CN115286273A - 一种超疏水覆膜钢筋及其制备方法 - Google Patents

一种超疏水覆膜钢筋及其制备方法 Download PDF

Info

Publication number
CN115286273A
CN115286273A CN202211004796.9A CN202211004796A CN115286273A CN 115286273 A CN115286273 A CN 115286273A CN 202211004796 A CN202211004796 A CN 202211004796A CN 115286273 A CN115286273 A CN 115286273A
Authority
CN
China
Prior art keywords
steel bar
super
hydrophobic
hydrotalcite
reinforcing steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211004796.9A
Other languages
English (en)
Inventor
黄修林
王文圣
刘芃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Hengjun Environmental Protection Technology Co ltd
Original Assignee
Shenzhen Hengjun Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Hengjun Environmental Protection Technology Co ltd filed Critical Shenzhen Hengjun Environmental Protection Technology Co ltd
Priority to CN202211004796.9A priority Critical patent/CN115286273A/zh
Publication of CN115286273A publication Critical patent/CN115286273A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1066Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

本发明提供了一种超疏水覆膜钢筋,钢筋表面原位生长有超疏水的缓蚀剂水滑石薄膜。本发明还提供了一种超疏水覆膜钢筋的制备方法,配制硝酸铝、硝酸镁和四硼酸钠的水溶液,并用尿素调节pH,搅拌至溶液稳定;将上述溶液倒入水热釜中,钢筋干燥后也放入水热釜中,使其被溶液浸没,升温至120℃,并在该温度下水热反应12~24h后得到生长有负载缓蚀剂水滑石的钢筋;将上述步骤的钢筋浸泡在45℃的0.05mol·L‑1月桂酸钠溶液中3~6h后,得到表面生长有超疏水缓蚀剂水滑石的钢筋。通过对钢筋表面原位生长超疏水的缓蚀剂水滑石薄膜,提高钢筋的耐腐蚀性,从而提高其耐久性。

Description

一种超疏水覆膜钢筋及其制备方法
技术领域
本发明属于钢筋防腐技术领域,具体涉及一种超疏水覆膜钢筋及其制备方法。
背景技术
钢筋混凝土内的钢筋受到腐蚀后,会导致混凝土的开裂,从而使钢筋混凝土的耐久性下降,如何提高钢筋混凝土的耐久性是建筑施工中的一项难点。通常钢筋的腐蚀要经过三个阶段:(1)水分、氯离子等物质渗透混凝土土层,到达钢筋表面;(2)混凝土表面土层受到破坏,导致钢筋的主要保护层破坏;(3)钢筋表面产生电化学作用,钢筋受到腐蚀。加强对钢筋的保护,提高钢筋耐久性的主要方法有:(1)对混凝土表面进行处理,加强混凝土表面的耐渗透性,防止环境中的水分,二氧化碳和氯离子接触钢筋;(2)选择合适的原材料,将混凝土中氯化物的含量控制在合理范围内,防止氯化物对钢筋的侵蚀;(3)使用耐腐蚀的钢筋保护膜覆盖钢筋表面,有效提高其使用寿命;(4)合理使用钢筋阻锈剂,在混凝土中添加阻锈剂,对钢筋提供保护。
目前有较多钢筋保护膜的相关报道,例如专利CN202110353760.0中公开了一种水滑石基水泥浆钢筋表面靶向防护材料,通过在钢筋表面涂抹厚度为1.5mm-2.5mm的水滑石基水泥浆钢筋表面靶向防护材料对钢筋进行防腐保护,利用水滑石的靶向吸附特性,不仅在固化渗透侵入的氯离子的同时能释放出具有阻锈作用的硝酸根,还能有效填补水泥浆保护层的孔隙缺陷,从而阻隔钢筋氯离子腐蚀的发生,形成“二次屏障”,防腐性能佳,但是水滑石基水泥浆钢筋表面靶向防护材料在使用时直接涂抹在钢筋表面,与钢筋的结合较差,一旦被破坏后就失去了保护能力。
发明内容
针对现有技术中存在的上述不足,本发明提供了一种超疏水覆膜钢筋及其制备方法,通过对钢筋表面原位生长超疏水的缓蚀剂水滑石薄膜,提高钢筋的耐腐蚀性,从而提高其耐久性。
实现本发明上述目的所采用的技术方案为:
一种超疏水覆膜钢筋,所述钢筋表面原位生长有超疏水的缓蚀剂水滑石薄膜。
所述缓蚀剂为四硼酸钠。
本发明还提供了一种超疏水覆膜钢筋的制备方法,包括以下步骤:(1)除去钢筋表面的锈、油和杂质;
(2)配制硝酸铝、硝酸镁和四硼酸钠的水溶液,并用尿素调节pH,搅拌至溶液稳定,所述硝酸铝、硝酸镁、四硼酸钠、水和尿素的质量比为(2.5~3.5):(5~7):(1.5~2):200:(20~25);
(3)将上述溶液倒入水热釜中,钢筋干燥后也放入水热釜中,使其被溶液浸没,升温至120℃,并在该温度下水热反应12~24h后得到生长有负载缓蚀剂水滑石的钢筋;
(4)将上述步骤的钢筋浸泡在45℃的0.05mol·L-1月桂酸钠溶液中3~6h后,得到表面生长有超疏水缓蚀剂水滑石的钢筋。
步骤(1)具体为:用砂纸将钢筋表面的锈除去,并在无水乙醇中超声20~30min,除去表面的油和杂质。
与现有技术相比,本发明提供的超疏水覆膜钢筋及其制备方法具有以下优点:
(1)本发明中通过在钢筋表面制备超疏水的缓蚀剂水滑石薄膜,利用薄膜的超疏水表面,阻止水分与钢筋表面接触,从而破坏腐蚀发生的条件,达到保护钢筋,提高钢筋耐久性的目的。
当超疏水表面被破坏时,根据水滑石的离子交换性,水滑石吸收环境中的氯离子,并释放负载的四硼酸钠缓蚀剂,氯离子的减少以及四硼酸钠缓蚀剂促使金属钝化共同作用,从而延缓钢筋腐蚀,提高钢筋耐腐蚀性,从而提高其耐久性。
此外,本发明采用原位生长法得到水滑石薄膜,薄膜均匀,与基体之间结合稳定,不易脱落。
(2)本发明中采用尿素进行pH调节,在进行水滑石薄膜的原位生长时,尿素逐渐分解,使水滑石缓慢生成,从而使大部分的水滑石在钢筋表面进行形核生长,并进一步提供形核位点,得到均匀的薄膜。
附图说明
图1为实施例1~4(不同水热反应时间下)中得到的表面生长有负载缓蚀剂水滑石的钢筋的SEM图;
其中a、b为实施例1中得到的SEM图,分辨率分别为200nm和1μm,此时水热反应时间为12h;
c、d为实施例2中得到的SEM图,分辨率分别为200nm和1μm,此时水热反应时间为16h;
e、f为实施例3中得到的SEM图,分辨率分别为200nm和1μm,此时水热反应时间为20h;
g、h为实施例4中得到的SEM图,分辨率分别为200nm和1μm,此时水热反应时间为24h;
图2为对比例1~4中得到的表面生长有负载缓蚀剂水滑石的钢筋的SEM图;
其中a、b为对比例1中得到的SEM图,分辨率分别为200nm和10μm,此时水热反应时间为12h;
c、d为对比例2中得到的SEM图,分辨率分别为200nm和10μm,此时水热反应时间为16h;
e、f为对比例3中得到的SEM图,分辨率分别为200nm和10μm,此时水热反应时间为20h;
g、h为对比例4中得到的SEM图,分辨率分别为200nm和10μm,此时水热反应时间为24h;
图3为实施例1~4中得到的表面生长有超疏水缓蚀剂水滑石的钢筋在3.5wt%的氯化钠溶液中浸泡1h后的极化曲线图;
图4为对比例1~4中得到的表面生长有超疏水缓蚀剂水滑石的钢筋在3.5wt%的氯化钠溶液中浸泡1h后的极化曲线图;
图5为实施例2中得到的表面生长有超疏水缓蚀剂水滑石的钢筋水静态接触角和Rct值随其在3.5wt%的氯化钠溶液中浸泡时间的变化折线图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合实施例对本发明作进一步详细描述。
实施例1
本实施例中所提供的超疏水覆膜钢筋的制备方法包括以下步骤:
(1)用砂纸将钢筋表面的锈除去,并在无水乙醇中超声20~30min,除去表面的油和杂质;
(2)配制硝酸铝、硝酸镁和四硼酸钠的水溶液,并用尿素调节pH,搅拌至溶液稳定,所述硝酸铝、硝酸镁、四硼酸钠、水和尿素的质量比为3.00:6.15:1.61:200:22.2;
(3)将上述溶液倒入水热釜中,钢筋干燥后也放入水热釜中,使其被溶液浸没,升温至120℃,并在该温度下水热反应12~24h后得到生长有负载缓蚀剂水滑石的钢筋;
(4)将上述步骤的钢筋浸泡在45℃的0.05mol·L-1月桂酸钠溶液中4h后,得到表面生长有超疏水缓蚀剂水滑石的钢筋。
实施例2~4
实施例2~4与实施例1的区别在于水热反应时间不同,其中实施例2的水热反应为16h,实施例3的水热反应为20h,实施例4的水热反应为24h。
对比例1~4
对比例1与实施例1相比,对比例2与实施例2相比,对比例3与实施例3相比,对比例4与实施例4相比,所区别之处均在于步骤(2)中是用氢氧化钠代替尿素调节pH。
对实施例和对比例中的样品进行测试:
(1)表面SEM测试
对实施例1~4和对比例1~4中得到的负载缓蚀剂水滑石的钢筋的表面SEM图,如图1和图2所示。由图可知,实施例1~4中在不同时间条件下得到的表面形貌相似,所得到的薄膜十分均匀并且与基体之间产生较好的结合效果,不易脱落。但随着水热反应时间的增加,水滑石纳米颗粒的颗粒大小也相应增加,当时间达到24h时,由于部分颗粒生长迅速,产生花状形貌导致表面不均匀。
对比例1~4中表面水滑石相对实施例中的表面水滑石生长较不均匀,水热反应12h时,薄膜生长状态良好,稍均匀,但随着反应时间的增加,16h时水滑石纳米颗粒数量开始变少,且颗粒变大,生长状态开始出现不均匀现象。当时间增加到20h,颗粒增大明显,呈现簇状形态,24h时水滑石纳米结构不明显,颗粒消失,整体呈现不均匀的块状。其主要原因是由于钢筋表面提供了水滑石颗粒的形核位点后,水滑石快速生长,并以原有颗粒为形核位点,继续长大,最终成为块状结构。
(2)极化曲线测试
为测试表面生长有超疏水缓蚀剂水滑石的钢筋样品的耐腐蚀性能,将实施例1~4和对比例1~4中的样品浸泡在3.5wt%的氯化钠溶液中1h,再分别电化学极化测试。所得到的极化曲线图如图3和图4所示,从图中可知,对比例中的样品腐蚀电位更低,而实施例中所有样品的腐蚀电压均在-0.15-0V之间,相对于自然钢筋样品的-0.7V有极大提升。
测试方法为:使用电化学工作站进行测试,工作电极为制得的生长有超疏水缓蚀剂水滑石的钢筋样品,对电极为铂电极,参比电极为银/氯化银电极。测试溶液为3.5wt%的氯化钠溶液,工作电极暴露面积为1cm2。在进行极化曲线测试之前,先进行开路电压测试确定极化曲线测试范围。
(3)疏水性能和Rct值测试
为测试表面生长有超疏水缓蚀剂水滑石的钢筋样品的耐腐蚀性能,将实施例2中(水热反应16h)的样品浸泡在3.5wt%的氯化钠溶液中28天,并监测水静态接触角(CA)和Rct值,水静态接触角(CA)和Rct值随浸泡时间变化的折线图如图3所示。其中Rct值是通过EIS测试的曲线拟合得到的一个电阻值。一般来讲,Rct值越高,耐腐蚀效果越好。
由图可知,样品表面的超疏水薄膜能够保持较好的疏水状态,水接触角(CA)约为154°,水滑动角(SA)约6°,在6天内能保持超疏水状态(CA>150°,SA<10°),阻止水与钢筋表面的接触,在15天内能保持疏水状态,减缓水与钢筋表面的接触。
随着浸泡时间的增加,薄膜逐渐失去疏水性,溶液对钢筋的腐蚀效果逐渐明显,薄膜失去疏水性后,水滑石层间的四硼酸钠得到释放,促进钢筋表面钝化膜的形成,并能够吸附环境中的部分氯离子,Rct值减小一定程度后能保持稳定,稳定在1×104Ωcm2左右,具有良好的长期耐腐蚀性。
将对比例1得到的较为均匀的面生长有超疏水缓蚀剂水滑石的钢筋样品进行静态接触角(CA)测试,测得CA约为148°,未达到超疏水状态,这主要是由于水滑石表面生长状况不均匀导致的。

Claims (4)

1.一种超疏水覆膜钢筋,其特征在于:所述钢筋表面原位生长有超疏水的缓蚀剂水滑石薄膜。
2.根据权利要求1所述的超疏水覆膜钢筋,其特征在于:所述缓蚀剂为四硼酸钠。
3.一种根据权利要求2所述的超疏水覆膜钢筋的制备方法,其特征在于包括以下步骤:(1)除去钢筋表面的锈、油和杂质;
(2)配制硝酸铝、硝酸镁和四硼酸钠的水溶液,并用尿素调节pH,搅拌至溶液稳定,所述硝酸铝、硝酸镁、四硼酸钠、水和尿素的质量比为(2.5~3.5):(5~7):(1.5~2):200:(20~25);
(3)将上述溶液倒入水热釜中,钢筋干燥后也放入水热釜中,使其被溶液浸没,升温至120℃,并在该温度下水热反应12~24h后得到生长有负载缓蚀剂水滑石的钢筋;
(4)将上述步骤的钢筋浸泡在45℃的0.05mol·L-1月桂酸钠溶液中3~6h后,得到表面生长有超疏水缓蚀剂水滑石的钢筋。
4.根据权利要求3所述的超疏水覆膜钢筋的制备方法,其特征在于:步骤(1)具体为:用砂纸将钢筋表面的锈除去,并在无水乙醇中超声20~30min,除去表面的油和杂质。
CN202211004796.9A 2022-08-22 2022-08-22 一种超疏水覆膜钢筋及其制备方法 Pending CN115286273A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211004796.9A CN115286273A (zh) 2022-08-22 2022-08-22 一种超疏水覆膜钢筋及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211004796.9A CN115286273A (zh) 2022-08-22 2022-08-22 一种超疏水覆膜钢筋及其制备方法

Publications (1)

Publication Number Publication Date
CN115286273A true CN115286273A (zh) 2022-11-04

Family

ID=83829947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211004796.9A Pending CN115286273A (zh) 2022-08-22 2022-08-22 一种超疏水覆膜钢筋及其制备方法

Country Status (1)

Country Link
CN (1) CN115286273A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082005A (zh) * 2023-01-31 2023-05-09 武汉大学 一种速凝、低成本、坚固的整体疏水水泥砂浆及其制备方法
CN116575646A (zh) * 2023-05-11 2023-08-11 广东海洋大学 一种耐腐蚀钢筋及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584077A (zh) * 2012-01-16 2012-07-18 中国建筑科学研究院 负载型钢筋阻锈剂及其制备方法
CN112301344A (zh) * 2020-09-04 2021-02-02 深圳大学 原位制备层状双金属氢氧化物钝化膜的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584077A (zh) * 2012-01-16 2012-07-18 中国建筑科学研究院 负载型钢筋阻锈剂及其制备方法
CN112301344A (zh) * 2020-09-04 2021-02-02 深圳大学 原位制备层状双金属氢氧化物钝化膜的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
彭光春;贾文超;乔芊芊;张展;黄康;张天翼;方涛;王怡;张博威;: "铝合金表面水滑石薄膜的制备及其耐蚀性研究进展", 工程科学学报, vol. 42, no. 1, pages 1 - 15 *
彭光春等: "铝合金表面水滑石薄膜的制备及其耐蚀性研究进展" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082005A (zh) * 2023-01-31 2023-05-09 武汉大学 一种速凝、低成本、坚固的整体疏水水泥砂浆及其制备方法
CN116575646A (zh) * 2023-05-11 2023-08-11 广东海洋大学 一种耐腐蚀钢筋及其制备方法和应用
CN116575646B (zh) * 2023-05-11 2023-11-24 广东海洋大学 一种耐腐蚀钢筋及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN115286273A (zh) 一种超疏水覆膜钢筋及其制备方法
Dong et al. Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment
AU2005211622B2 (en) Process for the protection of reinforcement in reinforced concrete
Raeissi et al. Effect of nucleation mode on the morphology and texture of electrodeposited zinc
González et al. The behaviour of pre-rusted steel in concrete
US6471851B1 (en) Cathodic protection system
Eyu et al. Effect of green inhibitor on the corrosion behaviour of reinforced carbon steel in concrete
CN112811844B (zh) 一种适用于海洋环境下混凝土的纳米复合迁移型钢筋阻锈剂
Zhang et al. Initial-corrosion condition behavior of the Cr and Al alloy steel bars in coral concrete for marine construction
Song et al. Research progress of nitrite corrosion inhibitor in concrete
Wang et al. Inhibition resistance and mechanism of migrating corrosion inhibitor on reinforced concrete under coupled carbonation and chloride attack
CN112939546A (zh) 一种水滑石基水泥浆钢筋表面靶向防护材料及其制备方法
CN103979887B (zh) 清水混凝土防表面开裂涂料及其使用方法
Bavarian et al. Corrosion protection of steel rebar in concrete by migrating corrosion inhibitors
Cui et al. Atmospheric corrosion behavior of 2A12 aluminum alloy in a tropical marine environment
Sadawy Effect of Al2O3 additives on the corrosion and electrochemical behavior of steel embedded in ordinary Portland cement concrete
CN109437967A (zh) 一种纳米二氧化硅密实混凝土的制备方法
Chu et al. Influence of anion types on the electrodeposition healing effect of concrete cracks
Ushirode et al. Voltammetric behaviour of iron in cement Part IV: Effect of acetate and urea additions
Asaad et al. Corrosion inhibitors for reinforced concrete structures exposed to aggressive environments: a review
CN111304642B (zh) 利用原位生长形成的磷酸铁锌膜层对铁质文物保护的方法
Benito et al. Behavior of high-nickel type weathering steel bars in simulated pore solution and mortar under chloride-containing environment
Chen et al. An Electrochemical Investigation of Corrosion Behavior of 316L Austenitic Stainless Steel Reinforcement in Concrete Exposed to Acidic Environment
Akamine et al. Corrosion Protection of Steel by Calcareous Electrodeposition in Seawater (Part 3) Effects of Dilution on Deposition
Suriyaprabha et al. INFLUENCE OF CHLORIDE ION IN CORROSION INHIBITION OF MILD STEEL IN SIMULATED CONCRETE PORE SOLUTION-AN OVERVIEW

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination