CN115296704A - Distributed millimeter wave active phased array antenna control system and control method - Google Patents

Distributed millimeter wave active phased array antenna control system and control method Download PDF

Info

Publication number
CN115296704A
CN115296704A CN202111639053.4A CN202111639053A CN115296704A CN 115296704 A CN115296704 A CN 115296704A CN 202111639053 A CN202111639053 A CN 202111639053A CN 115296704 A CN115296704 A CN 115296704A
Authority
CN
China
Prior art keywords
control module
amplitude
calibration
sub
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111639053.4A
Other languages
Chinese (zh)
Other versions
CN115296704B (en
Inventor
杨晓明
洪伟
胡云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zijinshan Laboratory
Original Assignee
Network Communication and Security Zijinshan Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Network Communication and Security Zijinshan Laboratory filed Critical Network Communication and Security Zijinshan Laboratory
Priority to CN202111639053.4A priority Critical patent/CN115296704B/en
Publication of CN115296704A publication Critical patent/CN115296704A/en
Application granted granted Critical
Publication of CN115296704B publication Critical patent/CN115296704B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention discloses a control system and a control method for a distributed millimeter wave active phased array antenna, wherein the system comprises a main control module for generating a beam control instruction and a local oscillation frequency mixing frequency source, and the system also comprises: and the at least one subarray control module receives the beam control instruction and the local oscillator frequency mixing frequency source of the main control module, generates a calibration amplitude and a calibration phase difference of the current TR component based on the beam control instruction and the local oscillator frequency mixing frequency source, converts the calibration amplitude and the calibration phase difference into control codes of the TR component to realize phase shift and amplitude modulation of array elements in the TR component, and the TR component comprises an antenna unit. According to the technical scheme, millimeter wave active integrated phased-array antenna beam scanning is achieved in the FPGA through receiving control parameters transmitted by the upper computer or the end machine.

Description

分布式毫米波有源相控阵天线控制系统及控制方法Distributed millimeter wave active phased array antenna control system and control method

技术领域technical field

本发明涉及毫米波相控阵通信技术领域,具体涉及相控阵天线控制系统及控制方法。The invention relates to the technical field of millimeter wave phased array communication, in particular to a phased array antenna control system and a control method.

背景技术Background technique

随着5G毫米波通信和宽带低轨卫星通信的迅速崛起,毫米波有源相控阵天线开始了前所未有的发展,在卫星通信和雷达系统中都得到广泛的应用。毫米波有源相控阵天线波束控制主要是通过接收上位机传送过来的毫米波有源相控阵天线波束控制指令,通过波束赋性算法模块和校准单元计算得到控制TR组件的相位差和幅值,实现毫米波有源相控阵天线波束控制。现场可编程逻辑器件FPGA具有可反复烧写程序的特点,具有较高的灵活性,且大大缩短了开发周期和开发成本,基于这些优点,使得FPGA在软件无线电领域扮演着重要的角色。With the rapid rise of 5G millimeter-wave communications and broadband low-orbit satellite communications, millimeter-wave active phased array antennas have begun unprecedented development and have been widely used in satellite communications and radar systems. The beam control of the millimeter wave active phased array antenna is mainly by receiving the beam control command of the millimeter wave active phased array antenna sent by the host computer, and calculating the phase difference and amplitude of the control TR component through the beam assignment algorithm module and the calibration unit , to realize beam steering of millimeter wave active phased array antenna. Field programmable logic device FPGA has the characteristics of reprogrammable program, high flexibility, and greatly shortens the development cycle and development cost. Based on these advantages, FPGA plays an important role in the field of software radio.

目前存在的波束控制系统采用的级联方式多为串行级联,这种方式造成由端机对相控阵系统进行命令下发、系统状态监控以及故障检测等功能信号的传输需要经过多级接口,造成系统延迟太大,不适用于高灵敏度要求系统。且波束赋形单元在端机中实现这种方案导致各阵元相位差计算结果由外部传入,无法做到配置码多通道的并行分配,且速度太慢仅可达到毫秒级,没有存储装置无法实现对校准补偿参数和预制波束参数的存储。The cascading mode adopted by the current beam control system is mostly serial cascading. This mode causes the transmission of functional signals such as command issuance to the phased array system by the end machine, system status monitoring, and fault detection to go through multiple stages. The interface causes too much system delay and is not suitable for systems with high sensitivity requirements. In addition, the implementation of this scheme by the beamforming unit in the end machine causes the phase difference calculation results of each array element to be imported from the outside, and the parallel allocation of multiple channels of the configuration code cannot be achieved, and the speed is too slow and can only reach the millisecond level, and there is no storage device The storage of calibration compensation parameters and prefabricated beam parameters cannot be realized.

发明内容Contents of the invention

为了解决上述现有技术存在的缺陷,本发明提出了一种相控阵天线波束控制方法、系统及存储介质,通过接收上位机或者端机传输的控制参数,在FPGA中实现毫米波有源集成化相控阵天线波束扫描。In order to solve the above-mentioned defects in the prior art, the present invention proposes a phased array antenna beam control method, system and storage medium, by receiving the control parameters transmitted by the host computer or the terminal computer, the millimeter wave active integration is realized in the FPGA Phased array antenna beam scanning.

上述效果通过以下技术方案具体实现:The above effects are specifically realized through the following technical solutions:

分布式毫米波有源相控阵天线控制系统,包括用于生成波束控制指令以及本振混频频率源的主控模块,所述系统还包括:The distributed millimeter-wave active phased array antenna control system includes a main control module for generating beam control commands and local oscillator frequency sources, and the system also includes:

至少一个子阵控制模块,接收所述主控模块的波束控制指令和本振混频频率源,基于所述波束控制指令以及本振混频频率源生成当前TR组件的校准幅值和校准相位差,将所述校准幅值和校准相位差转换为TR组件的控制码实现所述TR组件中阵元的移相及调幅,所述TR组件包括天线单元。At least one sub-array control module receives the beam control instruction and the local oscillator frequency source of the main control module, and generates the calibration amplitude and calibration phase difference of the current TR component based on the beam control instruction and the local oscillator frequency source converting the calibration amplitude and calibration phase difference into a control code of a TR component to implement phase shifting and amplitude modulation of array elements in the TR component, and the TR component includes an antenna unit.

进一步的,所述子阵控制模块包含波束赋形单元,所述波束赋形单元用于实时计算天线单元相对于基准单元的相位差,以及天线单元幅值;Further, the subarray control module includes a beamforming unit, and the beamforming unit is used to calculate the phase difference of the antenna unit relative to the reference unit in real time, and the amplitude of the antenna unit;

所述子阵控制模块包含校准单元,所述校准单元调用预设的相位及幅值补偿值,补偿至天线单元相对于基准单元的相位差及幅值上,得到校准相位差及校准幅值。The sub-array control module includes a calibration unit, and the calibration unit invokes preset phase and amplitude compensation values to compensate the phase difference and amplitude of the antenna unit relative to the reference unit to obtain a calibrated phase difference and a calibrated amplitude.

进一步的,所述系统包含多个子阵控制模块,各子阵控制模块之间采用并行传输架构。Further, the system includes a plurality of sub-array control modules, and a parallel transmission architecture is adopted between the sub-array control modules.

更进一步的,所述主控模块接收解析端机或上位机发送的指令,得到目标信息,根据所述目标信息生成波束控制指令。Further, the main control module receives and analyzes the instructions sent by the terminal computer or the host computer, obtains target information, and generates beam control instructions according to the target information.

更进一步的,所述解析端机或上位机动态更新配置所述波束控制指令。Furthermore, the analyzing terminal computer or the upper computer dynamically updates and configures the beam control instruction.

作为本申请的一种优选实施方案,所述主控模块通过SPI接口将所述波束指向文件下发给所述子阵控制模块。As a preferred implementation solution of the present application, the main control module sends the beam pointing file to the sub-array control module through an SPI interface.

本申请还提供分布式毫米波有源相控阵天线控制方法,所述方法包括:主控模块生成波束控制指令以及本振混频频率源;The present application also provides a method for controlling a distributed millimeter-wave active phased array antenna. The method includes: a main control module generating a beam control command and a local oscillator mixing frequency source;

子阵控制模块接收所述主控模块生成的波束控制指令以及本振混频频率源,基于所述波束控制指令以及本振混频频率源生成当前TR组件的校准幅值和校准相位差,将所述校准幅值和校准相位差转换为TR组件的控制码实现所述TR组件中阵元的移相及调幅。The subarray control module receives the beam control instruction and the local oscillator frequency source generated by the main control module, and generates the calibration amplitude and calibration phase difference of the current TR component based on the beam control instruction and the local oscillator frequency source, and The calibration amplitude and calibration phase difference are converted into control codes of the TR component to implement phase shifting and amplitude modulation of the elements in the TR component.

进一步的,通过所述子阵控制模块中的波束赋形单元实时计算天线单元相对于基准单元的相位差,以及天线单元幅值;Further, the phase difference of the antenna unit relative to the reference unit and the amplitude of the antenna unit are calculated in real time through the beamforming unit in the subarray control module;

通过所述子阵控制模块中的校准单元调用预设的相位及幅值补偿值,补偿至天线单元相对于基准单元的相位差及幅值上,得到校准相位差及校准幅值。The calibration unit in the sub-array control module invokes the preset phase and amplitude compensation values, compensates to the phase difference and amplitude of the antenna unit relative to the reference unit, and obtains the calibration phase difference and calibration amplitude.

进一步的,所述系统包含多个子阵控制模块,各个子阵控制模块并行接收所述主控模块生成的波束控制指令以及本振混频频率源。Further, the system includes a plurality of sub-array control modules, and each sub-array control module receives the beam control instruction generated by the main control module and the local oscillator mixing frequency source in parallel.

进一步的,所述主控模块接收解析端机或上位机发送的指令,得到目标信息,根据所述目标信息生成波束控制指令。Further, the main control module receives the instruction sent by the analyzing terminal computer or the host computer, obtains target information, and generates a beam control instruction according to the target information.

更进一步的,所述解析端机或上位机动态更新配置所述波束控制指令。Furthermore, the analyzing terminal computer or the upper computer dynamically updates and configures the beam control instruction.

作为本申请的一种优选实施方案,所述主控模块通过SPI接口将所述波束指向文件下发给所述子阵控制模块。As a preferred implementation solution of the present application, the main control module sends the beam pointing file to the sub-array control module through an SPI interface.

本发明与现有技术相比,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:

本发明提出了一种星载分布式毫米波有源集成化相控阵天线控制方法、装置及存储介质。通过接收上位机或者端机传输的控制参数,在FPGA中实现毫米波有源集成化相控阵天线波束扫描。本发明与现有技术相比,还具有以下优点:The invention provides a space-borne distributed millimeter wave active integrated phased array antenna control method, device and storage medium. By receiving the control parameters transmitted by the host computer or the terminal computer, the millimeter-wave active integrated phased array antenna beam scanning is realized in the FPGA. Compared with the prior art, the present invention also has the following advantages:

1.扩展性强,本申请分布式毫米波有源集成化相控阵天线控制系统采用分布式子阵架构,该架构具有可扩展特点,结合FPGA的IO接口资源,系统的扩展性强。1. Strong scalability. The distributed millimeter-wave active integrated phased array antenna control system of this application adopts a distributed sub-array architecture, which has the characteristics of scalability. Combined with FPGA IO interface resources, the system has strong scalability.

2.响应速度快,将波束赋形和校准单元设置在每个独立的子阵中,这样可以减少接口延迟;并且,主控和子阵之间采用并行传输的架构,可以减少传输延迟。2. The response speed is fast, and the beamforming and calibration units are set in each independent sub-array, which can reduce the interface delay; and the parallel transmission architecture between the main control and the sub-array can reduce the transmission delay.

3.波束指向灵活,本申请提供的系统结构将波束赋形和校准单元放置在子阵中,可以有灵活的工作模式,单子阵独立工作或多子阵协同工作皆可。3. The beam pointing is flexible. The system structure provided by this application places the beamforming and calibration units in the sub-arrays, which can have a flexible working mode, and a single sub-array can work independently or multiple sub-arrays can work together.

4.可靠性强,可靠性优势主要在于FPGA器件的稳定性强。4. Strong reliability, the reliability advantage mainly lies in the strong stability of the FPGA device.

5.底层的校准文件和波束文件可以通过上位机去动态更新配置,可适应于不同的应用场景,系统的通用性强。5. The underlying calibration file and beam file can be dynamically updated and configured through the host computer, which can be adapted to different application scenarios, and the system has strong versatility.

附图说明Description of drawings

为了更清楚地说明本发明中的技术方案,下面将对本发明中所需要使用的附图进行简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其它附图。In order to illustrate the technical solution in the present invention more clearly, the accompanying drawings that need to be used in the present invention will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can be obtained based on these drawings on the premise of not paying creative work.

图1是本发明分布式毫米波有源相控阵天线控制系统的总体架构图;Fig. 1 is the overall architecture diagram of the distributed millimeter wave active phased array antenna control system of the present invention;

图2是本发明实施例之一的主控系统示意图;Fig. 2 is a schematic diagram of the main control system of one of the embodiments of the present invention;

图3是本发明实施例之一的子阵控制系统示意图;Fig. 3 is a schematic diagram of a sub-array control system according to one embodiment of the present invention;

图4是本发明实施例之一的波束赋形算法示意图;FIG. 4 is a schematic diagram of a beamforming algorithm according to one embodiment of the present invention;

图5是本发明实施例之一的主控系统的工作流程图。Fig. 5 is a working flow chart of the main control system of one embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

实施例1Example 1

如图1所示,本实施例提供分布式毫米波有源相控阵天线控制系统,包括用于生成波束控制指令以及本振混频频率源的主控模块,所述系统还包括:As shown in Figure 1, this embodiment provides a distributed millimeter-wave active phased array antenna control system, including a main control module for generating beam control instructions and a local oscillator mixing frequency source, and the system also includes:

至少一个子阵控制模块,接收所述主控模块的波束控制指令和本振混频频率源,基于所述波束控制指令以及本振混频频率源生成当前TR组件的校准幅值和校准相位差,将所述校准幅值和校准相位差转换为TR组件的控制码实现所述TR组件中阵元的移相及调幅,所述TR组件包括天线单元。At least one sub-array control module receives the beam control instruction and the local oscillator frequency source of the main control module, and generates the calibration amplitude and calibration phase difference of the current TR component based on the beam control instruction and the local oscillator frequency source converting the calibration amplitude and calibration phase difference into a control code of a TR component to implement phase shifting and amplitude modulation of array elements in the TR component, and the TR component includes an antenna unit.

所述子阵控制模块包含波束赋形单元,所述波束赋形单元用于实时计算天线单元相对于基准单元的相位差,以及天线单元幅值;The sub-array control module includes a beamforming unit, and the beamforming unit is used to calculate the phase difference of the antenna unit relative to the reference unit in real time, and the amplitude of the antenna unit;

所述子阵控制模块包含校准单元,所述校准单元调用预设的相位及幅值补偿值,补偿至天线单元相对于基准单元的相位差及幅值上,得到校准相位差及校准幅值。The sub-array control module includes a calibration unit, and the calibration unit invokes preset phase and amplitude compensation values to compensate the phase difference and amplitude of the antenna unit relative to the reference unit to obtain a calibrated phase difference and a calibrated amplitude.

所述系统包含多个子阵控制模块,各子阵控制模块之间采用并行传输架构;所述主控模块接收解析端机或上位机发送的指令,得到目标信息,根据所述目标信息生成波束控制指令;所述解析端机或上位机动态更新配置所述波束控制指令。The system includes a plurality of sub-array control modules, and the parallel transmission architecture is adopted between the sub-array control modules; the main control module receives and analyzes the instructions sent by the terminal computer or the host computer, obtains target information, and generates beam steering according to the target information instruction; the analyzing terminal computer or the host computer dynamically updates and configures the beam control instruction.

作为本申请的一种优选实施方案,所述主控模块通过SPI接口将所述波束指向文件下发给所述子阵控制模块。As a preferred implementation solution of the present application, the main control module sends the beam pointing file to the sub-array control module through an SPI interface.

实施例2Example 2

本实施例为本申请还提供分布式毫米波有源相控阵天线控制方法,所述方法包括:主控模块生成波束控制指令以及本振混频频率源;This embodiment also provides a distributed millimeter-wave active phased array antenna control method for the present application. The method includes: the main control module generates a beam control command and a local oscillator frequency mixing frequency source;

子阵控制模块接收所述主控模块生成的波束控制指令以及本振混频频率源,基于所述波束控制指令以及本振混频频率源生成当前TR组件的校准幅值和校准相位差,将所述校准幅值和校准相位差转换为TR组件的控制码实现所述TR组件中阵元的移相及调幅。The subarray control module receives the beam control instruction and the local oscillator frequency source generated by the main control module, and generates the calibration amplitude and calibration phase difference of the current TR component based on the beam control instruction and the local oscillator frequency source, and The calibration amplitude and calibration phase difference are converted into control codes of the TR component to implement phase shifting and amplitude modulation of the elements in the TR component.

进一步的,通过所述子阵控制模块中的波束赋形单元实时计算天线单元相对于基准单元的相位差,以及天线单元幅值;Further, the phase difference of the antenna unit relative to the reference unit and the amplitude of the antenna unit are calculated in real time through the beamforming unit in the subarray control module;

通过所述子阵控制模块中的校准单元调用预设的相位及幅值补偿值,补偿至天线单元相对于基准单元的相位差及幅值上,得到校准相位差及校准幅值。The calibration unit in the sub-array control module invokes the preset phase and amplitude compensation values, compensates to the phase difference and amplitude of the antenna unit relative to the reference unit, and obtains the calibration phase difference and calibration amplitude.

所述系统包含多个子阵控制模块,子阵控制模块之间采用并行传输架构,各个子阵控制模块并行接收所述主控模块生成的波束控制指令以及本振混频频率源;所述主控模块接收解析端机或上位机发送的指令,得到目标信息,根据所述目标信息生成波束控制指令;所述解析端机或上位机动态更新配置所述波束控制指令。The system includes a plurality of sub-array control modules, and a parallel transmission architecture is adopted between the sub-array control modules, and each sub-array control module receives in parallel the beam control instructions generated by the main control module and the local oscillator frequency source; the main control The module receives the instructions sent by the analysis end computer or the upper computer, obtains the target information, and generates a beam control instruction according to the target information; the analysis end computer or the upper computer dynamically updates and configures the beam control instruction.

作为本申请的一种优选实施方案,所述主控模块通过SPI接口将所述波束指向文件下发给所述子阵控制模块。As a preferred implementation solution of the present application, the main control module sends the beam pointing file to the sub-array control module through an SPI interface.

下面结合具体工作场景对上述方案进行进一步介绍:整个阵列工作在同一个波束下,波束赋形1°精度二维精确扫描模式,可用于波束精确扫描。上述波束控制方法通过以下方式实现:The above scheme will be further introduced in combination with specific working scenarios: the entire array works under the same beam, and the beamforming 1° precision two-dimensional precise scanning mode can be used for precise beam scanning. The beam steering method described above is implemented in the following ways:

步骤1,参照图5,在此实施例中,FPGA硬件上电后,先进行中断初始化和外设接口初始化,加载主控模块flash中存储的校准文件。同时,CPU中设置系统状态监测中断,当系统状态运行异常时,打印错误,并进行软复位。Step 1, referring to FIG. 5 , in this embodiment, after the FPGA hardware is powered on, interrupt initialization and peripheral interface initialization are performed first, and the calibration file stored in the flash of the main control module is loaded. At the same time, the system status monitoring interrupt is set in the CPU. When the system status is abnormal, it will print an error and perform a soft reset.

步骤2,参照图2,上位机通过千兆以太网口通过TCP/IP协议(UART串口作为备用接口)发送毫米波有源相控阵天线波束控制指令,其中包括TR模式切换、天线指向角、天线频点、天线单元间距、幅值以及波束校准文件。CPU将接收到的波束控制指令参数通过AXI4-Lite接口传输至FPGA端并由Bram模块进行缓存,然后经由SPI接口配置整个阵列的混频频率源,并将波束配置参数由SPI接口下发至子阵控制模块。其中只有需要重新校准时,才会重新下发校准文件并更新至flash中。Step 2, referring to Figure 2, the host computer sends millimeter-wave active phased array antenna beam control commands through the Gigabit Ethernet port through the TCP/IP protocol (UART serial port as a backup interface), including TR mode switching, antenna pointing angle, Antenna frequency point, antenna element spacing, amplitude and beam calibration file. The CPU transmits the received beam control instruction parameters to the FPGA side through the AXI4-Lite interface and caches them in the Bram module, then configures the mixing frequency source of the entire array through the SPI interface, and sends the beam configuration parameters to the sub- array control module. Only when recalibration is required, the calibration file will be re-delivered and updated to the flash.

步骤3,参照图3,子阵控制模块默认工作模式为整个阵列工作在同一波束的模式,子阵上电时会加载预制在flash中的校准参数。子阵通过SPI接口接收到主控下发的波束控制指令并将其传输到波束赋形单元中。Step 3, referring to Figure 3, the default working mode of the subarray control module is that the whole array works in the same beam mode, and the calibration parameters prefabricated in flash will be loaded when the subarray is powered on. The sub-array receives the beam control command issued by the master through the SPI interface and transmits it to the beamforming unit.

步骤4,参照图4,待子阵控制模块FPGA接收到毫米波有源相控阵天线波束控制指令后,将参数传输至波束赋形算法模块和校准单元。根据平面相控阵天线扫描原理可知,在波束赋形单元中已知天线波束角度

Figure BDA0003443469670000073
和θ,根据公式(1),(2)和(3)计算天线之间的相位差。Step 4, referring to Figure 4, after the sub-array control module FPGA receives the millimeter-wave active phased array antenna beam control command, the parameters are transmitted to the beamforming algorithm module and the calibration unit. According to the scanning principle of the planar phased array antenna, the antenna beam angle is known in the beamforming unit
Figure BDA0003443469670000073
and θ, calculate the phase difference between the antennas according to formulas (1), (2) and (3).

Figure BDA0003443469670000071
Figure BDA0003443469670000071

Figure BDA0003443469670000072
Figure BDA0003443469670000072

式中,天线单元间距为d,dx、dy分别为天线单元在x轴y轴上的距离,λ为波束波长,cosαx与cosαy分别表示波束指向的方向余弦。Δφx、Δφy分别表示第(i,k)个天线单元与参考单元之间在x轴和y轴方向上的相位差,那么第(i,k)个单元与第(0,0)个参考单元之间的阵内相位差为ΔφBik=iΔφBx+kΔφBy(3)。记A=ΔφBx,B=ΔφBy,则ΔφBik=iA+kB,A、B此处表示简化的阵内相移值校准单元是将每个通道的相位和幅值补偿值与波束赋形单元计算得到的相位和幅值相加即可得到最终每个通道的校准相位差及校准幅值。波束赋形算法模块可实现天线波束角度

Figure BDA0003443469670000074
和θ皆为1°精度的二维角度扫描。In the formula, the distance between the antenna elements is d, d x and d y are the distances of the antenna elements on the x-axis and y-axis respectively, λ is the beam wavelength, and cosα x and cosα y represent the cosine of the direction of the beam respectively. Δφ x , Δφ y represent the phase difference between the (i, k)th antenna unit and the reference unit in the x-axis and y-axis directions, then the (i, k)th unit and the (0,0)th The intra-array phase difference between the reference units is Δφ Bik =iΔφ Bx +kΔφ By (3). Note A=Δφ Bx , B=Δφ By , then Δφ Bik =iA+kB, where A and B represent the simplified intra-array phase shift value calibration unit is to combine the phase and amplitude compensation value of each channel with the beamforming The phase and amplitude calculated by the unit are added to obtain the final calibration phase difference and calibration amplitude of each channel. Beamforming algorithm module enables antenna beam angle
Figure BDA0003443469670000074
and θ are two-dimensional angular scans with 1° accuracy.

步骤5,参照图3,子阵控制模块将计算得到各个阵元的相位差和幅值根据TR组件的工作机制实时将其转化为对应阵列单元的相位及幅值控制码。最后通过SPI接口将对应阵列单元的控制码输出至对应阵列的TR组件实现对相控阵天线的波束控制。Step 5, referring to Figure 3, the sub-array control module converts the calculated phase difference and amplitude of each array element into phase and amplitude control codes of the corresponding array elements in real time according to the working mechanism of the TR component. Finally, the control code of the corresponding array unit is output to the TR component of the corresponding array through the SPI interface to realize the beam control of the phased array antenna.

实施例3Example 3

本申请还提供第二种分布式毫米波有源相控阵天线控制系统,与实施例2不同的是,本实施例系统在子阵控制模中不进行TR组件控制码的计算,直接调用主控模块中的波束指向文件进行TR组件控制,能够实现不同控制策略的快速切换,该系统包括:This application also provides the second distributed millimeter-wave active phased array antenna control system. The difference from Embodiment 2 is that the system in this embodiment does not perform the calculation of the control code of the TR component in the sub-array control mode, and directly calls the main The beam pointing file in the control module is used to control the TR component, which can realize the fast switching of different control strategies. The system includes:

所述主控模块内设有波束指向文件以及混频频率源本振控制指令,向子阵控制模块下发所述波束指向文件,并为子阵提供混频频率源;The main control module is provided with a beam pointing file and a mixing frequency source local oscillator control command, and sends the beam pointing file to the sub-array control module, and provides a mixing frequency source for the sub-array;

子阵控制模块,所述子阵控制模块根据所述波束指向文件切换TR组件中阵元的方向以及调节阵元的幅值。A sub-array control module, the sub-array control module switches the direction of the array elements in the TR component and adjusts the amplitude of the array elements according to the beam pointing file.

进一步的,所述主控模块以及子阵控制模块采用FPGA芯片。Further, the main control module and the sub-array control module adopt FPGA chips.

实施例4Example 4

基于上述系统,本申请提供的第二种分布式毫米波有源相控阵天线控制方法,该方法包括:Based on the above system, the second distributed millimeter-wave active phased array antenna control method provided by this application includes:

所述主控模块向子阵控制模块下发波束指向文件,并为子阵提供混频频率源;The main control module sends a beam pointing file to the sub-array control module, and provides a mixing frequency source for the sub-array;

所述子阵控制模块根据所述波束指向文件切换TR组件中阵元的方向以及调节阵元的幅值。The sub-array control module switches the direction of the array elements in the TR component and adjusts the amplitude of the array elements according to the beam pointing file.

进一步的,所述波束指向文件保存在主控模块的flash模块中,所述主控模块通过SPI接口将所述波束指向文件下发给所述子阵控制模块。Further, the beam pointing file is stored in the flash module of the main control module, and the main control module sends the beam pointing file to the sub-array control module through the SPI interface.

进一步的,所述主控模块以及子阵控制模块采用FPGA芯片。Further, the main control module and the sub-array control module adopt FPGA chips.

下面结合具体工作场景对上述方案进行进一步介绍:每个子阵阵列灵活工作模式,可用于通信系统中的多种业务。The above scheme is further introduced below in conjunction with specific working scenarios: each sub-array has a flexible working mode and can be used for various services in the communication system.

步骤1,参照图5,在此实施例中,FPGA硬件上电后,先进行中断初始化和外设接口初始化,加载主控模块flash中存储的校准文件。同时,CPU中设置系统状态监测中断,当系统状态运行异常时,打印错误,并进行软复位。Step 1, referring to FIG. 5 , in this embodiment, after the FPGA hardware is powered on, interrupt initialization and peripheral interface initialization are performed first, and the calibration file stored in the flash of the main control module is loaded. At the same time, the system status monitoring interrupt is set in the CPU. When the system status is abnormal, it will print an error and perform a soft reset.

步骤2,参照图2,上位机通过千兆以太网口通过TCP/IP协议(UART串口作为备用接口)发送毫米波有源相控阵天线波束控制指令,其中包括TR模式切换、天线指向角、天线频点、天线单元间距、幅值以及波束校准文件。CPU将接收到的波束控制指令参数通过AXI4-Lite接口传输至FPGA端并由Bram模块进行缓存,然后经由SPI接口配置整个阵列的混频频率源,并将波束配置参数由SPI接口下发至子阵控制模块。此种模式下需要加载每个子阵阵列独立的校准文件并更新至flash中。Step 2, referring to Figure 2, the host computer sends millimeter-wave active phased array antenna beam control commands through the Gigabit Ethernet port through the TCP/IP protocol (UART serial port as a backup interface), including TR mode switching, antenna pointing angle, Antenna frequency point, antenna element spacing, amplitude and beam calibration file. The CPU transmits the received beam control instruction parameters to the FPGA side through the AXI4-Lite interface and caches them in the Bram module, then configures the mixing frequency source of the entire array through the SPI interface, and sends the beam configuration parameters to the sub- array control module. In this mode, an independent calibration file for each sub-array needs to be loaded and updated to flash.

步骤3,参照图3,首先将每个子阵控制模块通过SPI接口接收到独立的校准文件,然后经由BRAM缓存后,写入到子阵控制模块flash中。最后,子阵通过SPI接口接收到主控下发的波束控制指令并将其传输到波束赋形单元中。Step 3, referring to Figure 3, firstly each sub-array control module receives an independent calibration file through the SPI interface, and then writes it into the flash of the sub-array control module after being cached by BRAM. Finally, the sub-array receives the beam control command issued by the master through the SPI interface and transmits it to the beamforming unit.

步骤4,参照图4,待子阵控制模块FPGA接收到毫米波有源相控阵天线波束控制指令后,将参数传输至波束赋形算法模块和校准单元。根据平面相控阵天线扫描原理可知,在波束赋形单元中已知天线波束角度

Figure BDA0003443469670000092
和θ,根据公式(1),(2)和(3)计算天线之间的相位差。Step 4, referring to Figure 4, after the sub-array control module FPGA receives the millimeter-wave active phased array antenna beam control command, the parameters are transmitted to the beamforming algorithm module and the calibration unit. According to the scanning principle of the planar phased array antenna, the antenna beam angle is known in the beamforming unit
Figure BDA0003443469670000092
and θ, calculate the phase difference between the antennas according to formulas (1), (2) and (3).

Figure BDA0003443469670000091
Figure BDA0003443469670000091

Figure BDA0003443469670000101
Figure BDA0003443469670000101

式中,天线单元间距为d,dx、dy分别为天线单元在x轴y轴上的距离,λ为波束波长,cosαx与cosαy分别表示波束指向的方向余弦。Δφx、Δφy分别表示第(i,k)个天线单元与参考单元之间在x轴和y轴方向上的相位差,那么第(i,k)个单元与第(0,0)个参考单元之间的阵内相位差为ΔφBik=iΔφBx+kΔφBy(3)。记A=ΔφBx,B=ΔφBy,则ΔφBik=iA+kB,A、B此处表示简化的阵内相移值。校准单元是将每个通道的相位和幅值补偿值与波束赋形单元计算得到的相位和幅值相加即可得到最终每个通道的校准相位差及校准幅值。波束赋形算法模块可实现天线波束角度

Figure BDA0003443469670000102
和θ皆为1°精度的二维角度扫描。In the formula, the distance between the antenna elements is d, d x and d y are the distances of the antenna elements on the x-axis and y-axis respectively, λ is the beam wavelength, and cosα x and cosα y represent the cosine of the direction of the beam respectively. Δφ x , Δφ y represent the phase difference between the (i, k)th antenna unit and the reference unit in the x-axis and y-axis directions, then the (i, k)th unit and the (0,0)th The intra-array phase difference between the reference units is Δφ Bik =iΔφ Bx +kΔφ By (3). Note A=Δφ Bx , B=Δφ By , then Δφ Bik =iA+kB, where A and B represent simplified intra-array phase shift values. The calibration unit adds the phase and amplitude compensation value of each channel to the phase and amplitude calculated by the beamforming unit to obtain the final calibration phase difference and calibration amplitude of each channel. Beamforming algorithm module enables antenna beam angle
Figure BDA0003443469670000102
and θ are two-dimensional angular scans with 1° accuracy.

步骤5,参照图3,子阵控制模块将计算得到各个阵元的相位差和幅值根据TR组件的工作机制实时将其转化为对应阵列单元的相位及幅值控制码。最后通过SPI接口将对应阵列单元的控制码输出至对应阵列的TR组件实现对相控阵天线的波束控制。Step 5, referring to Figure 3, the sub-array control module converts the calculated phase difference and amplitude of each array element into phase and amplitude control codes of the corresponding array elements in real time according to the working mechanism of the TR component. Finally, the control code of the corresponding array unit is output to the TR component of the corresponding array through the SPI interface to realize the beam control of the phased array antenna.

上述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only preferred embodiments of the application, and are not intended to limit the application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the application shall be included in the protection scope of the application. Inside.

Claims (12)

1.分布式毫米波有源相控阵天线控制系统,包括用于生成波束控制指令以及本振混频频率源的主控模块,其特征在于,所述系统还包括:1. A distributed millimeter wave active phased array antenna control system, including a master control module for generating beam control instructions and a local oscillator frequency source, characterized in that the system also includes: 至少一个子阵控制模块,接收所述主控模块的波束控制指令和本振混频频率源,基于所述波束控制指令以及本振混频频率源生成当前TR组件的校准幅值和校准相位差,将所述校准幅值和校准相位差转换为TR组件的控制码实现所述TR组件中阵元的移相及调幅,所述TR组件包括天线单元。At least one sub-array control module receives the beam control instruction and the local oscillator frequency source of the main control module, and generates the calibration amplitude and calibration phase difference of the current TR component based on the beam control instruction and the local oscillator frequency source converting the calibration amplitude and calibration phase difference into a control code of a TR component to implement phase shifting and amplitude modulation of array elements in the TR component, and the TR component includes an antenna unit. 2.根据权利要求1所述的分布式毫米波有源相控阵天线控制系统,其特征在于,2. The distributed millimeter wave active phased array antenna control system according to claim 1, wherein: 所述子阵控制模块包含波束赋形单元,所述波束赋形单元用于实时计算天线单元相对于基准单元的相位差,以及天线单元幅值;The sub-array control module includes a beamforming unit, and the beamforming unit is used to calculate the phase difference of the antenna unit relative to the reference unit in real time, and the amplitude of the antenna unit; 所述子阵控制模块包含校准单元,所述校准单元调用预设的相位及幅值补偿值,补偿至天线单元相对于基准单元的相位差及幅值上,得到校准相位差及校准幅值。The sub-array control module includes a calibration unit, and the calibration unit invokes preset phase and amplitude compensation values to compensate the phase difference and amplitude of the antenna unit relative to the reference unit to obtain a calibrated phase difference and a calibrated amplitude. 3.根据权利要求1所述的分布式毫米波有源相控阵天线控制系统,其特征在于,所述系统包含多个子阵控制模块,各子阵控制模块之间采用并行传输架构。3. The distributed millimeter-wave active phased array antenna control system according to claim 1, wherein the system comprises a plurality of sub-array control modules, and a parallel transmission architecture is adopted between the sub-array control modules. 4.根据权利要求1至3任一项所述的分布式毫米波有源相控阵天线控制系统,其特征在于,所述主控模块接收解析端机或上位机发送的指令,得到目标信息,根据所述目标信息生成波束控制指令。4. The distributed millimeter-wave active phased array antenna control system according to any one of claims 1 to 3, wherein the main control module receives instructions sent by the analysis terminal or host computer to obtain target information , generating a beam control instruction according to the target information. 5.根据权利要求4所述的分布式毫米波有源相控阵天线控制系统,其特征在于,所述解析端机或上位机动态更新配置所述波束控制指令。5 . The distributed millimeter wave active phased array antenna control system according to claim 4 , wherein the analysis terminal or host computer dynamically updates and configures the beam control instruction. 6 . 6.根据权利要求4所述的分布式毫米波有源相控阵天线控制系统,其特征在于,所述主控模块通过SPI接口将所述波束指向文件下发给所述子阵控制模块。6. The distributed millimeter-wave active phased array antenna control system according to claim 4, wherein the main control module sends the beam pointing file to the sub-array control module through an SPI interface. 7.分布式毫米波有源相控阵天线控制方法,其特征在于,所述方法包括:7. A method for controlling a distributed millimeter wave active phased array antenna, characterized in that the method comprises: 子阵控制模块接收所述主控模块生成的波束控制指令以及本振混频频率源,基于所述波束控制指令以及本振混频频率源生成当前TR组件的校准幅值和校准相位差,将所述校准幅值和校准相位差转换为TR组件的控制码实现所述TR组件中阵元的移相及调幅。The subarray control module receives the beam control instruction and the local oscillator frequency source generated by the main control module, and generates the calibration amplitude and calibration phase difference of the current TR component based on the beam control instruction and the local oscillator frequency source, and The calibration amplitude and calibration phase difference are converted into control codes of the TR component to implement phase shifting and amplitude modulation of the elements in the TR component. 8.根据权利要求7所述的分布式毫米波有源相控阵天线控制方法,其特征在于,8. the distributed millimeter wave active phased array antenna control method according to claim 7, is characterized in that, 通过所述子阵控制模块中的波束赋形单元实时计算天线单元相对于基准单元的相位差,以及天线单元幅值;Calculate the phase difference of the antenna unit relative to the reference unit and the amplitude of the antenna unit in real time through the beamforming unit in the subarray control module; 通过所述子阵控制模块中的校准单元调用预设的相位及幅值补偿值,补偿至天线单元相对于基准单元的相位差及幅值上,得到校准相位差及校准幅值。The calibration unit in the sub-array control module invokes the preset phase and amplitude compensation values to compensate the phase difference and amplitude of the antenna unit relative to the reference unit to obtain the calibration phase difference and calibration amplitude. 9.根据权利要求7所述的分布式毫米波有源相控阵天线控制方法,其特征在于,各个子阵控制模块并行接收所述主控模块生成的波束控制指令以及本振混频频率源。9. The distributed millimeter-wave active phased array antenna control method according to claim 7, wherein each sub-array control module receives in parallel the beam control instructions generated by the main control module and the local oscillator mixing frequency source . 10.根据权利要求7至9任一项所述的分布式毫米波有源相控阵天线控制方法,其特征在于,所述主控模块接收解析端机或上位机发送的指令,得到目标信息,根据所述目标信息生成波束控制指令。10. The distributed millimeter-wave active phased array antenna control method according to any one of claims 7 to 9, wherein the main control module receives an instruction from an analysis terminal or a host computer to obtain target information , generating a beam control instruction according to the target information. 11.根据权利要求10所述的分布式毫米波有源相控阵天线控制方法,其特征在于,所述解析端机或上位机动态更新配置所述波束控制指令。11. The method for controlling a distributed millimeter-wave active phased array antenna according to claim 10, wherein the analysis terminal or host computer dynamically updates and configures the beam control instruction. 12.根据权利要求10所述的分布式毫米波有源相控阵天线控制方法,其特征在于,所述主控模块通过SPI接口将所述波束指向文件下发给所述子阵控制模块。12. The distributed millimeter-wave active phased array antenna control method according to claim 10, wherein the main control module sends the beam pointing file to the sub-array control module through an SPI interface.
CN202111639053.4A 2021-12-29 2021-12-29 Distributed millimeter wave active phased array antenna control system and control method Active CN115296704B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111639053.4A CN115296704B (en) 2021-12-29 2021-12-29 Distributed millimeter wave active phased array antenna control system and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111639053.4A CN115296704B (en) 2021-12-29 2021-12-29 Distributed millimeter wave active phased array antenna control system and control method

Publications (2)

Publication Number Publication Date
CN115296704A true CN115296704A (en) 2022-11-04
CN115296704B CN115296704B (en) 2024-07-12

Family

ID=83819179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111639053.4A Active CN115296704B (en) 2021-12-29 2021-12-29 Distributed millimeter wave active phased array antenna control system and control method

Country Status (1)

Country Link
CN (1) CN115296704B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116736235A (en) * 2023-06-14 2023-09-12 中国科学院空天信息创新研究院 A large-scale spaceborne SAR phased array antenna control system and method
CN117134792A (en) * 2023-10-26 2023-11-28 南京纳特通信电子有限公司 K-band phased array wave control system based on FPGA control

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080036648A1 (en) * 2006-08-10 2008-02-14 Northrop Grumman Systems Corporation Method and System for Calibrating ESA, Distributed Waveform Generator and Receivers in Sub-Arrays
US7408507B1 (en) * 2005-03-15 2008-08-05 The United States Of America As Represented By The Secretary Of The Navy Antenna calibration method and system
CN102412441A (en) * 2011-09-02 2012-04-11 中国电子科技集团公司第十研究所 Phased array antenna vector average calibration method
CN109521490A (en) * 2018-11-12 2019-03-26 北京航空航天大学 A kind of millimeter wave array radiation meter front end of achievable analog beam figuration
CN112073097A (en) * 2020-08-20 2020-12-11 东南大学 Self-calibration device for hybrid beam forming receiving array
US20210021033A1 (en) * 2018-03-29 2021-01-21 Agency For Science, Technology And Research Beam steerable antenna system, method of manufacturing thereof and method of beam steering an antenna array
CN112259964A (en) * 2020-09-28 2021-01-22 西南电子技术研究所(中国电子科技集团公司第十研究所) Multi-subarray phased array antenna beam control device
US20210050667A1 (en) * 2019-08-13 2021-02-18 The Boeing Company Method to Optimize Beams for Phased Array Antennas
CN112909551A (en) * 2021-02-24 2021-06-04 重庆两江卫星移动通信有限公司 Wave beam control system of communication-in-moving phased array antenna

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408507B1 (en) * 2005-03-15 2008-08-05 The United States Of America As Represented By The Secretary Of The Navy Antenna calibration method and system
US20080036648A1 (en) * 2006-08-10 2008-02-14 Northrop Grumman Systems Corporation Method and System for Calibrating ESA, Distributed Waveform Generator and Receivers in Sub-Arrays
CN102412441A (en) * 2011-09-02 2012-04-11 中国电子科技集团公司第十研究所 Phased array antenna vector average calibration method
US20210021033A1 (en) * 2018-03-29 2021-01-21 Agency For Science, Technology And Research Beam steerable antenna system, method of manufacturing thereof and method of beam steering an antenna array
CN109521490A (en) * 2018-11-12 2019-03-26 北京航空航天大学 A kind of millimeter wave array radiation meter front end of achievable analog beam figuration
US20210050667A1 (en) * 2019-08-13 2021-02-18 The Boeing Company Method to Optimize Beams for Phased Array Antennas
CN112073097A (en) * 2020-08-20 2020-12-11 东南大学 Self-calibration device for hybrid beam forming receiving array
CN112259964A (en) * 2020-09-28 2021-01-22 西南电子技术研究所(中国电子科技集团公司第十研究所) Multi-subarray phased array antenna beam control device
CN112909551A (en) * 2021-02-24 2021-06-04 重庆两江卫星移动通信有限公司 Wave beam control system of communication-in-moving phased array antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姚志文;: "一种弹载相控阵天线波束控制系统设计", 航空兵器, no. 06, pages 13 - 14 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116736235A (en) * 2023-06-14 2023-09-12 中国科学院空天信息创新研究院 A large-scale spaceborne SAR phased array antenna control system and method
CN116736235B (en) * 2023-06-14 2024-01-26 中国科学院空天信息创新研究院 Large-scale satellite-borne SAR phased array antenna control system and method
CN117134792A (en) * 2023-10-26 2023-11-28 南京纳特通信电子有限公司 K-band phased array wave control system based on FPGA control

Also Published As

Publication number Publication date
CN115296704B (en) 2024-07-12

Similar Documents

Publication Publication Date Title
CA2630379C (en) Frequency scanning antenna
CN108417999B (en) Multimode phased array antenna and method for broadening its beam
CN115296704B (en) Distributed millimeter wave active phased array antenna control system and control method
CN111983617A (en) Dual-polarization phased array weather radar
CN111624565B (en) Multi-area joint beam tracking method for large conformal phased array system
CN102593589A (en) Single pulse wide angle electric scanning reflective array antenna
CN111276823B (en) A low-side lobe scanning method for a low-cost four-dimensional transmissive array antenna
CN113014294B (en) Two-dimensional phased array microwave front end calibration network and method
CN102856667A (en) Multi-beam antenna system
Casini et al. A novel design method for Blass matrix beam-forming networks
JP3461911B2 (en) Phased array antenna
CN113253210B (en) An all-digital frequency-shifted phase-shifted large instantaneous broadband phased array and method
CN117099320A (en) Method and apparatus for a hybrid delay/phase shifter structure for beam-skew mitigation in a broadband antenna array
CN112103666B (en) A car anti-collision radar array antenna
CN110661100B (en) Phased array antenna beam control device and method
KR20190036231A (en) Antenna apparatus including phase shifter
JP2002076743A (en) Phased array antenna device
EP1932212B1 (en) Frequency scanning antenna
CN110649397B (en) Reconfigurable planar reflective array antenna of integrated reflective array
JP3832234B2 (en) ANTENNA DEVICE AND METHOD FOR MEASURING THE ANTENNA
CN112394328B (en) A beam control method and SAR system
WO2019214256A1 (en) Radiation pattern calculation method and device for beam-pointing adjustable antenna
TW202431715A (en) Power planes for a radio frequency (rf) metamaterial antenna
CN116315593A (en) Antenna, radar sensing system and electronic equipment
CN112421243A (en) Wireless ad hoc network antenna array with dual modes of omnidirectional beam and directional self-tracking beam

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No. 9 Mozhou East Road, Nanjing City, Jiangsu Province, 211111

Patentee after: Zijinshan Laboratory

Country or region after: China

Address before: No. 9 Mozhou East Road, Jiangning Economic Development Zone, Jiangning District, Nanjing City, Jiangsu Province

Patentee before: Purple Mountain Laboratories

Country or region before: China