CN115276855A - 一种基于ResNet-CBAM的频谱感知方法 - Google Patents

一种基于ResNet-CBAM的频谱感知方法 Download PDF

Info

Publication number
CN115276855A
CN115276855A CN202210678266.6A CN202210678266A CN115276855A CN 115276855 A CN115276855 A CN 115276855A CN 202210678266 A CN202210678266 A CN 202210678266A CN 115276855 A CN115276855 A CN 115276855A
Authority
CN
China
Prior art keywords
sensing period
energy
secondary user
representing
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210678266.6A
Other languages
English (en)
Other versions
CN115276855B (zh
Inventor
张朋举
金明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN202210678266.6A priority Critical patent/CN115276855B/zh
Publication of CN115276855A publication Critical patent/CN115276855A/zh
Application granted granted Critical
Publication of CN115276855B publication Critical patent/CN115276855B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

本发明公开了一种基于ResNet‑CBAM的频谱感知方法,其在训练阶段通过计算次级用户在每个感知时段的每个采样时刻采样的信号的能量,获取训练数据;构建ResNet‑CBAM网络;使用训练数据进行训练,在训练过程中采用交叉熵损失函数并利用自适应矩估计算法更新ResNet‑CBAM网络中的参数,最终训练得到ResNet‑CBAM网络训练模型;在测试阶段以相同的方法获取测试数据;将测试数据中的每行能量作为一个测试向量,将每个测试向量输入到ResNet‑CBAM网络训练模型中,ResNet‑CBAM网络训练模型输出每个测试向量对应的一个数值,该数值代表在对应的感知时段主用户信号是否占用授权频谱;优点是其针对多次出现主用户随机到达和随机离开的情况进行频谱感知,且感知准确率高。

Description

一种基于ResNet-CBAM的频谱感知方法
技术领域
本发明涉及一种无线通信中的认知无线电技术,尤其是涉及一种基于残差注意力网络ResNet-CBAM(Convolutional Block Attention Module,卷积块注意力模块)的频谱感知方法。
背景技术
随着社会的快速发展,移动设备的数量也在急剧增加,而且由于现有的频带分配策略的限制,使得有限的频谱资源变得更加紧缺,因此,如何提高频谱的利用率已成为无线通信领域的热点话题。
早在之前,认知无线电的提出就是为了解决频谱利用率低的问题。认知无线电的核心思想是在不干扰主用户的情况下,允许次级用户利用空闲频带。因此次级用户需要不断地对频谱进行感知,以检测主用户是否存在,而频谱感知的准确性则是实现动态频谱接入的关键所在。
在以往的研究中,大多假设在感知时段主用户的状态是不变的或者状态变化最多一次,而这种假设过于理想。因为在真实的场景中,为了保证频谱感知的准确度,频谱感知往往要通过一段相对较长的时间来收集数据样本从而做出正确的判断,而在这段相对较长的时间内,主用户的状态可能会发生多次改变,即在一个感知时段内主用户可能会出现到达、离开再到达等多次转变的情况。这种情况的存在,对于传统的频谱感知方法来说会造成性能下降。因此,有必要研究一种考虑在感知时段主用户的状态可能会发生多次变化的情况的频谱感知方法。
发明内容
本发明所要解决的技术问题是提供一种基于ResNet-CBAM的频谱感知方法,其针对在感知时段主用户的状态可能会出现多次变化的情况,即多次出现主用户随机到达和随机离开的情况进行频谱感知,且其计算复杂度低,鲁棒性好,感知准确率高。
本发明解决上述技术问题所采用的技术方案为:一种基于ResNet-CBAM的频谱感知方法,其特征在于包括以下步骤:
步骤1:在认知无线电系统中,设定主用户状态在任一个感知时段跳变的次数最多只有三次,即在任一个感知时段主用户信号出现随机到达和离开的情况最多只发生三次,设定仅存在1个次级用户,设定次级用户从一个待感知的频段采集信号,且在每个感知时段的N个采样时刻采样信号,在K个感知时段共采样K×N个信号,将次级用户在第k个感知时段的第n个采样时刻采样的信号记为sk(n),当在第k个感知时段主用户信号出现随机离开的情况时sk(n)描述为:
Figure BDA0003697286050000021
并设置sk(n)的标记为H0;当在第k个感知时段主用户信号出现随机到达的情况时sk(n)描述为:
Figure BDA0003697286050000022
并设置sk(n)的标记为H1;其中,K>1,N>1,1≤k≤K,1≤n≤N,xk(n)表示次级用户在第k个感知时段的第n个采样时刻采样的信号中的主用户信号,wk(n)表示次级用户在第k个感知时段的第n个采样时刻采样的信号中的高斯白噪声信号,wk(n)的均值为0且方差为
Figure BDA0003697286050000023
Na、Nc和Ne表示在第k个感知时段主用户信号随机离开时的前一个采样时刻,Nb、Nd和Nf表示在第k个感知时段主用户信号随机到达时的前一个采样时刻,Na、Nb、Nc、Nd、Ne、Nf均服从超指数分布,Na∈[0,N-1]、Nb∈[0,N-1]、Nc∈[0,N]、Nd∈[0,N-1]、Ne∈[0,N-1]、Nf∈[0,N];
步骤2:计算次级用户在每个感知时段的每个采样时刻采样的信号的能量,将次级用户在第k个感知时段的第n个采样时刻采样的信号的能量记为Ek(n),Ek(n)=|sk(n)|2;然后获取训练数据,记为E,
Figure BDA0003697286050000031
其中,符号“||”为取绝对值符号,符号“[]”为矩阵或向量表示符号,E的维数为K×N,E1(1)表示次级用户在第1个感知时段的第1个采样时刻采样的信号的能量,E1(2)表示次级用户在第1个感知时段的第2个采样时刻采样的信号的能量,E1(N)表示次级用户在第1个感知时段的第N个采样时刻采样的信号的能量,E2(1)表示次级用户在第2个感知时段的第1个采样时刻采样的信号的能量,E2(2)表示次级用户在第2个感知时段的第2个采样时刻采样的信号的能量,E2(N)表示次级用户在第2个感知时段的第N个采样时刻采样的信号的能量,EK(1)表示次级用户在第K个感知时段的第1个采样时刻采样的信号的能量,EK(2)表示次级用户在第K个感知时段的第2个采样时刻采样的信号的能量,EK(N)表示次级用户在第K个感知时段的第N个采样时刻采样的信号的能量;
步骤3:构建ResNet-CBAM网络:该网络包括五个结构相同的残差块、最大池化层、Flatten层、第一全连接层、Dropout层、第二全连接层,第1个残差块的输入端作为该网络的输入端接收输入数据,第2个残差块的输入端接收输入数据与第1个残差块的输出端输出的数据通过相加合并后得到的数据,第3个残差块的输入端接收第1个残差块的输出端输出的数据与第2个残差块的输出端输出的数据通过相加合并后得到的数据,第4个残差块的输入端接收第2个残差块的输出端输出的数据与第3个残差块的输出端输出的数据通过相加合并后得到的数据,第5个残差块的输入端接收第3个残差块的输出端输出的数据与第4个残差块的输出端输出的数据通过相加合并后得到的数据,最大池化层的输入端接收第4个残差块的输出端输出的数据与第5个残差块的输出端输出的数据通过相加合并后得到的数据,Flatten层的输入端接收最大池化层的输出端输出的数据,第一全连接层的输入端接收Flatten层的输出端输出的数据,Dropout层的输入端接收第一全连接层的输出端输出的数据,第二全连接层的输入端接收Dropout层的输出端输出的数据,第二全连接层的输出端作为该网络的输出端;其中,最大池化层的池化窗口大小为2×2、步长为2×2,第一全连接层的神经元个数为128,Dropout层的丢失率为0.5,第二全连接层的神经元个数为2,残差块由第一批归一化层、第一卷积层、第二批归一化层、第二卷积层、卷积块注意力模块组成,第一批归一化层的输入端为其所在的残差块的输入端,第一卷积层的输入端接收第一批归一化层的输出端输出的数据,第二批归一化层的输入端接收第一卷积层的输出端输出的数据,第二卷积层的输入端接收第二批归一化层的输出端输出的数据,卷积块注意力模块的输入端接收第二卷积层的输出端输出的数据,卷积块注意力模块的输出端为其所在的残差块的输出端,第一卷积层和第二卷积层的卷积核个数均为32、卷积核大小均为3×3、步长均为1×1,第一卷积层和第二卷积层的激活函数均为Relu函数,卷积块注意力模块的卷积核个数为1、卷积核大小为7×7、步长为1×1;
步骤4:将E和标签
Figure BDA0003697286050000041
输入到构建的ResNet-CBAM网络中进行训练,在训练过程中采用交叉熵损失函数并利用自适应矩估计算法更新ResNet-CBAM网络中的参数;其中,Y的维数为K×1,y1、y2、yK的值为0或1,y1为E1对应的标签,E1表示次级用户在第1个感知时段采样的所有信号的能量构成的能量向量,E1=[E1(1) E1(2)…E1(N)],y1的值为0时代表在第1个感知时段主用户对授权频谱的真实占用状态为未占用,y1的值为1时代表在第1个感知时段主用户对授权频谱的真实占用状态为占用,y2为E2对应的标签,E2表示次级用户在第2个感知时段采样的所有信号的能量构成的向量能量,E2=[E2(1) E2(2)…E2(N)],y2的值为0时代表在第2个感知时段主用户对授权频谱的真实占用状态为未占用,y2的值为1时代表在第2个感知时段主用户对授权频谱的真实占用状态为占用,yK为EK对应的标签,EK表示次级用户在第K个感知时段采样的所有信号的能量构成的能量向量,EK=[EK(1) EK(2)…EK(N)],yK的值为0时代表在第K个感知时段主用户对授权频谱的真实占用状态为未占用,yK的值为1时代表在第K个感知时段主用户对授权频谱的真实占用状态为占用;
步骤5:使用训练数据E按照步骤4的过程训练40轮以上,最终训练得到ResNet-CBAM网络训练模型;
步骤6:在测试阶段对于同一个待感知的频段,次级用户按照步骤1和步骤2的过程,以相同的方式从该待感知的频段采集信号,在计算在测试阶段次级用户在每个感知时段的每个采样时刻采样的信号的能量后获取测试数据,记为
Figure BDA0003697286050000051
Figure BDA0003697286050000052
其中,K'表示在测试阶段的感知时段的数量,K'>1,N'表示在测试阶段的每个感知时段的采样时刻的数量,N'>1,
Figure BDA0003697286050000053
的维数为K'×N',
Figure BDA0003697286050000054
表示在测试阶段次级用户在第1个感知时段的第1个采样时刻采样的信号的能量,
Figure BDA0003697286050000055
表示在测试阶段次级用户在第1个感知时段的第2个采样时刻采样的信号的能量,
Figure BDA0003697286050000056
表示在测试阶段次级用户在第1个感知时段的第N'个采样时刻采样的信号的能量,
Figure BDA0003697286050000057
表示在测试阶段次级用户在第2个感知时段的第1个采样时刻采样的信号的能量,
Figure BDA0003697286050000058
表示在测试阶段次级用户在第2个感知时段的第2个采样时刻采样的信号的能量,
Figure BDA0003697286050000059
表示在测试阶段次级用户在第2个感知时段的第N'个采样时刻采样的信号的能量,
Figure BDA00036972860500000510
表示在测试阶段次级用户在第K'个感知时段的第1个采样时刻采样的信号的能量,
Figure BDA0003697286050000061
表示在测试阶段次级用户在第K'个感知时段的第2个采样时刻采样的信号的能量,
Figure BDA0003697286050000062
表示在测试阶段次级用户在第K'个感知时段的第N'个采样时刻采样的信号的能量;
步骤7:将
Figure BDA0003697286050000063
中的每行能量作为一个测试向量,共有K'个测试向量;然后将每个测试向量输入到ResNet-CBAM网络训练模型中,ResNet-CBAM网络训练模型输出每个测试向量对应的一个数值,数值为0或1,ResNet-CBAM网络训练模型输出的第k'个测试向量对应的数值为0时代表在测试阶段在第k'个感知时段主用户信号未占用授权频谱,ResNet-CBAM网络训练模型输出的第k'个测试向量对应的数值为1时代表在测试阶段在第k'个感知时段主用户信号占用授权频谱;其中,1≤k'≤K'。
与现有技术相比,本发明的优点在于:
1)本发明方法构建的ResNet-CBAM网络是结合卷积块注意力模块的残差网络,利用其来对授权频段进行感知时不需要关于主用户的任何先验信息,因此也就不需要利用主用户的先验信息对当前频谱的使用情况进行计算推导,从而可以减少计算的复杂度。
2)本发明方法针对在任一个感知时段主用户的状态可能发生多次跳变的情况构建的残差注意力网络ResNet-CBAM可以在加深网络深度的情况下而不会造成网络过拟合现象,进而增强网络的特征提取能力;与此同时又在残差网络中引入了卷积块注意力模块,卷积块注意力模块可以增加网络的表征能力,从而可以进一步提高网络训练模型的准确率,从而提高感知准确率。
3)通过仿真结果可以看出,在低信噪比情况下本发明方法相较于其它对比方法依然有较好的性能,因此本发明方法具有更好的鲁棒性。
附图说明
图1为本发明方法的总体实现框图;
图2为本发明方法构建的ResNet-CBAM网络的组成结构示意图;
图3为本发明方法构建的ResNet-CBAM网络中的残差块的组成结构示意图;
图4为虚警概率设置为0.1时本发明方法(ResNet-CBAM)、卷积神经网络(CNN)、加权的能量检测法(WED)以及传统的能量检测法(CED)的信噪比-检测概率曲线;
图5为信噪比设置为-10dB时本发明方法(ResNet-CBAM)、卷积神经网络(CNN)、加权的能量检测法(WED)以及传统的能量检测法(CED)的ROC曲线。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
本发明针对在任一个感知时段主用户信号可能会出现多次随机到达或离开的情况,提出了一种基于ResNet-CBAM的频谱感知方法,其总体实现框图如图1所示,其包括以下步骤:
步骤1:在认知无线电系统中,设定主用户状态在任一个感知时段跳变的次数最多只有三次,即在任一个感知时段主用户信号出现随机到达和离开的情况最多只发生三次,设定仅存在1个次级用户,设定次级用户从一个待感知的频段采集信号,且在每个感知时段的N个采样时刻采样信号,在K个感知时段共采样K×N个信号,将次级用户在第k个感知时段的第n个采样时刻采样的信号记为sk(n),当在第k个感知时段主用户信号出现随机离开(根据第k个感知时段的最后一个时刻决定)的情况时sk(n)描述为:
Figure BDA0003697286050000071
并设置sk(n)的标记为H0;当在第k个感知时段主用户信号出现随机到达(根据第k个感知时段的最后一个时刻决定)的情况时sk(n)描述为:
Figure BDA0003697286050000081
并设置sk(n)的标记为H1;其中,K>1,在本实施例中取K=250000,N>1,在本实施例中取N=1000,1≤k≤K,1≤n≤N,xk(n)表示次级用户在第k个感知时段的第n个采样时刻采样的信号中的主用户信号,wk(n)表示次级用户在第k个感知时段的第n个采样时刻采样的信号中的高斯白噪声信号,wk(n)的均值为0且方差为
Figure BDA0003697286050000082
Na、Nc和Ne表示在第k个感知时段主用户信号随机离开时的前一个采样时刻,Nb、Nd和Nf表示在第k个感知时段主用户信号随机到达时的前一个采样时刻,Na、Nb、Nc、Nd、Ne、Nf均服从超指数分布,Na∈[0,N-1]、Nb∈[0,N-1]、Nc∈[0,N]、Nd∈[0,N-1]、Ne∈[0,N-1]、Nf∈[0,N]。
步骤2:计算次级用户在每个感知时段的每个采样时刻采样的信号的能量,将次级用户在第k个感知时段的第n个采样时刻采样的信号的能量记为Ek(n),Ek(n)=|sk(n)|2;然后获取训练数据,记为E,
Figure BDA0003697286050000083
其中,符号“||”为取绝对值符号,符号“[]”为矩阵或向量表示符号,E的维数为K×N,E1(1)表示次级用户在第1个感知时段的第1个采样时刻采样的信号的能量,E1(2)表示次级用户在第1个感知时段的第2个采样时刻采样的信号的能量,E1(N)表示次级用户在第1个感知时段的第N个采样时刻采样的信号的能量,E2(1)表示次级用户在第2个感知时段的第1个采样时刻采样的信号的能量,E2(2)表示次级用户在第2个感知时段的第2个采样时刻采样的信号的能量,E2(N)表示次级用户在第2个感知时段的第N个采样时刻采样的信号的能量,EK(1)表示次级用户在第K个感知时段的第1个采样时刻采样的信号的能量,EK(2)表示次级用户在第K个感知时段的第2个采样时刻采样的信号的能量,EK(N)表示次级用户在第K个感知时段的第N个采样时刻采样的信号的能量。
步骤3:构建ResNet-CBAM网络:如图2所示,该网络包括五个结构相同的残差块、最大池化层、Flatten层(铺平层)、第一全连接层、Dropout层(丢弃层)、第二全连接层,第1个残差块的输入端作为该网络的输入端接收输入数据,第2个残差块的输入端接收输入数据与第1个残差块的输出端输出的数据通过相加合并后得到的数据,第3个残差块的输入端接收第1个残差块的输出端输出的数据与第2个残差块的输出端输出的数据通过相加合并后得到的数据,第4个残差块的输入端接收第2个残差块的输出端输出的数据与第3个残差块的输出端输出的数据通过相加合并后得到的数据,第5个残差块的输入端接收第3个残差块的输出端输出的数据与第4个残差块的输出端输出的数据通过相加合并后得到的数据,最大池化层的输入端接收第4个残差块的输出端输出的数据与第5个残差块的输出端输出的数据通过相加合并后得到的数据,Flatten层的输入端接收最大池化层的输出端输出的数据,第一全连接层的输入端接收Flatten层的输出端输出的数据,Dropout层的输入端接收第一全连接层的输出端输出的数据,第二全连接层的输入端接收Dropout层的输出端输出的数据,第二全连接层的输出端作为该网络的输出端;其中,最大池化层的池化窗口大小为2×2、步长为2×2,第一全连接层的神经元个数为128,Dropout层的丢失率为0.5,第二全连接层的神经元个数为2,如图3所示,残差块由第一批归一化层(BN层)、第一卷积层、第二批归一化层、第二卷积层、卷积块注意力模块(CBAM)组成,第一批归一化层的输入端为其所在的残差块的输入端,第一卷积层的输入端接收第一批归一化层的输出端输出的数据,第二批归一化层的输入端接收第一卷积层的输出端输出的数据,第二卷积层的输入端接收第二批归一化层的输出端输出的数据,卷积块注意力模块的输入端接收第二卷积层的输出端输出的数据,卷积块注意力模块的输出端为其所在的残差块的输出端,第一卷积层和第二卷积层的卷积核个数均为32、卷积核大小均为3×3、步长均为1×1,第一卷积层和第二卷积层的激活函数均为Relu函数,卷积块注意力模块的卷积核个数为1、卷积核大小为7×7、步长为1×1。
在本实施例中,第一批归一化层、第二批归一化层采用现有的批归一化层,第一卷积层、第二卷积层采用现有的卷积层,第一全连接层、第二全连接层采用现有的全连接层,最大池化层、Flatten层、Dropout层均采用现有技术;卷积块注意力模块采用现有技术,来源于S Woo,J Park,J Y Lee et al.,CBAM:Convolutional Block Attention Module[J],2018.(CBAM:卷积块注意力模块);相加合并操作是指对应的元素相加,例如:第1个残差块的输出端输出的数据与第2个残差块的输出端输出的数据相加合并,是指第1个残差块的输出端输出的数据中的元素与第2个残差块的输出端输出的数据中对应的元素相加。
一般残差块由两个卷积层串联组合,而在本发明中引入了CBAM,即每个残差块是由两个卷积层和一个CBAM串联组合而成,其中CBAM放在残差块的最后一层。
步骤4:将E和标签
Figure BDA0003697286050000101
输入到构建的ResNet-CBAM网络中进行训练,在训练过程中采用交叉熵损失函数并利用自适应矩估计(Adam)算法更新ResNet-CBAM网络中的参数;其中,Y的维数为K×1,y1、y2、yK的值为0或1,y1为E1对应的标签,E1表示次级用户在第1个感知时段采样的所有信号的能量构成的能量向量,E1=[E1(1) E1(2)…E1(N)],y1的值为0时代表在第1个感知时段主用户对授权频谱的真实占用状态为未占用,y1的值为1时代表在第1个感知时段主用户对授权频谱的真实占用状态为占用,y2为E2对应的标签,E2表示次级用户在第2个感知时段采样的所有信号的能量构成的向量能量,E2=[E2(1) E2(2)…E2(N)],y2的值为0时代表在第2个感知时段主用户对授权频谱的真实占用状态为未占用,y2的值为1时代表在第2个感知时段主用户对授权频谱的真实占用状态为占用,yK为EK对应的标签,EK表示次级用户在第K个感知时段采样的所有信号的能量构成的能量向量,EK=[EK(1) EK(2)…EK(N)],yK的值为0时代表在第K个感知时段主用户对授权频谱的真实占用状态为未占用,yK的值为1时代表在第K个感知时段主用户对授权频谱的真实占用状态为占用。
本发明在训练ResNet-CBAM网络时采用的优化方法是Adam算法,采用其来优化ResNet-CBAM网络中的参数θ,Adam算法对参数更新的大小不随着梯度大小的缩放而变化,且不需要固定的目标函数,适合于解决很高噪声或稀疏梯度的问题等。
步骤5:使用训练数据E按照步骤4的过程训练40轮以上,最终训练得到ResNet-CBAM网络训练模型。
步骤6:在测试阶段对于同一个待感知的频段,次级用户按照步骤1和步骤2的过程,以相同的方式从该待感知的频段采集信号,在计算在测试阶段次级用户在每个感知时段的每个采样时刻采样的信号的能量后获取测试数据,记为
Figure BDA0003697286050000111
Figure BDA0003697286050000112
其中,K'表示在测试阶段的感知时段的数量,K'>1,在本实施例中取K'=10000,N'表示在测试阶段的每个感知时段的采样时刻的数量,N'>1,在本实施例中取N'=1000,
Figure BDA0003697286050000113
的维数为K'×N',
Figure BDA0003697286050000114
表示在测试阶段次级用户在第1个感知时段的第1个采样时刻采样的信号的能量,
Figure BDA0003697286050000115
表示在测试阶段次级用户在第1个感知时段的第2个采样时刻采样的信号的能量,
Figure BDA0003697286050000116
表示在测试阶段次级用户在第1个感知时段的第N'个采样时刻采样的信号的能量,
Figure BDA0003697286050000117
表示在测试阶段次级用户在第2个感知时段的第1个采样时刻采样的信号的能量,
Figure BDA0003697286050000118
表示在测试阶段次级用户在第2个感知时段的第2个采样时刻采样的信号的能量,
Figure BDA0003697286050000119
表示在测试阶段次级用户在第2个感知时段的第N'个采样时刻采样的信号的能量,
Figure BDA00036972860500001110
表示在测试阶段次级用户在第K'个感知时段的第1个采样时刻采样的信号的能量,
Figure BDA00036972860500001111
表示在测试阶段次级用户在第K'个感知时段的第2个采样时刻采样的信号的能量,
Figure BDA00036972860500001112
表示在测试阶段次级用户在第K'个感知时段的第N'个采样时刻采样的信号的能量。
步骤7:将
Figure BDA0003697286050000121
中的每行能量作为一个测试向量,共有K'个测试向量;然后将每个测试向量输入到ResNet-CBAM网络训练模型中,ResNet-CBAM网络训练模型输出每个测试向量对应的一个数值,数值为0或1,ResNet-CBAM网络训练模型输出的第k'个测试向量对应的数值为0时代表在测试阶段在第k'个感知时段主用户信号未占用授权频谱,ResNet-CBAM网络训练模型输出的第k'个测试向量对应的数值为1时代表在测试阶段在第k'个感知时段主用户信号占用授权频谱;其中,1≤k'≤K'。
采用检测概率和信噪比的关系曲线(信噪比-检测概率曲线)以及检测概率和虚警概率的关系曲线(ROC曲线)对本发明方法的性能进行评估。ResNet-CBAM网络经过训练后,对于任何数据,可以很自然地将其通过ResNet-CBAM网络训练模型输出结果,再根据纽曼皮尔逊准则(N-P)判断感知的结果。为了确定在给定虚警概率的情况下的检测阈值,使用蒙特卡洛方法。首先从训练数据E中的K个能量向量中按能量向量的序号先后顺序选出标记为H0的信号的能量构成的能量向量,假设选出的能量向量有
Figure BDA0003697286050000122
个,对选出的
Figure BDA0003697286050000123
个能量向量进行排序,排序的准则为:当
Figure BDA0003697286050000124
时,有
Figure BDA0003697286050000125
再将排序后的
Figure BDA0003697286050000126
个能量向量构成的数据记为
Figure BDA0003697286050000127
Figure BDA0003697286050000128
最后获取在给定虚警概率的情况下的检测阈值,记为γ,
Figure BDA0003697286050000129
其中,
Figure BDA00036972860500001210
Figure BDA00036972860500001211
表示选出的第l个能量向量,
Figure BDA00036972860500001212
表示选出的第v个能量向量,
Figure BDA00036972860500001213
表示对于
Figure BDA00036972860500001214
在主用户信号出现随机到达的情况下参数θ的概率,
Figure BDA00036972860500001215
表示对于
Figure BDA00036972860500001216
在主用户信号出现随机到达的情况下参数θ的概率,
Figure BDA00036972860500001217
表示排序后的第1个能量向量,
Figure BDA00036972860500001218
表示排序后的第2个能量向量,
Figure BDA00036972860500001219
表示排序后的第
Figure BDA00036972860500001220
个能量向量,round()为取整函数,
Figure BDA00036972860500001221
Figure BDA00036972860500001222
表示排序后的第
Figure BDA00036972860500001223
个能量向量,pf为给定的虚警概率。
对于测试数据
Figure BDA0003697286050000131
中的每个测试向量,可以根据ResNet-CBAM网络训练模型中的第二全连接层输出精确度判断在对应的感知时段主用户信号是离开还是到达。采用的判别标准为:如果
Figure BDA0003697286050000132
则判定在测试阶段在第k'个感知时段主用户信号是随机离开的;如果
Figure BDA0003697286050000133
则判定在测试阶段在第k'个感知时段主用户信号是随机到达的;其中,θ*表示θ优化之后的值,
Figure BDA0003697286050000134
表示测试数据
Figure BDA0003697286050000135
中的第k'个测试向量,
Figure BDA0003697286050000136
表示对于
Figure BDA0003697286050000137
在主用户信号出现随机到达的情况下参数θ*的概率。再获取检测概率和虚警概率,对应记为pd和pf,pd定义为:pd=p(H1|H1),pf定义为:pf=p(H1|H0),p(H1|H1)代表在主用户信号出现随机到达的情况下判为主用户信号随机到达的概率,p(H1|H0)代表在主用户信号出现随机离开的情况下判为主用户信号随机到达的概率。
为进一步验证本发明方法的可行性和有效性,对本发明方法进行仿真实验。
仿真实验中参数的设置如下:每个感知时段的采样点个数为1000(即采样时刻数),在训练阶段有K=250000个感知时段,在测试阶段有K'=10000个感知时段。ResNet-CBAM网络中的超参数Batch_size(一次训练所选取的样本大小)设置为128、epochs(训练的轮次)设置为40、learning rate(学习率)设置为0.0001。
在性能分析中,将本发明方法(ResNet-CBAM)与卷积神经网络(CNN)、加权的能量检测法(WED)以及传统的能量检测法(CED)进行比较,以进一步验证本发明方法的优势。在此采用两种衡量指标来度量各方法的性能,第一个指标是用来衡量不同信噪比下的检测概率,称为信噪比-检测概率曲线;第二个指标是反映在不同虚警概率下的检测概率,称为ROC曲线。
图4显示了虚警概率设置为0.1时本发明方法(ResNet-CBAM)、卷积神经网络(CNN)、加权的能量检测法(WED)以及传统的能量检测法(CED)的信噪比-检测概率曲线。从图4中可以看出,本发明方法的检测性能明显优于WED方法和CED方法,相较于CNN而言,当信噪比低于-3dB时,本发明方法的检测性能要优于CNN。
图5显示了信噪比设置为-10dB时本发明方法(ResNet-CBAM)、卷积神经网络(CNN)、加权的能量检测法(WED)以及传统的能量检测法(CED)的ROC曲线。从图5中可以看出,本发明方法的性能要好于其它对比方法,原因在于:本发明方法构建的网络采用了残差网络以便可以加深网络的深度提高网络的特征提取能力,另外又在残差块中插入CBAM进一步提高了残差网络的性能。

Claims (1)

1.一种基于ResNet-CBAM的频谱感知方法,其特征在于包括以下步骤:
步骤1:在认知无线电系统中,设定主用户状态在任一个感知时段跳变的次数最多只有三次,即在任一个感知时段主用户信号出现随机到达和离开的情况最多只发生三次,设定仅存在1个次级用户,设定次级用户从一个待感知的频段采集信号,且在每个感知时段的N个采样时刻采样信号,在K个感知时段共采样K×N个信号,将次级用户在第k个感知时段的第n个采样时刻采样的信号记为sk(n),当在第k个感知时段主用户信号出现随机离开的情况时sk(n)描述为:
Figure FDA0003697286040000011
并设置sk(n)的标记为H0;当在第k个感知时段主用户信号出现随机到达的情况时sk(n)描述为:
Figure FDA0003697286040000012
并设置sk(n)的标记为H1;其中,K>1,N>1,1≤k≤K,1≤n≤N,xk(n)表示次级用户在第k个感知时段的第n个采样时刻采样的信号中的主用户信号,wk(n)表示次级用户在第k个感知时段的第n个采样时刻采样的信号中的高斯白噪声信号,wk(n)的均值为0且方差为
Figure FDA0003697286040000013
Na、Nc和Ne表示在第k个感知时段主用户信号随机离开时的前一个采样时刻,Nb、Nd和Nf表示在第k个感知时段主用户信号随机到达时的前一个采样时刻,Na、Nb、Nc、Nd、Ne、Nf均服从超指数分布,Na∈[0,N-1]、Nb∈[0,N-1]、Nc∈[0,N]、Nd∈[0,N-1]、Ne∈[0,N-1]、Nf∈[0,N];
步骤2:计算次级用户在每个感知时段的每个采样时刻采样的信号的能量,将次级用户在第k个感知时段的第n个采样时刻采样的信号的能量记为Ek(n),Ek(n)=|sk(n)|2;然后获取训练数据,记为E,
Figure FDA0003697286040000021
其中,符号“| |”为取绝对值符号,符号“[ ]”为矩阵或向量表示符号,E的维数为K×N,E1(1)表示次级用户在第1个感知时段的第1个采样时刻采样的信号的能量,E1(2)表示次级用户在第1个感知时段的第2个采样时刻采样的信号的能量,E1(N)表示次级用户在第1个感知时段的第N个采样时刻采样的信号的能量,E2(1)表示次级用户在第2个感知时段的第1个采样时刻采样的信号的能量,E2(2)表示次级用户在第2个感知时段的第2个采样时刻采样的信号的能量,E2(N)表示次级用户在第2个感知时段的第N个采样时刻采样的信号的能量,EK(1)表示次级用户在第K个感知时段的第1个采样时刻采样的信号的能量,EK(2)表示次级用户在第K个感知时段的第2个采样时刻采样的信号的能量,EK(N)表示次级用户在第K个感知时段的第N个采样时刻采样的信号的能量;
步骤3:构建ResNet-CBAM网络:该网络包括五个结构相同的残差块、最大池化层、Flatten层、第一全连接层、Dropout层、第二全连接层,第1个残差块的输入端作为该网络的输入端接收输入数据,第2个残差块的输入端接收输入数据与第1个残差块的输出端输出的数据通过相加合并后得到的数据,第3个残差块的输入端接收第1个残差块的输出端输出的数据与第2个残差块的输出端输出的数据通过相加合并后得到的数据,第4个残差块的输入端接收第2个残差块的输出端输出的数据与第3个残差块的输出端输出的数据通过相加合并后得到的数据,第5个残差块的输入端接收第3个残差块的输出端输出的数据与第4个残差块的输出端输出的数据通过相加合并后得到的数据,最大池化层的输入端接收第4个残差块的输出端输出的数据与第5个残差块的输出端输出的数据通过相加合并后得到的数据,Flatten层的输入端接收最大池化层的输出端输出的数据,第一全连接层的输入端接收Flatten层的输出端输出的数据,Dropout层的输入端接收第一全连接层的输出端输出的数据,第二全连接层的输入端接收Dropout层的输出端输出的数据,第二全连接层的输出端作为该网络的输出端;其中,最大池化层的池化窗口大小为2×2、步长为2×2,第一全连接层的神经元个数为128,Dropout层的丢失率为0.5,第二全连接层的神经元个数为2,残差块由第一批归一化层、第一卷积层、第二批归一化层、第二卷积层、卷积块注意力模块组成,第一批归一化层的输入端为其所在的残差块的输入端,第一卷积层的输入端接收第一批归一化层的输出端输出的数据,第二批归一化层的输入端接收第一卷积层的输出端输出的数据,第二卷积层的输入端接收第二批归一化层的输出端输出的数据,卷积块注意力模块的输入端接收第二卷积层的输出端输出的数据,卷积块注意力模块的输出端为其所在的残差块的输出端,第一卷积层和第二卷积层的卷积核个数均为32、卷积核大小均为3×3、步长均为1×1,第一卷积层和第二卷积层的激活函数均为Relu函数,卷积块注意力模块的卷积核个数为1、卷积核大小为7×7、步长为1×1;
步骤4:将E和标签
Figure FDA0003697286040000031
输入到构建的ResNet-CBAM网络中进行训练,在训练过程中采用交叉熵损失函数并利用自适应矩估计算法更新ResNet-CBAM网络中的参数;其中,Y的维数为K×1,y1、y2、yK的值为0或1,y1为E1对应的标签,E1表示次级用户在第1个感知时段采样的所有信号的能量构成的能量向量,E1=[E1(1) E1(2) … E1(N)],y1的值为0时代表在第1个感知时段主用户对授权频谱的真实占用状态为未占用,y1的值为1时代表在第1个感知时段主用户对授权频谱的真实占用状态为占用,y2为E2对应的标签,E2表示次级用户在第2个感知时段采样的所有信号的能量构成的向量能量,E2=[E2(1) E2(2) … E2(N)],y2的值为0时代表在第2个感知时段主用户对授权频谱的真实占用状态为未占用,y2的值为1时代表在第2个感知时段主用户对授权频谱的真实占用状态为占用,yK为EK对应的标签,EK表示次级用户在第K个感知时段采样的所有信号的能量构成的能量向量,EK=[EK(1) EK(2) …EK(N)],yK的值为0时代表在第K个感知时段主用户对授权频谱的真实占用状态为未占用,yK的值为1时代表在第K个感知时段主用户对授权频谱的真实占用状态为占用;
步骤5:使用训练数据E按照步骤4的过程训练40轮以上,最终训练得到ResNet-CBAM网络训练模型;
步骤6:在测试阶段对于同一个待感知的频段,次级用户按照步骤1和步骤2的过程,以相同的方式从该待感知的频段采集信号,在计算在测试阶段次级用户在每个感知时段的每个采样时刻采样的信号的能量后获取测试数据,记为
Figure FDA0003697286040000041
Figure FDA0003697286040000042
其中,K'表示在测试阶段的感知时段的数量,K'>1,N'表示在测试阶段的每个感知时段的采样时刻的数量,N'>1,
Figure FDA0003697286040000043
的维数为K'×N',
Figure FDA0003697286040000044
表示在测试阶段次级用户在第1个感知时段的第1个采样时刻采样的信号的能量,
Figure FDA0003697286040000045
表示在测试阶段次级用户在第1个感知时段的第2个采样时刻采样的信号的能量,
Figure FDA0003697286040000046
表示在测试阶段次级用户在第1个感知时段的第N'个采样时刻采样的信号的能量,
Figure FDA0003697286040000047
表示在测试阶段次级用户在第2个感知时段的第1个采样时刻采样的信号的能量,
Figure FDA0003697286040000048
表示在测试阶段次级用户在第2个感知时段的第2个采样时刻采样的信号的能量,
Figure FDA0003697286040000049
表示在测试阶段次级用户在第2个感知时段的第N'个采样时刻采样的信号的能量,
Figure FDA00036972860400000410
表示在测试阶段次级用户在第K'个感知时段的第1个采样时刻采样的信号的能量,
Figure FDA00036972860400000411
表示在测试阶段次级用户在第K'个感知时段的第2个采样时刻采样的信号的能量,
Figure FDA0003697286040000051
表示在测试阶段次级用户在第K'个感知时段的第N'个采样时刻采样的信号的能量;
步骤7:将
Figure FDA0003697286040000052
中的每行能量作为一个测试向量,共有K'个测试向量;然后将每个测试向量输入到ResNet-CBAM网络训练模型中,ResNet-CBAM网络训练模型输出每个测试向量对应的一个数值,数值为0或1,ResNet-CBAM网络训练模型输出的第k'个测试向量对应的数值为0时代表在测试阶段在第k'个感知时段主用户信号未占用授权频谱,ResNet-CBAM网络训练模型输出的第k'个测试向量对应的数值为1时代表在测试阶段在第k'个感知时段主用户信号占用授权频谱;其中,1≤k'≤K'。
CN202210678266.6A 2022-06-16 2022-06-16 一种基于ResNet-CBAM的频谱感知方法 Active CN115276855B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210678266.6A CN115276855B (zh) 2022-06-16 2022-06-16 一种基于ResNet-CBAM的频谱感知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210678266.6A CN115276855B (zh) 2022-06-16 2022-06-16 一种基于ResNet-CBAM的频谱感知方法

Publications (2)

Publication Number Publication Date
CN115276855A true CN115276855A (zh) 2022-11-01
CN115276855B CN115276855B (zh) 2023-09-29

Family

ID=83760776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210678266.6A Active CN115276855B (zh) 2022-06-16 2022-06-16 一种基于ResNet-CBAM的频谱感知方法

Country Status (1)

Country Link
CN (1) CN115276855B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116310597A (zh) * 2023-05-09 2023-06-23 广东工业大学 垃圾分类和定位方法、无人清洁艇控制方法及系统
CN116545556A (zh) * 2023-04-28 2023-08-04 哈尔滨工程大学 基于动态阈值和残差卷积网络的电磁频谱占用度二维预测方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109525994A (zh) * 2018-12-17 2019-03-26 中国空间技术研究院 基于支持向量机的高能效频谱感知方法
WO2020035920A1 (ja) * 2018-08-15 2020-02-20 三菱電機株式会社 信号検出装置および信号検出方法
CN111417124A (zh) * 2019-06-28 2020-07-14 西南交通大学 在认知无线网络环境下频谱感知的方法
CN111600667A (zh) * 2020-05-25 2020-08-28 电子科技大学 一种基于cnn-lstm的频谱感知方法
US10880752B1 (en) * 2020-05-08 2020-12-29 King Abdulaziz University Method for spectrum sensing unoccupied frequency
EP3789922A1 (en) * 2019-09-06 2021-03-10 Imec VZW A neural network for identifying radio technologies
CN112770325A (zh) * 2020-12-09 2021-05-07 华南理工大学 一种基于深度学习的认知车联网频谱感知方法
CN113067653A (zh) * 2021-03-17 2021-07-02 北京邮电大学 一种频谱感知方法、装置、电子设备及介质
KR20210126912A (ko) * 2020-04-13 2021-10-21 엘아이지넥스원 주식회사 인지 무선 시스템에서 합성곱 신경망 기반 스펙트럼 센싱 방법 및 장치
CN113570032A (zh) * 2021-06-11 2021-10-29 杭州电子科技大学 基于半监督深度神经网络的有限数据频谱感知方法
CN113852432A (zh) * 2021-01-07 2021-12-28 上海应用技术大学 基于rcs-gru模型的频谱预测感知方法
CN114298086A (zh) * 2021-11-30 2022-04-08 中国人民解放军海军航空大学航空作战勤务学院 基于深度学习和四阶滞后矩谱的stbc-ofdm信号盲识别方法和装置
CN114337880A (zh) * 2021-11-15 2022-04-12 宁波大学 一种考虑主用户信号随机到达和离开的频谱感知方法
CN114363128A (zh) * 2022-01-05 2022-04-15 电子科技大学长三角研究院(湖州) 一种基于深度学习的宽带信号检测方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035920A1 (ja) * 2018-08-15 2020-02-20 三菱電機株式会社 信号検出装置および信号検出方法
CN109525994A (zh) * 2018-12-17 2019-03-26 中国空间技术研究院 基于支持向量机的高能效频谱感知方法
CN111417124A (zh) * 2019-06-28 2020-07-14 西南交通大学 在认知无线网络环境下频谱感知的方法
EP3789922A1 (en) * 2019-09-06 2021-03-10 Imec VZW A neural network for identifying radio technologies
KR20210126912A (ko) * 2020-04-13 2021-10-21 엘아이지넥스원 주식회사 인지 무선 시스템에서 합성곱 신경망 기반 스펙트럼 센싱 방법 및 장치
US10880752B1 (en) * 2020-05-08 2020-12-29 King Abdulaziz University Method for spectrum sensing unoccupied frequency
CN111600667A (zh) * 2020-05-25 2020-08-28 电子科技大学 一种基于cnn-lstm的频谱感知方法
CN112770325A (zh) * 2020-12-09 2021-05-07 华南理工大学 一种基于深度学习的认知车联网频谱感知方法
CN113852432A (zh) * 2021-01-07 2021-12-28 上海应用技术大学 基于rcs-gru模型的频谱预测感知方法
CN113067653A (zh) * 2021-03-17 2021-07-02 北京邮电大学 一种频谱感知方法、装置、电子设备及介质
CN113570032A (zh) * 2021-06-11 2021-10-29 杭州电子科技大学 基于半监督深度神经网络的有限数据频谱感知方法
CN114337880A (zh) * 2021-11-15 2022-04-12 宁波大学 一种考虑主用户信号随机到达和离开的频谱感知方法
CN114298086A (zh) * 2021-11-30 2022-04-08 中国人民解放军海军航空大学航空作战勤务学院 基于深度学习和四阶滞后矩谱的stbc-ofdm信号盲识别方法和装置
CN114363128A (zh) * 2022-01-05 2022-04-15 电子科技大学长三角研究院(湖州) 一种基于深度学习的宽带信号检测方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JIAI HE: "An Effective Reconstruction Algorithm Based on Modulated Wideband Converter for Wideband Spectrum Sensing", 《IEEE ACCESS》 *
ZAN YIN: "The Performance Analysis of Signal Recognition Using Attention Based CNN Method", 《IEEE ACCESS 》 *
董猛;吴戈;曹洪玉;景文博;于洪洋;: "基于注意力残差卷积网络的视频超分辨率重构", 长春理工大学学报(自然科学版), no. 01 *
赵晓东;苏公瑾;李克利;成杰;徐江峰;: "一种融合EMD分解和LSTM网络的频谱占用度预测模型", 计算机科学, no. 1 *
陈芬;林洁;叶勋;俞敏杰;王正旺;刘婷婷;王俊;束锋;: "一种适用于主用户信号随机出现和离开的能量频谱感知方法", 数据采集与处理, no. 06 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116545556A (zh) * 2023-04-28 2023-08-04 哈尔滨工程大学 基于动态阈值和残差卷积网络的电磁频谱占用度二维预测方法
CN116545556B (zh) * 2023-04-28 2024-03-29 哈尔滨工程大学 基于动态阈值和残差卷积网络的电磁频谱占用度二维预测方法
CN116310597A (zh) * 2023-05-09 2023-06-23 广东工业大学 垃圾分类和定位方法、无人清洁艇控制方法及系统

Also Published As

Publication number Publication date
CN115276855B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN111600667B (zh) 一种基于cnn-lstm的频谱感知方法
CN115276855A (zh) 一种基于ResNet-CBAM的频谱感知方法
CN114337880B (zh) 一种考虑主用户信号随机到达和离开的频谱感知方法
CN109934269B (zh) 一种电磁信号的开集识别方法和装置
CN109525369B (zh) 一种基于循环神经网络的信道编码类型盲识别方法
CN110929842B (zh) 非合作无线电信号突发时间区域精确智能检测方法
CN112910811B (zh) 基于联合学习的噪声水平未知条件下的盲调制识别方法和装置
CN110224771B (zh) 基于bp神经网络与信息几何的频谱感知方法及装置
CN110932807B (zh) 一种非高斯噪声下mimo系统的频谱感知方法及系统
CN114239749A (zh) 基于残差收缩及双向长短期记忆网络的调制识别方法
CN112819236A (zh) 一种基于神经网络的低轨卫星物联网活跃终端预测方法
CN108631817B (zh) 一种基于时频分析和径向神经网络进行跳频信号频段预测的方法
CN113206808B (zh) 一种基于一维多输入卷积神经网络的信道编码盲识别方法
CN112350790B (zh) 一种基于深度学习的频谱感知检测方法、装置及设备
CN113098638A (zh) 一种基于分组极差图的微弱信号检测方法
CN115276853B (zh) 一种基于cnn-cbam的频谱感知方法
CN115276854B (zh) 基于ResNet-CBAM的主用户信号随机到达和离开的能量频谱感知方法
Zhang et al. Machine learning based protocol classification in unlicensed 5 GHz bands
CN113114398B (zh) 基于残差连接与膨胀卷积的通信干扰存在性检测方法
CN115270891A (zh) 一种信号对抗样本的生成方法、装置、设备及存储介质
CN109286937B (zh) 利用小特征值估计噪声功率的协方差矩阵频谱感知方法
CN115276856B (zh) 一种基于深度学习的信道选择方法
CN114285701B (zh) 一种主用户发射功率识别方法、系统、设备及终端
CN116318444B (zh) 二维频谱感知方法、装置、电子设备和存储介质
CN116318480B (zh) 频谱感知方法、装置和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant