CN115287594B - 一种双元强化热障涂层及其制备方法和应用 - Google Patents

一种双元强化热障涂层及其制备方法和应用 Download PDF

Info

Publication number
CN115287594B
CN115287594B CN202211004852.9A CN202211004852A CN115287594B CN 115287594 B CN115287594 B CN 115287594B CN 202211004852 A CN202211004852 A CN 202211004852A CN 115287594 B CN115287594 B CN 115287594B
Authority
CN
China
Prior art keywords
thermal barrier
barrier coating
binary
coating
ysz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211004852.9A
Other languages
English (en)
Other versions
CN115287594A (zh
Inventor
张小锋
王梓帆
邓子谦
毛杰
邓春明
邓畅光
刘敏
周克崧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of New Materials of Guangdong Academy of Sciences
Original Assignee
Institute of New Materials of Guangdong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of New Materials of Guangdong Academy of Sciences filed Critical Institute of New Materials of Guangdong Academy of Sciences
Priority to CN202211004852.9A priority Critical patent/CN115287594B/zh
Publication of CN115287594A publication Critical patent/CN115287594A/zh
Application granted granted Critical
Publication of CN115287594B publication Critical patent/CN115287594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5893Mixing of deposited material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种双元强化热障涂层及其制备方法和应用,涉及涂层防护技术领域。该双元强化热障涂层的制备方法包括在基体的表面沉积YSZ热障涂层,接着在YSZ热障涂层的表面沉积Al‑Y双元薄膜,然后通过真空热处理进行原位反应形成包含有α‑Al2O3和Y3Al5O12的Al‑Y双元薄膜原位反应强化层。本发明通过形成两种强化层,一方面可有效提高涂层的耐腐蚀性能;另一方面,通过原位反应在YSZ表面及间隙处由于互扩散形成钉扎效果,能有效提升冲刷性能。由该方法制备的双元强化热障涂层可以广泛应用于航空、航天、船舶、汽车中作为金属部件涂层。

Description

一种双元强化热障涂层及其制备方法和应用
技术领域
本发明涉及涂层防护技术领域,具体而言,涉及一种双元强化热障涂层及其制备方法和应用。
背景技术
热障涂层广泛应用于航空发动机及燃气轮机热端部件,采用金属、陶瓷复合的方法保护热端部件,以此提高航空发动机推重比及涡轮前进口温度,不仅可以提高发动机的燃油效率,极大地延长发动机的服役寿命,还能够防止高温合金基体过早发生热腐蚀。
热障涂层制备技术主要有大气等离子喷涂(APS)、电子束-物理气相沉积(EB-PVD),由于结构的差异各有优缺点。近些年发展起来的等离子喷涂-物理气相沉积(PS-PVD)可结合传统制造技术的优点广泛应用于金属部件表面。可以提供给基体较好的隔热性能以及热震性能,可实现非视线沉积,但是由等离子喷涂-物理气相沉积(PS-PVD)技术制备的热障涂层为典型的羽毛柱状结构,其间隙会对外界熔盐提供腐蚀通道,当服役在高温环境下时,熔盐会顺着涂层间隙进入涂层内,这会加速热障涂层的热腐蚀,由此造成热障涂层失效。并且飞机在低空或沙漠多尘地域服役时,外界空气中悬浮的许多尘埃硬质小颗粒会进入发动机,此后在惯性力作用下偏离气体流道而撞向热端部件表面涂层,对涂层产生冲刷效应。此外发动机封严涂层磨损失效剥落的微小碎屑以及燃烧形成的碳颗粒卷进高速射流中对发动机热端部件表面涂层同样会造成很大的高温冲刷作用。在上述外部硬颗粒和高速喷射下,热障涂层的过早剥落失效是不可避免的,因此将造成涂层的使用寿命降低。因此,沙尘冲刷引起的热障涂层过早剥落失效不容忽视。
因此,要进一步提高热障涂层耐腐蚀性能和冲刷性能,必须对其进行改进,以期适应于航空发动机部件的恶劣工作环境。
鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种双元强化热障涂层及其制备方法和应用,以改善改善热障涂层的服役性能,延长涂层使用寿命。
本发明是这样实现的:
第一方面,本发明提供一种双元强化热障涂层的制备方法,其包括在基体的表面沉积YSZ热障涂层,接着在所述YSZ热障涂层的表面沉积Al-Y双元薄膜,然后通过真空热处理进行原位反应形成包含有α-Al2O3和Y3Al5O12的Al-Y双元薄膜原位反应强化层。
第二方面,本发明提供一种双元强化热障涂层,其是采用如前述实施方式任一项所述的双元强化热障涂层的制备方法制备而成。
第三方面,本发明提供如前述实施方式所述的双元强化热障涂层在航空、航天、船舶、汽车中制备金属部件涂层的应用。
第四方面,本发明提供一种航空发动机,其包括如前述实施方式所述的双元强化热障涂层。
本发明具有以下有益效果:
本申请提供的双元强化热障涂层的制备方法通过在YSZ热障涂层的表面沉积Al-Y双元薄膜,最后通过真空热处理在涂层表面形成原位反应强化层,包括α-Al2O3、Y3Al5O12。在特定的高温下YSZ与Al,Y反应得到Al2O3、Y3Al5O12。一方面,稀土元素Y的加入可以降低Al-Y合金液的表面张力,从而提高双元组分的润湿性,使其更好的渗入YSZ间隙,也可起到细化晶粒的效果,使Al柱状晶转变为等轴晶,提高强度和硬度,并具有一定的塑性和韧性,另一方面在熔盐腐蚀过程中,由于Y的补充,可以弥补腐蚀过程中YSZ中Y的缺失,进而始终保持YSZ的相稳定;原位反应形成的α-Al2O3相具有致密结构,又具有低氧扩散率以及高物理、化学稳定性能,具有封孔作用,可有效提高涂层的抗高温氧化性能及耐腐蚀性能;原位反应所得Y3Al5O12属立方晶系,具有石榴石结构,耐高温且高温下有较高强度,也可以作为高温阻氧层来提高涂层的抗高温氧化能力,同时Y3Al5O12在高温下具有优异的抗熔盐渗透腐蚀能力,存在于YSZ涂层间隙处以此阻碍熔盐侵蚀。本发明通过形成两种强化层,一方面可有效提高涂层的耐腐蚀性能;另一方面,通过原位反应在YSZ表面及间隙处由于互扩散形成钉扎效果,能有效提升冲刷性能。由该方法制备的双元强化热障涂层可以广泛应用于航空、航天、船舶、汽车中作为金属部件涂层。尤其适用于长期服役于高温腐蚀环境及沙尘侵蚀环境下的发动机金属部件。因此本发明提供的双元强化热障涂层可更好的抵抗熔盐腐蚀及砂粒冲刷,由此提高发动机的寿命,在航空航天领域具有重大的应用价值。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1中在YSZ涂层表面沉积Al-Y双元薄膜后的截面电子显微镜图;
图2为实施例1中真空热处理之后制备得到的双元强化热障涂层截面电子显微镜图,其中,1表示YSZ热障涂层;2表示Al-Y双元薄膜原位反应强化层;
图3为实施例1中真空热处理之后制备得到的双元强化热障涂层截面钉扎结构电子显微镜图;
图4为本申请实施例1和对比例1提供的热障涂层在涂盐腐蚀实验后的截面电镜图,其中,(a)为对比例1的截面电镜图,(b)为实施例1的截面电镜图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明提供一种双元强化热障涂层的制备方法,其包括在基体的表面沉积YSZ热障涂层,接着在YSZ热障涂层的表面沉积Al-Y双元薄膜,然后通过真空热处理进行原位反应形成包含有α-Al2O3和Y3Al5O12的Al-Y双元薄膜原位反应强化层。
具体来说,包括如下步骤:
(1)基体预处理。
对基体依次进行煤油、丙酮、乙醇超声清洗和烘干,再进行喷砂处理并用压缩空气清除表面残留的砂粒。喷砂处理时所用的砂的目数为40-50目。
本申请中,基体包括316不锈钢基体和高温合金基体中的至少一种。
(2)沉积YSZ热障涂层。
先于基体表面采用等离子喷涂-物理气相沉积方法(PS-PVD)沉积粘接层,对粘接层进行打磨,磨至光滑后再260-300目砂对其进行喷砂处理并采用压缩空气清除表面残留砂粒,最后用乙醇清洗表面以待喷涂;接着在粘接层的表面采用等离子喷涂-物理气相沉积方法沉积陶瓷层,粘接层和陶瓷层共同作为YSZ热障涂层。在YSZ热障涂层沉积完成后,将沉积有YSZ热障涂层的基体进行清洗并置于60-80℃下烘烤5h以上。
其中,粘接层的成分包括MCrAlY;其中,MCrAlYX中的M为Ni和Co中的至少一种;陶瓷层的成分包括6-8wt%Y2O3稳定ZrO2。优选地,粘接层的成分包括NiCrAlY;陶瓷层的成分包括7wt%Y2O3稳定ZrO2
(3)沉积Al-Y双元薄膜。
采用电弧离子镀或磁控溅射在YSZ热障涂层的表面沉积厚度为5-10μm的Al-Y双元薄膜。
电弧离子镀的工艺条件包括:炉内压力抽至7×10-3Pa以下,氩离子辉光清洗30-50min,偏压控制在120-150V,靶电流控制在60-80A,于250-350℃开始镀膜,共沉积2-4h。
(4)真空热处理。
对沉积有Al-Y双元薄膜的基体进行真空热处理,真空热处理过程中的工艺条件包括:先于600-670℃保温1-2h,再于845-880℃保温1-2h,最后于900-960℃保温1-2h。
优选地,在真空热处理过程中升温速率控制在5-15℃/min;压强保持在1.5×10-2-2.5×10-2Pa。
真空热处理的方法可以使Al-Y双元薄膜形成原位反应,在高温条件下YSZ与Al,Y反应得到Al2O3、Y3Al5O12,一方面,稀土元素Y的加入可以降低Al-Y合金液的表面张力,从而提高双元组分的润湿性,使其更好的渗入YSZ间隙,也可起到细化晶粒的效果,使Al柱状晶转变为等轴晶,提高强度和硬度,并具有一定的塑性和韧性,另一方面在熔盐腐蚀过程中,由于Y的补充,可以弥补腐蚀过程中YSZ中Y的缺失,进而始终保持YSZ的相稳定;原位反应形成的α-Al2O3相具有致密结构,又具有低氧扩散率以及高物理、化学稳定性能,具有封孔作用,可有效提高涂层的抗高温氧化性能及耐腐蚀性能;原位反应所得Y3Al5O12属立方晶系,具有石榴石结构,耐高温且高温下有较高强度,也可以作为高温阻氧层来提高涂层的抗高温氧化能力,同时Y3Al5O12在高温下具有优异的抗熔盐渗透腐蚀能力,存在于YSZ涂层间隙处以此阻碍熔盐侵蚀。本发明通过形成两种强化层,一方面可有效提高涂层的耐腐蚀性能;另一方面,通过原位反应在YSZ表面及间隙处由于互扩散形成钉扎效果,能有效提升冲刷性能。由该方法制备的热障涂层可以广泛应用于航空、航天、船舶、汽车中作为金属部件涂层。尤其适用于长期服役于高温腐蚀环境及沙尘侵蚀环境下的发动机金属部件。
此外,本发明还提供一种航空发动机,其包括上述双元强化热障涂层。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供了一种双元强化热障涂层,其制备方法包括:
对高温合金基体进行预处理,依次进行煤油、丙酮、乙醇超声清洗和烘干,再用46目砂进行喷砂处理并用压缩空气清除表面残留的砂粒。通过等离子喷涂-物理气相沉积(PS-PVD)在高温合金基体表面喷涂粘结层NiCrAlY。再通过打磨粘结层至光滑后,采用等离子喷涂-物理气相沉积(PS-PVD)在粘结层表面喷涂陶瓷层7wt%Y2O3稳定ZrO2。用酒精清洗制备好的YSZ涂层表面,放入70℃烘箱内5h以上,再通过电弧离子镀在YSZ涂层表面沉积厚度为7μm的Al-Y双元薄膜(请参阅图1),其中Y的掺杂量为7%,其中炉内压力抽至7×10-3Pa,氩离子辉光清洗30min,偏压控制在130V,靶电流控制在70A,于300℃下开始镀膜,共沉积3h。最后放入真空热处理炉内进行真空热处理形成含有α-Al2O3和Y3Al5O12的Al-Y双元薄膜原位反应强化层,工艺参数包括:先于645℃保温2h,再于850℃保温2h,最后于950℃保温2h,即得双元强化热障涂层(请参阅图2和图3)。
从图1可以看出,柱状晶表面被Al-Y双元薄膜完全覆盖,柱状晶间隙被少量填充,YSZ表面形成致密连续的Al-Y双元薄膜。
从图2和图3可以看出,在涂层经过热处理后,柱状晶顶部覆盖一层相较于涂层组织要更加致密的覆盖层,并且柱状晶间隙在原位反应后变得饱满,两侧柱状晶与双元薄膜由于互扩散形成钉扎结构。
实施例2
本实施例提供了一种双元强化热障涂层,其制备方法包括:
对高温合金基体进行预处理,依次进行煤油、丙酮、乙醇超声清洗和烘干,再用46目砂进行喷砂处理并用压缩空气清除表面残留的砂粒。通过等离子喷涂-物理气相沉积(PS-PVD)在高温合金基体表面喷涂粘结层NiCrAlY。再通过打磨粘结层至光滑后,采用等离子喷涂-物理气相沉积(PS-PVD)在粘结层表面喷涂陶瓷层6wt%Y2O3稳定ZrO2。用酒精清洗制备好的YSZ涂层表面,放入60℃烘箱内5h以上,再通过电弧离子镀在YSZ涂层表面沉积厚度为5μm的Al-Y双元薄膜,其中Y的掺杂量为10%,其中炉内压力抽至7×10-3Pa,氩离子辉光清洗50min,偏压控制在120V,靶电流控制在60A,于350℃下开始镀膜,共沉积2h。最后放入真空热处理炉内进行真空热处理形成含有α-Al2O3和Y3Al5O12的Al-Y双元薄膜原位反应强化层,工艺参数包括:先于600℃保温2h,再于860℃保温2h,最后于960℃保温1h,即得双元强化热障涂层。
实施例3
本实施例提供了一种双元强化热障涂层,其制备方法包括:
对高温合金基体进行预处理,依次进行煤油、丙酮、乙醇超声清洗和烘干,再用46目砂进行喷砂处理并用压缩空气清除表面残留的砂粒。通过等离子喷涂-物理气相沉积(PS-PVD)在高温合金基体表面喷涂粘结层NiCrAlY。再通过打磨粘结层至光滑后,采用等离子喷涂-物理气相沉积(PS-PVD)在粘结层表面喷涂陶瓷层8wt%Y2O3稳定ZrO2。用酒精清洗制备好的YSZ涂层表面,放入80℃烘箱内5h以上,再通过电弧离子镀在YSZ涂层表面沉积厚度为10μm的Al-Y双元薄膜,其中Y的掺杂量为5%,其中炉内压力抽至7×10-3Pa,氩离子辉光清洗40min,偏压控制在150V,靶电流控制在80A,于250℃下开始镀膜,共沉积4h。最后放入真空热处理炉内进行真空热处理形成含有α-Al2O3和Y3Al5O12的Al-Y双元薄膜原位反应强化层,工艺参数包括:先于670℃保温1h,再于880℃保温2h,最后于900℃保温2h,即得双元强化热障涂层。
实施例4
本实施例提供了一种双元强化热障涂层,其制备方法与实施例1基本相同,区别仅在于,本实施例中基体为对316不锈钢基体。
对比例1
本对比例与实施例1基本相同,区别仅在于,本对比例中只对高温合金基体通过等离子喷涂-物理气相沉积(PS-PVD)喷涂粘结层NiCrAlY及陶瓷层7wt%Y2O3稳定ZrO2。而不对YSZ热障涂层进行电弧离子镀Al-Y双元薄膜及真空热处理。
对比例2
本对比例与实施例1基本相同,区别仅在于,本对比例中省略了掺杂的Y,具体来说,本对比例在YSZ热障涂层上通过电弧离子镀沉积Al薄膜,接着进行真空热处理获得含有α-Al2O3的原位反应强化层,电弧离子镀以及真空热处理参数与实施例1相同。
对比例3
本对比例与实施例1基本相同,区别仅在于,本对比例中Al-Y双元薄膜中Y的质量百分数含量为15%。
对比例4
本对比例与实施例1基本相同,区别仅在于,本对比例中Al-Y双元薄膜中Y的质量百分数含量为3%。
对比例5
本对比例与实施例1基本相同,区别仅在于,本对比例中采用大气等离子喷涂法来制备Al-Y双元薄膜。
对比例6
本对比例与实施例1基本相同,区别仅在于,本对比例中真空热处理工艺与实施例1不同,本对比中,所述真空热处理过程中的工艺条件包括:于850℃保温6h。
对比例7
本对比例与实施例1基本相同,区别仅在于,本对比例中在沉积薄膜时沉积Al-Yb双元薄膜。
对比例8
本对比例与实施例1基本相同,区别仅在于,本对比例中在沉积薄膜时沉积Al-Sc双元薄膜。
实验例:性能测试实验
(1)腐蚀实验:将上述实施例1-3以及对比例1-8制备获得的涂层按照5mg/cm2在制备的涂层表面涂抹NaCl,再于900℃箱式炉中保温100h,观察试验后的涂层外观形貌。
(2)冲刷实验:对将上述实施例1-3以及对比例1-8制备获得的涂层进行粒子冲刷实验,冲刷角度20°,距离100mm,冲刷粒子为Al2O3,粒径55μm,压力0.2MPa,冲蚀质量600g。
实验结果如下:
实验结果显示:实施例1腐蚀后的双元强化热障涂层截面电镜图如图4中(b),对比例1腐蚀后的涂层截面电镜图如图4中(a)所示,实施例1由于α-Al2O3、Y3Al5O12强化层的存在,粘结层没有出现明显的氧化现象,没有观察到空洞和条纹。而对比例1涂层氧化严重,粘结层中密集分布着较厚的氧化条纹和大量的空洞。可以看出,当不对YSZ涂层进行本发明所述方法镀膜时,涂层受熔盐腐蚀严重,此外,对比例1的涂层失重率远大于实施例1中涂层的失重率。对比例2中,由于缺少Y的加入,只有存在于表面的致密α-Al2O3层,其耐腐蚀性良好,但冲刷实验后涂层的失重率同样远大于各实施例中涂层的失重率。对比例3中,由于Y的掺杂量较实施例中较多,其原位反应后的结合效果较松散,起不到良好的抗冲刷性能,同样对比例4中由于Y的掺杂量较实施例中较少,没有充分反应,间隙处没有形成致密氧化物,因此耐冲刷性能较实施例不佳。对比例5中由于Al-Y双元薄膜的形成是通过大气等离子喷涂实现,并且得到的层状结构,形成速度较快,没有保留原始的柱状结构,而是在柱状晶表面覆盖了多孔隙的层状薄膜,其耐腐蚀性及耐冲刷性能都不及实施例中涂层。对比例6相较于实施例1只更改了热处理工艺,与实施例1不同的热处理区间得到的强化层不包括α-Al2O3、Y3Al5O12强化层,因此其耐腐蚀性能及冲刷性能均不如实施例1。对比例7和例8相较实施例1更改了镀膜组分,没有形成稳定的强化层,因此其耐腐蚀性能及冲刷性能均不如各实施例涂层。
综上所述,本申请提供的双元强化热障涂层的制备方法通过在YSZ热障涂层的表面沉积Al-Y双元薄膜,最后通过真空热处理在涂层表面形成原位反应强化层,包括α-Al2O3、Y3Al5O12。在特定的高温下YSZ与Al,Y反应得到Al2O3、Y3Al5O12。一方面,稀土元素Y的加入可以降低Al-Y合金液的表面张力,从而提高双元组分的润湿性,使其更好的渗入YSZ间隙,也可起到细化晶粒的效果,使Al柱状晶转变为等轴晶,提高强度和硬度,并具有一定的塑性和韧性,另一方面在熔盐腐蚀过程中,由于Y的补充,可以弥补腐蚀过程中YSZ中Y的缺失,进而始终保持YSZ的相稳定;原位反应形成的α-Al2O3相具有致密结构,又具有低氧扩散率以及高物理、化学稳定性能,具有封孔作用,可有效提高涂层的抗高温氧化性能及耐腐蚀性能;原位反应所得Y3Al5O12属立方晶系,具有石榴石结构,耐高温且高温下有较高强度,也可以作为高温阻氧层来提高涂层的抗高温氧化能力,同时Y3Al5O12在高温下具有优异的抗熔盐渗透腐蚀能力,存在于YSZ涂层间隙处以此阻碍熔盐侵蚀。本发明通过形成两种强化层,一方面可有效提高涂层的耐腐蚀性能;另一方面,通过原位反应在YSZ表面及间隙处由于互扩散形成钉扎效果,能有效提升冲刷性能。由该方法制备的双元强化热障涂层可以广泛应用于航空、航天、船舶、汽车中作为金属部件涂层。尤其适用于长期服役于高温腐蚀环境及沙尘侵蚀环境下的发动机金属部件。因此本发明提供的双元强化热障涂层可更好的抵抗熔盐腐蚀及砂粒冲刷,由此提高发动机的寿命,在航空航天领域具有重大的应用价值。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

1.一种双元强化热障涂层的制备方法,其特征在于,其包括在基体的表面沉积YSZ热障涂层,接着在所述YSZ热障涂层的表面沉积Al-Y双元薄膜,然后通过真空热处理进行原位反应形成包含有α-Al2O3和Y3Al5O12的Al-Y双元薄膜原位反应强化层;所述真空热处理过程中的工艺条件包括:先于600-670 °C保温1-2 h,再于845-880 °C保温1-2 h,最后于900-960°C保温1-2 h;在所述真空热处理过程中升温速率控制在5-15 °C/min;在所述真空热处理过程中压强保持在1.5×10-2 - 2.5×10-2 Pa;
所述Al-Y双元薄膜采用电弧离子镀或磁控溅射沉积于所述YSZ热障涂层的表面;
所述Al-Y双元薄膜中Y的质量百分数含量为7-10%,其余为Al。
2.根据权利要求1所述的双元强化热障涂层的制备方法,其特征在于,所述电弧离子镀的工艺条件包括:炉内压力抽至7×10-3 Pa以下,氩离子辉光清洗30-50 min,偏压控制在120-150 V,靶电流控制在60-80 A,于250-350 °C开始镀膜,共沉积2-4 h。
3.根据权利要求1所述的双元强化热障涂层的制备方法,其特征在于,所述Al-Y双元薄膜的厚度为5-10 µm。
4.根据权利要求1所述的双元强化热障涂层的制备方法,其特征在于,在沉积所述Al-Y双元薄膜之前,还包括将沉积有所述YSZ热障涂层的所述基体进行清洗并置于60-80 °C下烘烤5 h以上。
5.根据权利要求1所述的双元强化热障涂层的制备方法,其特征在于,沉积所述YSZ热障涂层包括先于所述基体表面沉积粘接层,在所述粘接层的表面沉积陶瓷层;
在所述粘接层的表面沉积所述陶瓷层之前,先对所述粘接层进行打磨,磨至光滑后再进行喷砂处理并采用压缩空气清除表面残留砂粒,最后用乙醇清洗表面以待喷涂。
6.根据权利要求5所述的双元强化热障涂层的制备方法,其特征在于,所述粘接层和所述陶瓷层均采用等离子喷涂-物理气相沉积方法得到。
7.根据权利要求6所述的双元强化热障涂层的制备方法,其特征在于,所述粘接层的成分包括MCrAlY;其中,MCrAlY中的M为Ni和Co中的至少一种。
8.根据权利要求6所述的双元强化热障涂层的制备方法,其特征在于,所述陶瓷层的成分包括6-8 wt%Y2O3稳定ZrO2
9.根据权利要求1所述的双元强化热障涂层的制备方法,其特征在于,在所述基体上沉积所述YSZ热障涂层之前,还包括对所述基体依次进行煤油、丙酮、乙醇超声清洗和烘干,再进行喷砂处理并用压缩空气清除表面残留的砂粒。
10.根据权利要求9所述的双元强化热障涂层的制备方法,其特征在于,所述基体包括316不锈钢基体和高温合金基体中的至少一种。
11.一种双元强化热障涂层,其特征在于,其是采用如权利要求1-10任一项所述的双元强化热障涂层的制备方法制备而成。
12.如权利要求11所述的双元强化热障涂层在航空、航天、船舶、汽车中制备金属部件涂层的应用。
13.一种航空发动机,其特征在于,其包括如权利要求11所述的双元强化热障涂层。
CN202211004852.9A 2022-08-22 2022-08-22 一种双元强化热障涂层及其制备方法和应用 Active CN115287594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211004852.9A CN115287594B (zh) 2022-08-22 2022-08-22 一种双元强化热障涂层及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211004852.9A CN115287594B (zh) 2022-08-22 2022-08-22 一种双元强化热障涂层及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115287594A CN115287594A (zh) 2022-11-04
CN115287594B true CN115287594B (zh) 2023-12-05

Family

ID=83829896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211004852.9A Active CN115287594B (zh) 2022-08-22 2022-08-22 一种双元强化热障涂层及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115287594B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294260B1 (en) * 1999-09-10 2001-09-25 Siemens Westinghouse Power Corporation In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components
KR20110027367A (ko) * 2009-09-10 2011-03-16 한국기계연구원 금속이온 주입법을 이용한 열차폐 코팅층 및 이의 제조방법
CN103668191A (zh) * 2013-12-09 2014-03-26 广州有色金属研究院 一种热障涂层的制备方法
CN105648386A (zh) * 2016-02-18 2016-06-08 中国科学院上海硅酸盐研究所 热喷涂氧化铝–氧化钇复合陶瓷涂层及其制备方法
CN113073285A (zh) * 2021-03-23 2021-07-06 广东省科学院新材料研究所 一种热障涂层及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935387B2 (en) * 2004-10-20 2011-05-03 Ues, Inc. Methods for fabricating YAG barrier coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294260B1 (en) * 1999-09-10 2001-09-25 Siemens Westinghouse Power Corporation In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components
KR20110027367A (ko) * 2009-09-10 2011-03-16 한국기계연구원 금속이온 주입법을 이용한 열차폐 코팅층 및 이의 제조방법
CN103668191A (zh) * 2013-12-09 2014-03-26 广州有色金属研究院 一种热障涂层的制备方法
CN105648386A (zh) * 2016-02-18 2016-06-08 中国科学院上海硅酸盐研究所 热喷涂氧化铝–氧化钇复合陶瓷涂层及其制备方法
CN113073285A (zh) * 2021-03-23 2021-07-06 广东省科学院新材料研究所 一种热障涂层及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Beneficial effects of magnetron-sputtered Al-Y seal layers on porous thermal barrier coatings";Shiyu Cui 等;《Journal of Alloys and Compounds》;第804卷;147-154 *
"Reaction Mechanism and Thermal Insulation Property of Al-deposited 7YSZ Thermal Barrier Coating";Xiaofeng Zhang 等;《Journal of Materials Science & Technology》;第31卷;1006-1010 *

Also Published As

Publication number Publication date
CN115287594A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
US7972657B2 (en) Silicate resistant thermal barrier coating with alternating layers
US4916022A (en) Titania doped ceramic thermal barrier coatings
US20200024749A1 (en) Gas turbine engine component coating with self-healing barrier layer
US4414249A (en) Method for producing metallic articles having durable ceramic thermal barrier coatings
US4405660A (en) Method for producing metallic articles having durable ceramic thermal barrier coatings
US4321310A (en) Columnar grain ceramic thermal barrier coatings on polished substrates
US4676994A (en) Adherent ceramic coatings
US4321311A (en) Columnar grain ceramic thermal barrier coatings
US4405659A (en) Method for producing columnar grain ceramic thermal barrier coatings
US5015502A (en) Ceramic thermal barrier coating with alumina interlayer
CN109628929B (zh) 一种热障涂层及其制备方法与应用、航空发动机涡轮叶片
JP3302589B2 (ja) セラミック被覆ガスタービン動翼
CN111005002B (zh) 一种压气机叶片耐冲蚀防腐蚀自洁涂层的制备方法
CN111424242B (zh) 一种抗cmas双层结构防护涂层、热障涂层多层结构及其制备方法
EP0969117A2 (en) Method of forming a thermal barrier coating system
US20100154425A1 (en) Strain tolerant thermal barrier coating system
JP2008045211A (ja) タービンエンジンコンポーネント及びタービンエンジンコンポーネントのコーティング方法
CN111004990B (zh) 用于热障涂层抗熔融cmas腐蚀的max相涂层及热喷涂制备方法
JP2005313644A (ja) 耐剥離性金属製物品および金属製物品剥離低減方法
CN103160773A (zh) 通过控制热生长氧化层成分延长发动机热障涂层寿命的方法
US6495271B1 (en) Spallation-resistant protective layer on high performance alloys
US11851770B2 (en) Thermal barrier coatings for components in high-temperature mechanical systems
CN108411242B (zh) 一种具有抗粒子冲刷表面层的热障涂层及其制备方法
CN108603275A (zh) 用于将高温保护层粘合在基底上的增粘剂层及其制造方法
WO1992005298A1 (en) Columnar ceramic thermal barrier coating with improved adherence

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant