CN115292873A - 一种模拟埋地管道在干扰电流条件下的氢脆试验方法 - Google Patents

一种模拟埋地管道在干扰电流条件下的氢脆试验方法 Download PDF

Info

Publication number
CN115292873A
CN115292873A CN202210612311.8A CN202210612311A CN115292873A CN 115292873 A CN115292873 A CN 115292873A CN 202210612311 A CN202210612311 A CN 202210612311A CN 115292873 A CN115292873 A CN 115292873A
Authority
CN
China
Prior art keywords
hydrogen embrittlement
current
sensitivity coefficient
interference current
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210612311.8A
Other languages
English (en)
Inventor
刘青松
胡上茂
彭翔
贾磊
吴瀛
刘刚
孙勇
廖民传
邓军
胡泰山
陈伟
张义
杨育丰
吴泳聪
冯瑞发
梅琪
刘浩
姚成
祁汭晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China South Power Grid International Co ltd
Maintenance and Test Center of Extra High Voltage Power Transmission Co
Original Assignee
China South Power Grid International Co ltd
Maintenance and Test Center of Extra High Voltage Power Transmission Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China South Power Grid International Co ltd, Maintenance and Test Center of Extra High Voltage Power Transmission Co filed Critical China South Power Grid International Co ltd
Priority to CN202210612311.8A priority Critical patent/CN115292873A/zh
Publication of CN115292873A publication Critical patent/CN115292873A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供一种模拟埋地管道在干扰电流条件下的氢脆试验方法,包括获取选用目标管道材质制作的标准拉伸试样在空气中拉伸的断面收缩率
Figure DDA0003673340150000011
对使用目标管道材质制作的标准拉伸试样进行涂封处理,仅暴露其中间区域;获取经上述涂封处理的标准拉伸试样在目标管道环境土壤模拟溶液中被施加干扰电流情况下,其它拉伸条件与步骤S1相同的断面收缩率
Figure DDA0003673340150000012
根据断面收缩率
Figure DDA0003673340150000013
Figure DDA0003673340150000014
计算试样氢脆敏感系数FH;根据预设氢脆敏感系数FH0和氢脆敏感系数FH,评价目标管道氢脆敏感性和安全风险。本发明方法准确模拟了埋地管道在干扰电流下发生氢脆的现场工况,提出以断面收缩率为影响参数的氢脆敏感系数来评价埋地管道氢脆性能,获取干扰电流安全区间。

Description

一种模拟埋地管道在干扰电流条件下的氢脆试验方法
技术领域
本发明涉及埋地金属管道材料氢脆敏感性评估的技术领域,尤其涉及一种模拟埋地管道在干扰电流条件下的氢脆试验方法。
背景技术
近年来,随着直流输电工程和油气输送管道工程建设的不断增加,直流输电线路与输油气管道接近或交叉的情况时有发生,尤其在人口密集且较为发达的地区,为了减少占用的土地面积,直流输电线路常常与输油气管道共用走廊,这样使得直流输电工程对附近埋地金属管道产生的电磁干扰影响日益突出,特别是当直流输电接地极单极运行时,会在管道上产生高幅值的干扰电位。而高压直流输电接地极放电对输油气管道造成的高电压不但会产生人身和设备安全风险,而且还会导致输油气管道氢脆的重大风险。
在接地极大电流放电条件下,输油气管道材料的电位大幅负向偏移,导致管道材料极化电位过负,金属表面发生析氢反应,产生大量吸附氢原子。以往的研究表明,氢原子可以扩散进入材料内部并累积和迁移,当达到特定的浓度后,将会造成材料发生不同程度的损伤,包括钢中的白点、氢鼓泡和氢诱发裂纹、氢致塑性损失、氢致滞后开裂(简称氢致开裂)等。
综述,输油气管道在过负电位的干扰环境下,管线钢的安全运行受到极大威胁,而高压直流输电系统对埋地管道的干扰具有环境影响因素复杂、干扰电压高、呈现间歇性和时间不确定性等特点,对埋地管道氢脆的影响规律尚不清楚,亟须对埋地管道在直流输电线路干扰下的氢脆影响和安全风险展开研究。
发明内容
本发明的目的在于克服现有技术的不足,提出一种模拟埋地管道在干扰电流条件下的氢脆试验方法,为研究埋地油气输送管道在直流输电线路干扰下的氢脆影响,提供一种有效试验方法。
本发明提供一种模拟埋地管道在干扰电流条件下的氢脆试验方法,所述方法包括:
S1,获取选用目标管道材质制作的标准拉伸试样在空气中拉伸的断面收缩率
Figure BDA0003673340130000021
S2,对使用目标管道材质制作的标准拉伸试样进行涂封处理,仅暴露所述标准拉伸试样的中间区域;
S3,获取经上述涂封处理的标准拉伸试样在模拟目标管道周围环境土壤的土壤模拟溶液中被施加干扰电流情况下,其它拉伸条件与步骤S1中相同的断面收缩率
Figure BDA0003673340130000022
S4,根据断面收缩率
Figure BDA0003673340130000023
Figure BDA0003673340130000024
计算试样的氢脆敏感系数FH
S5,根据目标管道服役工况和设计要求,确定目标管道许用性能临界值,根据许用性能临界值确定预设氢脆敏感系数FH0
S6,根据预设氢脆敏感系数FH0和氢脆敏感系数FH,评价目标管道的氢脆敏感性和安全风险,确定干扰电流安全范围。
优选地,所述方法还包括:
在S3步骤中,分别改变所述干扰电流的电流密度、电流类型和电流频率,分别获取不同干扰电流密度、电流频率和电流类型下的试样的断面收缩率
Figure BDA00036733401300000212
根据断面收缩率
Figure BDA0003673340130000025
Figure BDA0003673340130000026
分别计算不同干扰电流密度下的试样的氢脆敏感系数
Figure BDA0003673340130000027
不同干扰电流频率下的试样的氢脆敏感系数
Figure BDA0003673340130000028
和不同干扰电流类型下的试样的氢脆敏感系数
Figure BDA0003673340130000029
根据预设氢脆敏感系数FH0和氢脆敏感系数
Figure BDA00036733401300000210
分别评价目标管道在不同干扰电流密度、电流频率和电流类型下的氢脆敏感性和安全风险,并分别得到目标管道的干扰电流密度安全区间、干扰电流频率安全区间和安全干扰电流类型。
优选地,氢脆敏感系数为:
Figure BDA00036733401300000211
进一步优选地,进行所述涂封处理后,试样暴露的中间区域面积为0.5~2cm2
更进一步优选地,所述干扰电流的电流密度范围为0-200mA/cm2
更进一步优选地,所述拉伸为慢应变速率拉伸。
更进一步优选地,拉伸时应变速率为10-5~10-7s-1
优选地,所述干扰电流安全范围为小于所述预设氢脆敏感系数所对应干扰电流值的数值区间。
优选地,在获取试样在空气中拉伸的断面收缩率
Figure BDA0003673340130000031
和在土壤模拟溶液中被施加干扰电流情况下拉伸的断面收缩率
Figure BDA0003673340130000032
时,均进行两组以上的平行试验。
优选地,根据预设氢脆敏感系数FH0和氢脆敏感系数FH,评价目标管道的氢脆敏感性,包括:
当试样的氢脆敏感系数FH大于预设氢脆敏感系数FH0时,确定所述目标管道的氢脆敏感性为高,表示会因氢脆而发生安全风险;
当试样的氢脆敏感系数FH小于等于预设氢脆敏感系数FH0时,确定所述目标管道的氢脆敏感性为低,表示不会因氢脆而发生安全风险。
从以上技术方案可以看出,本发明具有以下优点:
本发明提供了一种模拟埋地管道在干扰电流条件下的氢脆试验方法,通过在土壤模拟溶液中向使用目标管道材质制作的标准拉伸试样施加干扰电流的方式,准确模拟了埋地管道在干扰电流条件下发生氢脆的现场工况条件,提出仅以断面收缩率为影响参数的氢脆敏感系数来评价埋地管道的氢脆性能,并以预设氢脆敏感系数为判断基准来评价埋地管道在直流输电线路干扰下的氢脆安全性,为研究埋地油气输送管道材料在直流输电线路干扰下的氢脆影响、评价目标管道安全风险、确定干扰电流安全区间,提供了一种针对性的有效试验方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施方式提供的一种模拟埋地管道在干扰电流条件下的氢脆试验方法的流程示意图;
图2为本发明实施方式提供的X80管线钢标准拉伸试样图;
图3为以图2为试样进行本发明实施方式试验的应力应变曲线;
附图标记说明:拉伸棒1,螺纹2。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本申请的描述中,需要说明的是,术语“上”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
除非另有明确的规定和限定,术语“连接”、“固定”、“设置”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,可以是直接相连,也可以通过中间媒介间接相连,可以是两个部件内部的连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本发明实施例提供了一种模拟埋地管道在干扰电流条件下的氢脆试验方法,请参阅图1~图3。
请参阅图1,是本发明实施例提供的一种模拟埋地管道在干扰电流条件下的氢脆试验方法的流程示意图,包括:
S1,获取选用目标管道材质制作的标准拉伸试样在空气中拉伸的断面收缩率
Figure BDA0003673340130000041
S2,对使用目标管道材质制作的标准拉伸试样进行涂封处理,仅暴露所述标准拉伸试样的中间区域;
S3,获取经上述涂封处理的标准拉伸试样在模拟目标管道周围环境土壤的土壤模拟溶液中被施加干扰电流情况下,其它拉伸条件与步骤S1中相同的断面收缩率
Figure BDA0003673340130000042
S4,根据断面收缩率
Figure BDA0003673340130000043
Figure BDA0003673340130000044
计算试样的氢脆敏感系数FH
S5,根据目标管道服役工况和设计要求,确定目标管道许用性能临界值,根据许用性能临界值确定预设氢脆敏感系数FH0
S6,根据预设氢脆敏感系数FH0和氢脆敏感系数FH,评价目标管道的氢脆敏感性和安全风险,确定干扰电流安全范围。
对标准拉伸试样涂封处理,以减小所述标准拉伸试样在模拟溶液中的暴露面积,这样使用较小输入电流,即可实现对试样表面电流密度的较大范围的调整,有利于试验的充分开展。在一具体的实施方式中,对标准拉伸试样进行涂封处理时,采用绝缘密封层材料将试样中间部分露出一定的暴露区域,具体可用硅胶、环氧树脂、石蜡等,将上述暴露区域浸没在模拟目标管道周围土壤的土壤模拟溶液中。
具体地,可在目标埋地管道现场获取土壤样本,在测试土壤样本含水率后将土壤样本烘干,然后研磨成细粉状,按照测试结果的含水率加入去离子水配制溶液即可。
具体地,建立干扰电流系统时,将对电极(也叫辅助电极)和经过涂封处理的所述标准拉伸试样浸没在土壤模拟溶液中,通过导线将上述试样连接到恒电流源负极,并将所述对电极通过导线连接到恒电流源正极,使标准拉伸试样、恒电流源、对电极和土壤模拟溶液串联形成完整闭合电路,开启所述恒电流源可以提供恒定电流,调节所述恒电流源即可调节干扰电流的大小,同时在标准拉伸试样和所述恒电流源之间串联一个时间控制器,通过调节所述时间控制器即可实现干扰电路的定时切断与闭合,从而控制所施加干扰电流的频率。
在一具体的实施方式中,选用X80管线钢制备成如图2所示的拉伸棒1,尺寸为φ5mm×25mm,拉伸棒1两端设置有M10mm×16mm的螺纹2,通过将两端螺纹2分别固定在拉伸设备的上下夹紧头上,从而可以将所述拉伸设备提供的拉伸载荷传递到拉伸棒1上,将拉伸棒1穿过装有土壤模拟溶液的土壤介质箱,即可实现埋地管道土壤环境的模拟。可通过调节干扰电路中的时间控制器,设置干扰电流施加频率为每隔3h施加1次,每次施加干扰时间为1h,调节恒电流源使标准拉伸试样暴露区域的电流密度为5mA/cm2,设定拉升设备的拉伸应变速率后,在土壤模拟溶液和干扰电流作用下向拉伸棒1施加拉伸载荷直至试样断裂,然后将拉断的拉伸棒1从所述拉伸设备夹紧头上取下,用去离子水清洗和吹风机干燥后,通过游标卡尺测试其断面收缩率。
本发明实施例提供的一种模拟埋地管道在干扰电流条件下的氢脆试验方法,通过分别获取标准拉伸试样在空气中拉伸的断面收缩率
Figure BDA0003673340130000061
和在土壤模拟溶液中被施加干扰电流情况下以相同速率拉伸的断面收缩率
Figure BDA0003673340130000062
,根据断面收缩率
Figure BDA0003673340130000063
Figure BDA0003673340130000064
,计算试样的氢脆敏感系数FH,根据预设氢脆敏感系数FH0和氢脆敏感系数FH,评价目标管道的氢脆敏感性和安全风险。本发明试验方法通过在土壤模拟溶液中向使用目标管道材质制作的标准拉伸试样施加干扰电流的方式,准确模拟了埋地管道在干扰电流条件下发生氢脆的现场工况条件,提出仅以断面收缩率为影响参数的氢脆敏感系数来评价埋地管道的氢脆敏感性能,并以预设氢脆敏感系数为判断基准来评价埋地管道在直流输电线路干扰下的氢脆安全性,为研究埋地油气输送管道材料在直流输电线路干扰下的氢脆影响和氢脆安全风险,提供了一种针对性的有效试验方法。
优选地,所述方法还包括:
在S3步骤中,分别改变所述干扰电流的电流密度、电流类型和电流频率,分别获取不同干扰电流密度、电流频率和电流类型下的试样的断面收缩率
Figure BDA0003673340130000065
根据断面收缩率
Figure BDA0003673340130000066
Figure BDA0003673340130000067
,分别计算不同干扰电流密度下的试样的氢脆敏感系数
Figure BDA0003673340130000068
、不同干扰电流频率下的试样的氢脆敏感系数
Figure BDA0003673340130000069
和不同干扰电流类型下的试样的氢脆敏感系数
Figure BDA00036733401300000610
根据预设氢脆敏感系数FH0和氢脆敏感系数
Figure BDA00036733401300000611
,分别评价目标管道在不同干扰电流密度、电流频率和电流类型下的氢脆敏感性和安全风险,并分别得到目标管道的干扰电流密度安全区间、干扰电流频率安全区间和安全干扰电流类型。
需要说明的是,干扰电流类型有恒定电流、脉冲电流、交变电流(正弦波、锯齿波等),具体可通过使用不同电流源装置而获得。在试样暴露面积一定的情况下,改变恒电流源输出电流,即可改变试样表面的电流密度。通过将干扰电路中的时间控制器设定不同的通电时宽和断电时宽,即可改变干扰电流频率。
在一具体的实施方式中,以仅改变干扰电流密度为例,通过恒电流源输出脉冲方波电流,并通过设置时间控制器使干扰电流施加频率为每隔3h施加1次,每次施加干扰时间为1h,然后调节恒电流源输出电流,分别以干扰电流密度为5mA/cm2、10mA/cm2、20mA/cm2、50mA/cm2、100mA/cm2……其它拉伸条件参数不变情况下分别进行拉伸试验,如所设定的拉力值及应变速率等不变,分别获取到试样相应的断面收缩率为
Figure BDA0003673340130000071
,在空气中进行拉伸试验获取断面收缩率
Figure BDA0003673340130000072
,根据断面收缩率
Figure BDA0003673340130000073
Figure BDA0003673340130000074
Figure BDA0003673340130000075
,分别计算氢脆敏感系数为
Figure BDA0003673340130000076
,根据各氢脆敏感系数可以评价目标管道在相应干扰电流密度下的氢脆敏感性,表明管道的材料性能降低程度,然后基于预设氢脆敏感系数FH0,分别判断目标管道在模拟干扰工况下的氢脆安全风险,直至得到与预设氢脆敏感系数FH0相同的氢脆敏感系数所对应的干扰电流密度,从而可分析电流密度对埋地管道氢脆敏感性的影响。根据目标管道实际服役现场工况和设计要求而设定的预设氢脆敏感系数FH0,通常是目标管道许用性能临界值所对应的氢脆敏感系数,这样根据试验确定对应预设氢脆敏感系数FH0的干扰电流密度,进而小于对应预设氢脆敏感系数FH0的干扰电流的密度区间即为目标管道的干扰电流密度安全区间。
优选地,氢脆敏感系数:
Figure BDA0003673340130000077
进一步优选地,进行所述涂封处理后,所述标准拉伸试样暴露的中间区域面积为0.5~2cm2。将试样的暴露面积缩小有利于在使用较小干扰电流的情况下,即可实现对试样表面电流密度的较大范围的调整,有利于试验的充分开展。
更进一步优选地,所述干扰电流的电流密度范围为0-200mA/cm2,此电流密度范围接近现场干扰电流实际情况,在此电流密度范围内进行试验,可避免过大电流密度使材料性能明显恶化。
更进一步优选地,所述拉伸为慢应变速率拉伸,以利于施加干扰电流时,让试样表面有足够的时间发生析氢反应,使氢扩散进试样材料分子内,从而改变试样的拉伸性能,以利于评价氢脆性能的准确性。
更进一步优选地,拉伸时应变速率为10-5~10-7s-1
优选地,所述干扰电流安全范围为小于所述预设氢脆敏感系数所对应干扰电流值的数值区间。
优选地,在获取试样在空气中拉伸的断面收缩率
Figure BDA0003673340130000082
和在土壤模拟溶液中被施加干扰电流情况下拉伸的断面收缩率
Figure BDA0003673340130000083
时,均进行两组以上的平行试验,以排除异常数据,确保试验数据的准确性。
在一具体的实施例中,在空气中和在土壤模拟溶液与干扰电流共同作用下分别对试样进行两组慢应变速率拉伸试验,选取西二线沿线广州土壤,干扰电流施加频率为每隔3h施加1次,每次施加干扰时间为1h,干扰电流密度为5mA/cm2,以应变速率10-6s-1对如图2所示的X80管线钢进行试验。试验结果如表1所示,试验应力应变曲线如图3所示,结果表明:与在空气中的拉伸试验相比,X80管线钢在土壤溶液中施加电流干扰下的断面收缩率减小,氢脆敏感系数为28.2%-29.9%。
优选地,根据预设氢脆敏感系数FH0和氢脆敏感系数FH,评价目标管道的氢脆敏感性,包括:
当试样的氢脆敏感系数FH大于预设氢脆敏感系数FH0时,确定所述目标管道的氢脆敏感性为高,表明所述目标管道材料性能降低幅度大,表示会因氢脆而发生安全风险;
当试样的氢脆敏感系数FH小于等于预设氢脆敏感系数FH0时,确定所述目标管道的氢脆敏感性为低,表明所述目标管道材料性能降低幅度小,表示不会因氢脆而发生安全风险。
表1 X80管线钢在空气中和土壤干扰模拟环境下的慢拉伸试验结果对比
Figure BDA0003673340130000081
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种模拟埋地管道在干扰电流条件下的氢脆试验方法,其特征在于,所述方法包括:
S1,获取选用目标管道材质制作的标准拉伸试样在空气中拉伸的断面收缩率
Figure FDA0003673340120000011
S2,对使用目标管道材质制作的标准拉伸试样进行涂封处理,仅暴露所述标准拉伸试样的中间区域;
S3,获取经上述涂封处理的标准拉伸试样在模拟目标管道周围环境土壤的土壤模拟溶液中被施加干扰电流情况下,其它拉伸条件与步骤S1中相同的断面收缩率
Figure FDA0003673340120000012
S4,根据断面收缩率
Figure FDA0003673340120000013
Figure FDA0003673340120000014
计算试样的氢脆敏感系数FH
S5,根据目标管道服役工况和设计要求,确定目标管道许用性能临界值,根据许用性能临界值确定预设氢脆敏感系数FH0
S6,根据预设氢脆敏感系数FH0和氢脆敏感系数FH,评价目标管道的氢脆敏感性和安全风险,确定干扰电流安全范围。
2.根据权利要求1所述的一种模拟埋地管道在干扰电流条件下的氢脆试验方法,其特征在于,所述方法还包括:
在S3步骤中,分别改变所述干扰电流的电流密度、电流类型和电流频率,分别获取不同干扰电流密度、电流频率和电流类型下的试样的断面收缩率
Figure FDA0003673340120000015
根据断面收缩率
Figure FDA0003673340120000016
Figure FDA0003673340120000017
分别计算不同干扰电流密度下的试样的氢脆敏感系数
Figure FDA0003673340120000018
不同干扰电流频率下的试样的氢脆敏感系数
Figure FDA0003673340120000019
和不同干扰电流类型下的试样的氢脆敏感系数
Figure FDA00036733401200000110
根据预设氢脆敏感系数FH0和氢脆敏感系数
Figure FDA00036733401200000111
分别评价目标管道在不同干扰电流密度、电流频率和电流类型下的氢脆敏感性和安全风险,并分别得到目标管道的干扰电流密度安全区间、干扰电流频率安全区间和安全干扰电流类型。
3.根据权利要求1所述的一种模拟埋地管道在干扰电流条件下的氢脆试验方法,其特征在于,氢脆敏感系数:
Figure FDA00036733401200000112
4.根据权利要求3所述的一种模拟埋地管道在干扰电流条件下的氢脆试验方法,其特征在于:进行所述涂封处理后,试样暴露的中间区域面积为0.5~2cm2
5.根据权利要求4所述的一种模拟埋地管道在干扰电流条件下的氢脆试验方法,其特征在于:所述干扰电流的电流密度范围为0-200mA/cm2
6.根据权利要求5所述的一种模拟埋地管道在干扰电流条件下的氢脆试验方法,其特征在于:所述拉伸为慢应变速率拉伸。
7.根据权利要求6所述的一种模拟埋地管道在干扰电流条件下的氢脆试验方法,其特征在于:拉伸时应变速率为10-5~10-7s-1
8.根据权利要求1所述的一种模拟埋地管道在干扰电流条件下的氢脆试验方法,其特征在于:所述干扰电流安全范围为小于所述预设氢脆敏感系数所对应干扰电流值的数值区间。
9.根据权利要求1所述的一种模拟埋地管道在干扰电流条件下的氢脆试验方法,其特征在于:在获取试样在空气中拉伸的断面收缩率
Figure FDA0003673340120000021
和在土壤模拟溶液中被施加干扰电流情况下拉伸的断面收缩率
Figure FDA0003673340120000022
时,均进行两组以上的平行试验。
10.根据权利要求1所述的一种模拟埋地管道在干扰电流条件下的氢脆试验方法,其特征在于,根据预设氢脆敏感系数FH0和氢脆敏感系数FH,评价目标管道的氢脆敏感性,包括:
当试样的氢脆敏感系数FH大于预设氢脆敏感系数FH0时,确定所述目标管道的氢脆敏感性为高,表示会因氢脆而发生安全风险;
当试样的氢脆敏感系数FH小于等于预设氢脆敏感系数FH0时,确定所述目标管道的氢脆敏感性为低,表示不会因氢脆而发生安全风险。
CN202210612311.8A 2022-05-31 2022-05-31 一种模拟埋地管道在干扰电流条件下的氢脆试验方法 Pending CN115292873A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210612311.8A CN115292873A (zh) 2022-05-31 2022-05-31 一种模拟埋地管道在干扰电流条件下的氢脆试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210612311.8A CN115292873A (zh) 2022-05-31 2022-05-31 一种模拟埋地管道在干扰电流条件下的氢脆试验方法

Publications (1)

Publication Number Publication Date
CN115292873A true CN115292873A (zh) 2022-11-04

Family

ID=83820218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210612311.8A Pending CN115292873A (zh) 2022-05-31 2022-05-31 一种模拟埋地管道在干扰电流条件下的氢脆试验方法

Country Status (1)

Country Link
CN (1) CN115292873A (zh)

Similar Documents

Publication Publication Date Title
Kordkheili et al. Determining the probability of flashover occurrence in composite insulators by using leakage current harmonic components
US20200241081A1 (en) Ground-wall insulation aging monitoring and locating method for converter transformer
CN107656160A (zh) 绞合式碳纤维导线老化特性的试验装置及分析方法
Souza et al. Experimental investigation of corona onset in contaminated polymer surfaces
Haddad et al. Evaluation of the aging process of composite insulator based on surface charaterisation techniques and electrical method
Kunicki et al. Analysis on partial discharges variability in mineral oil under long-term AC voltage
CN115292873A (zh) 一种模拟埋地管道在干扰电流条件下的氢脆试验方法
Witos et al. Calibration and laboratory testing of computer measuring system 8AE-PD dedicated for analysis of acoustic emission signals generated by partial discharges within oil power transformers
CN115017694A (zh) 一种模拟在干扰电流和恒拉载荷下埋地管道氢脆试验方法
Glass et al. Simulation and experimental results of interdigital capacitor (IDC) sensors to monitor insulation degradation of cables
CN115014955B (zh) 一种模拟在干扰电流和阴极保护下埋地管道氢脆试验方法
JP2002296213A (ja) 腐食評価方法及びデータベース
Tang et al. Electrochemical studies on the performance of zinc used for alternating current mitigation
CN115017695B (zh) 一种确定埋地管道干扰电流安全区间的氢脆试验方法
Hakami et al. Effects of corona discharges on silicone rubber samples under severe weather conditions
CN112668145A (zh) 基于fds和指数衰减模型的变压器油纸绝缘水分评估方法
CN111562441A (zh) 一种非接触式原状污染土交流阻抗谱测试装置及方法
Amiri et al. Effect of defective RTV coatings on insulation performance of porcelain insulators
JP2014074593A (ja) 電力ケーブルの劣化判定方法
DE102004055167B3 (de) Verfahren und Anordnung zur Prüfung des Isolationszustandes eines Flüssiggastanks
Javadi et al. DETERMINATION OF ELECTRIC FIELD AT INCEPTION BASED UPONBCURRENT-VOLTAGE CHARACTERISTICS OF AC CORONA IN ROD-PLANE GAPS
CN211014516U (zh) 一种酸性环境下高频脉冲测试聚酰亚胺耐电晕寿命的装置
Hong et al. Leakage current analysis for predicting flashover in distribution network
Azlan et al. Investigating the effects of corrosion parameters on the surface resistivity of transformer’s insulating paper using a two-level factorial design
Khan et al. Polymeric Insulant Characterization via Partial Discharge Measurement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination