMISSION USING AN UPLOAD TRANSMISSION FORMAT WITHOUT GRANT ON SCHEDULED PUSCH RESOURCES
US20190052414A1 (en) * 2017-08-10 2019-02-14 Alireza Babaei Multiplexing mechanism for uplink control information
KR20240015745A (ko) * 2017-08-11 2024-02-05 인터디지탈 패튼 홀딩스, 인크 다수의 액세스 네트워크 간의 트래픽 조종 및 스위칭
EP3618553A4 (en) * 2017-08-11 2020-05-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. RESOURCE ALLOCATION METHOD, DEVICE AND SYSTEM, AND COMPUTER-READABLE STORAGE MEDIUM
CN109451872B (zh) * 2017-08-18 2023-05-26 北京小米移动软件有限公司 上行资源分配方法、装置和终端
WO2019033431A1 (zh) * 2017-08-18 2019-02-21 北京小米移动软件有限公司 上行资源分配方法、装置和终端
KR102503353B1 (ko) * 2017-09-22 2023-02-24 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 정보 지시 방법, 단말기 및 컴퓨터 기억 매체
CN107565989B (zh) * 2017-09-28 2020-07-10 歌尔股份有限公司 一种无人机宽频天线复用方法及装置
KR102263160B1 (ko) 2017-09-29 2021-06-10 삼성전자주식회사 무선 통신 시스템의 듀얼 커넥티비티에서 사용자 평면을 처리하는 방법 및 사용자 장비
CN110881223B (zh) * 2017-09-29 2022-04-29 华为技术有限公司 调度请求的处理方法和终端设备
US10887073B2 (en) 2017-10-26 2021-01-05 Ofinno, Llc Activation and deactivation of bandwidth part
US10693620B2 (en) 2017-10-27 2020-06-23 Ofinno, Llc Bandwidth part configuration and operation
KR20200094149A (ko) * 2017-11-14 2020-08-06 아이디에이씨 홀딩스, 인크. 무선 시스템에서의 보충 업링크 전송
EP4243324A3 (en) 2017-11-16 2023-11-15 Beijing Xiaomi Mobile Software Co., Ltd. Channel state information report on bandwidth part
JP7024867B2 (ja) * 2017-11-17 2022-02-24 富士通株式会社 ランダムアクセス方法、装置及び通信システム
US10834778B2 (en) 2018-01-09 2020-11-10 Asustek Computer Inc. Method and apparatus of handling bandwidth part inactivity timer in a wireless communication system
WO2019153212A1 (zh) * 2018-02-08 2019-08-15 Oppo广东移动通信有限公司 无线通信方法、终端和网络设备
EP3753202A1 (en) * 2018-02-19 2020-12-23 Huawei Technologies Co., Ltd. Apparatus for supporting and influencing qos levels
WO2019158220A1 (en) * 2018-02-19 2019-08-22 Huawei Technologies Duesseldorf Gmbh Apparatus for network slicing and slice management to support multi-slice services
JP2021072454A (ja) * 2018-02-27 2021-05-06 ソニー株式会社 端末装置、通信制御装置、基地局、ゲートウェイ装置、制御装置、方法及び記録媒体
CN110312285B (zh) * 2018-03-27 2023-02-07 华为技术有限公司 一种通信方法及相关设备
EP3777387B1 (en) * 2018-03-29 2022-11-02 Telefonaktiebolaget LM Ericsson (publ) Slicing of network resources for dual connectivity using nr
CN108781462A (zh) * 2018-04-02 2018-11-09 北京小米移动软件有限公司 数据传输方法、装置、系统及存储介质
US11490363B2 (en) 2018-04-18 2022-11-01 Google Llc User device-initiated bandwidth request
US10609681B2 (en) * 2018-04-24 2020-03-31 Google Llc User device-initiated request for resource configuration
EP3565172B1 (en) * 2018-05-04 2020-11-25 ASUSTek Computer Inc. Method and apparatus for downlink control information (dci) content processing considering active downlink (dl) bandwidth part (bwp) change in a wireless communication system
EP3791529A1 (en) * 2018-05-09 2021-03-17 Lenovo (Singapore) Pte. Ltd. Procedures for multiple active bandwidth parts
JP2019198014A (ja) * 2018-05-10 2019-11-14 シャープ株式会社 端末装置、基地局装置、および、通信方法
WO2019229492A1 (en) * 2018-05-26 2019-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for ue to request appropriate nssai in 5g
CN110621044B (zh) 2018-06-20 2021-06-11 维沃移动通信有限公司 调整带宽的方法、移动终端、网络侧设备和介质
MX2020013003A (es) 2018-06-21 2021-02-17 Fg innovation co ltd Metodo y aparato para seleccion de canales logicos.
CN110662254B (zh) * 2018-06-28 2021-03-09 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的通信节点中的方法和装置
KR20210024098A (ko) 2018-06-28 2021-03-04 콘비다 와이어리스, 엘엘씨 Nr v2x 사이드링크 공유 채널 데이터 송신을 위한 우선순위화 절차들
US10638356B2 (en) 2018-07-23 2020-04-28 Nokia Technologies Oy Transmission of network slicing constraints in 5G wireless networks
BR112021001414A2 (pt) * 2018-07-26 2021-04-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de transmissão de sinal, dispositivo de rede e dispositivo terminal
US10887574B2 (en) 2018-07-31 2021-01-05 Intel Corporation Selective packing of patches for immersive video
US10609546B2 (en) * 2018-08-08 2020-03-31 Verizon Patent And Licensing Inc. Unified radio access network (RAN)/multi-access edge computing (MEC) platform
WO2020030058A1 (en) * 2018-08-08 2020-02-13 FG Innovation Company Limited Method and apparatus for generating mac pdu
KR20210035901A (ko) * 2018-08-09 2021-04-01 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 Urllc 서비스를 위한 낮은 레이턴시 harq 프로토콜
US10979874B2 (en) 2018-08-10 2021-04-13 At&T Intellectual Property I, L.P. Multi-connectivity based vehicle-to-everything communications in a wireless network
CN112567699A (zh) * 2018-08-13 2021-03-26 苹果公司 用于反射服务质量的分组过滤器的灵活范围
CN110838899B (zh) * 2018-08-16 2021-12-24 大唐移动通信设备有限公司 一种直接通信链路资源分配方法及终端
CN110839284B (zh) * 2018-08-16 2024-03-12 大唐移动通信设备有限公司 一种调度请求资源确定及配置方法、设备及装置
CN110876188B (zh) * 2018-08-31 2020-09-01 展讯通信(上海)有限公司 用户设备参数的确定方法及装置、存储介质、基站
US11051319B2 (en) * 2018-09-04 2021-06-29 Qualcomm Incorporated Techniques for low latency communications in wireless local area networks
US11057631B2 (en) 2018-10-10 2021-07-06 Intel Corporation Point cloud coding standard conformance definition in computing environments
CN112823561A (zh) * 2018-11-01 2021-05-18 苹果公司 用于nr v2x侧行链路通信的qos感知拥塞控制、资源分配和设备内共存解决方案
CN111294936B (zh) * 2018-12-06 2023-04-14 大唐移动通信设备有限公司 一种传输方法及终端
JP2022515033A (ja) * 2018-12-26 2022-02-17 北京小米移動軟件有限公司 時間領域リソースの割り当て方法、データ送信方法、基地局及び端末
WO2020148159A1 (en) * 2019-01-15 2020-07-23 Sony Corporation Infrastructure equipment, wireless communications networks and methods
CN112655234B (zh) * 2019-01-16 2023-06-02 Oppo广东移动通信有限公司 一种数据复制传输的指示方法、终端设备及网络设备
US11956155B2 (en) * 2019-01-21 2024-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for packet dropping in a fronthaul network
KR20200109857A (ko) * 2019-03-15 2020-09-23 삼성전자주식회사 무선 통신 시스템에서 우선 순위 기반 제어 및 데이터 정보 전송 방법 및 장치
CN111107583B (zh) * 2019-03-25 2023-12-08 维沃移动通信有限公司 sidelink重传请求BSR发送方法和终端设备
CN113615295A (zh) * 2019-03-27 2021-11-05 瑞典爱立信有限公司 用于sl sr/bsr处理的方法
CN111436091B (zh) * 2019-03-28 2022-05-20 维沃移动通信有限公司 传输路径的选择方法、信息配置方法、终端及网络设备
CN111757552B (zh) 2019-03-28 2023-11-21 苹果公司 用于快速载波聚合和双连接配置的辅助信息
US11083032B2 (en) * 2019-03-29 2021-08-03 At&T Intellectual Property I, L.P. Apparatus and method for multi-network connectivity with a dynamic node selection
US11792686B2 (en) * 2019-06-19 2023-10-17 Qualcomm Incorporated High bandwidth low latency cellular traffic awareness
CN112135356A (zh) * 2019-06-25 2020-12-25 夏普株式会社 用户设备、基站及其方法
WO2021025466A1 (ko) * 2019-08-05 2021-02-11 엘지전자 주식회사 무선통신시스템에서 신호 송수신 방법
CN114390705B (zh) * 2019-08-15 2023-08-08 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
TWI754381B (zh) * 2019-09-27 2022-02-01 華碩電腦股份有限公司 無線通訊系統中傳送裝置間通道量測的方法和設備
CN110611924B (zh) * 2019-09-27 2021-08-24 腾讯科技(深圳)有限公司 实现时间敏感网络的数据传输的方法、相关设备及介质
WO2021064046A1 (en) * 2019-10-02 2021-04-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Harq process / entity based uplink multiplexing
EP3800930A1 (en) * 2019-10-02 2021-04-07 NTT DoCoMo, Inc. Communication network arrangement and method for handling registration and/or session requests
EP3800917A1 (en) * 2019-10-02 2021-04-07 NTT DoCoMo, Inc. Communication system and method for operating a communication system
CN114557016A (zh) * 2019-10-03 2022-05-27 诺基亚技术有限公司 分组相关逻辑信道限制
CN112616191B (zh) * 2019-10-03 2024-06-18 联发科技股份有限公司 侧链路传输的逻辑信道优先级排序的增强方法及发射器用户设备
CN114651509A (zh) * 2019-11-07 2022-06-21 中兴通讯股份有限公司 无线网络中的资源分配
WO2021109143A1 (zh) * 2019-12-06 2021-06-10 华为技术有限公司 上行数据传输的控制方法和装置
CN111209240B (zh) * 2019-12-23 2021-08-03 深圳优地科技有限公司 数据传输的方法、电子设备及存储介质
EP4082145A1 (en) * 2019-12-26 2022-11-02 Telefonaktiebolaget LM Ericsson (publ) Network slicing in cellular systems
US20210243795A1 (en) * 2020-01-30 2021-08-05 Nokia Technologies Oy Flexible data transmission methods considering configured grant timers
US20210245047A1 (en) * 2020-02-10 2021-08-12 Intel Corporation Continuum architecture for cloud gaming
EP4106429A4 (en) * 2020-02-19 2023-02-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DATA TRANSMISSION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN116761208A (zh) * 2020-03-17 2023-09-15 华为技术有限公司 报文处理方法、装置、设备及存储介质
CN115398976A (zh) * 2020-04-08 2022-11-25 苹果公司 使用ue辅助信息的nr中的ue功率节省
CN113709820A (zh) * 2020-05-22 2021-11-26 中国移动通信有限公司研究院 资源分配方法、数据处理方法及设备
CN113965463A (zh) * 2020-06-29 2022-01-21 中兴通讯股份有限公司 网络切片切换方法和终端、存储介质及电子装置
US20230209479A1 (en) * 2020-07-06 2023-06-29 Qualcomm Incorporated Power headroom report triggering by dormant bandwidth part switching
WO2022055293A1 (en) * 2020-09-11 2022-03-17 Samsung Electronics Co., Ltd. Method and network entity for logical channel management in a wireless communication network
US20230276353A1 (en) * 2020-09-18 2023-08-31 Qualcomm Incorporated Fast slicing switching via scg suspension or activation
CN116389238A (zh) * 2020-09-18 2023-07-04 华为技术有限公司 一种软件定义广域网sd-wan保障应用体验的方法和系统
CN116250275A (zh) * 2020-12-03 2023-06-09 Oppo广东移动通信有限公司 上行逻辑信道复用的方法、终端设备及网络设备
CN112819054B (zh) * 2021-01-25 2023-06-30 中国联合网络通信集团有限公司 一种切片模板配置方法及装置
US20220248255A1 (en) * 2021-02-03 2022-08-04 Qualcomm Incorporated Group-based wireless communications
CN112954742B (zh) * 2021-02-08 2023-03-24 中国科学院计算技术研究所 一种移动通信网络切片的资源分配方法
US11895170B2 (en) * 2021-03-09 2024-02-06 Cisco Technology, Inc. Synchronicity for virtual reality/augmented reality interactive sessions in wireless networks
WO2022252188A1 (en) * 2021-06-03 2022-12-08 Huawei Technologies Co., Ltd. Method, device and computer-readable memory for communications within a radio access network
CN113473536B (zh) * 2021-06-16 2023-04-28 中国联合网络通信集团有限公司 数据传输方法及装置
CN115943684A (zh) * 2021-08-06 2023-04-07 北京小米移动软件有限公司 一种功率余量报告的上报方法、装置、用户设备、基站及存储介质
WO2023205970A1 (zh) * 2022-04-24 2023-11-02 Oppo广东移动通信有限公司 无线通信方法、装置、设备、存储介质及程序产品
WO2023209542A1 (en) * 2022-04-27 2023-11-02 Lenovo (Singapore) Pte Limited Apparatus and method for logical channel prioritization
EP4319282A1 (en) * 2022-08-04 2024-02-07 Vodafone Group Services Limited Optimised data transmission
CN115334627B (zh) * 2022-10-11 2022-12-20 深圳大学 一种基于BTMA的LoRa网络的通信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2503898B1 (fr) 1981-04-08 1986-02-28 Thomson Csf Procede et dispositif d'allocation d'une ressource dans un systeme comportant des unites de traitement de donnees autonomes
WO2009040395A1 (en) 2007-09-26 2009-04-02 Nokia Siemens Networks Oy Method, apparatus and system for signalling of buffer status information
JP5091844B2 (ja) 2008-12-01 2012-12-05 株式会社東芝 無線基地局、無線端末局、無線通信システムおよび無線通信方法
JP2011155336A (ja) 2010-01-26 2011-08-11 Sharp Corp 通信システム及び移動局装置及び基地局装置及び処理方法
US20120250631A1 (en) * 2011-03-31 2012-10-04 Renesas Mobile Corporation Multiplexing Logical Channels in Mixed Licensed and Unlicensed Spectrum Carrier Aggregation
DE112012002211B4 (de) * 2011-05-24 2019-02-21 Broadcom Corp. Ressourcenzuweisungssteuerung
US9210717B2 (en) * 2012-11-15 2015-12-08 Qualcomm Incorporated Methods and apparatus for LTE MAC logical channel prioritization based on control data
MX355829B (es) * 2013-03-29 2018-05-02 Huawei Tech Co Ltd Método para controlar la solicitud de recursos de otorgamiento de enlace ascendente, equipo de usuario, y estación base.
KR101845463B1 (ko) 2013-08-07 2018-04-04 인터디지탈 패튼 홀딩스, 인크 디바이스 대 디바이스 통신을 위한 분산형 스케줄링
EP3051736B1 (en) * 2015-01-30 2020-04-29 Panasonic Intellectual Property Corporation of America Prioritization in the logical channel prioritization procedure for sidelink logical channels in ProSe direct communications
US10218558B2 (en) * 2016-04-25 2019-02-26 Ofinno Technologies, Llc Media access control mechanism in a wireless device
US10200991B2 (en) * 2016-04-25 2019-02-05 Ofinno Technologies, Llc Scheduling request process in a wireless device and wireless network

Also Published As

Publication number Publication date
JP2019532590A (ja) 2019-11-07
US20220330320A1 (en) 2022-10-13
US11425752B2 (en) 2022-08-23
KR102567727B1 (ko) 2023-08-18
EP3530053A1 (en) 2019-08-28
JP2023029932A (ja) 2023-03-07
CN110024466A (zh) 2019-07-16
JP7187452B2 (ja) 2022-12-12
CN110024466B (zh) 2022-07-01
US20230362946A1 (en) 2023-11-09
WO2018075828A1 (en) 2018-04-26
US20200267753A1 (en) 2020-08-20
US11751217B2 (en) 2023-09-05
KR20190069518A (ko) 2019-06-19

Similar Documents

Publication Publication Date Title
CN110024466B (zh) 装置
CN112385297B (zh) 用于nr v2x侧链路共享信道数据传输的优先化过程
US11889514B2 (en) Sidelink buffer status reports and scheduling requests for new radio vehicle sidelink shared channel data transmissions
TWI826711B (zh) 上鏈及側鏈同步操作的裝置及方法
CN113615294A (zh) 用于侧链路通信的系统和方法
US20230171795A1 (en) Sidelink enhancements - resource allocation simultaneous mode 1/mode 2
CN113412643A (zh) 经由无线电资源控制信令进行单播链路管理
US20230217232A1 (en) User plane protocol design for new radio (nr) sidelink discovery message
US20240172235A1 (en) Methods and systems of nr sidelink resource allocation for power saving and bwp operations
US20240107572A1 (en) Relay operations in wireless communication

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination