CN115270362A - 离心压气机额定工况下的叶片构型设计优化方法及装置 - Google Patents

离心压气机额定工况下的叶片构型设计优化方法及装置 Download PDF

Info

Publication number
CN115270362A
CN115270362A CN202211204810.XA CN202211204810A CN115270362A CN 115270362 A CN115270362 A CN 115270362A CN 202211204810 A CN202211204810 A CN 202211204810A CN 115270362 A CN115270362 A CN 115270362A
Authority
CN
China
Prior art keywords
blade
mapping model
optimization
centrifugal compressor
mapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211204810.XA
Other languages
English (en)
Other versions
CN115270362B (zh
Inventor
贾志新
刘基盛
李威
孙浩
王津
钱凌云
邱林宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202211204810.XA priority Critical patent/CN115270362B/zh
Publication of CN115270362A publication Critical patent/CN115270362A/zh
Application granted granted Critical
Publication of CN115270362B publication Critical patent/CN115270362B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

本发明涉及离心压气机优化技术领域,特别是指一种离心压气机额定工况下的叶片构型设计优化方法及装置,方法包括:创建第一映射模型与第二映射模型,对样本数据进行初始化,得到更新后的样本数据;求解第一映射模型以及第二映射模型的非线性方程组的局部特征参数,确定原始叶片表面的变化量;确定新的叶片几何构型;生成新的离心压气机叶轮网格模型;对新的离心压气机叶轮网格模型进行额定工况的定常数值模拟计算,得到气动性能;基于气动性能,利用单目标粒子群优化算法,对设计顶点的变量进行寻优,得到优化结果;根据优化结果确定离心压气机叶片的最佳几何构型。采用本发明,可以增加几何控制参数的径向约束,缩小设计空间,提高寻优效率。

Description

离心压气机额定工况下的叶片构型设计优化方法及装置
技术领域
本发明涉及离心压气机优化技术领域,特别是指一种离心压气机额定工况下的叶片构型设计优化方法及装置。
背景技术
离心压气机是保障国防安全和促进国民经济发展的重要动力装备,已广泛应用于航空航天、船舶、化工和新能源等领域。根据全国能源基础与标准化委员会的有关统计资料,工业压气机系统年耗电量约占全国总发电量的6%-9%左右。提高离心压气机的气动性能对“节能减排”具有积极意义。
但离心压气机工作时通常伴随大逆压梯度、强三维效应和非定常特征,对离心压气机复杂曲面叶片进行三维气动设计优化时会面临设计变量多、缺乏径向约束和优化效率低等难题。
发明内容
本发明实施例提供了一种离心压气机额定工况下的叶片构型设计优化方法及装置。所述技术方案如下:
一方面,提供了一种离心压气机额定工况下的叶片构型设计优化方法,该方法由电子设备实现,该方法包括:
S1、创建第一映射模型与第二映射模型,所述第一映射模型为原始叶片吸力面与单位样条曲面的映射模型,所述第二映射模型为原始叶片压力面与单位样条曲面的映射模型;
S2、确定单位样条曲面的设计顶点变量和设计空间,获取样本数据,对所述样本数据进行初始化,得到更新后的样本数据;
S3、基于所述第一映射模型、第二映射模型以及更新后的样本数据,采用预设优化算法,求解所述第一映射模型以及第二映射模型的非线性方程组的局部特征参数,确定原始叶片表面的变化量;
S4、基于所述原始叶片表面的变化量,确定新的叶片几何构型;
S5、基于预设的网格模板文件,对所述新的叶片几何构型进行网格划分,生成新的离心压气机叶轮网格模型;
S6、对新的离心压气机叶轮网格模型进行额定工况的定常数值模拟计算,得到气动性能;
S7、设定额定工况下离心压气机叶片的气动构型优化流程的目标函数和约束条件,基于所述气动性能,利用单目标粒子群优化算法,对设计顶点的变量进行寻优,得到优化结果;
S8、判断所述优化结果是否满足寻优结束条件,如果所述优化结果不满足寻优结束条件,则基于得到的优化结果更新样本数据,基于更新后的样本数据转去执行S3;如果所述优化结果满足寻优结束条件,则结束优化流程,根据所述优化结果确定离心压气机叶片的最佳几何构型。
可选地,所述第一映射模型和所述第二映射模型的建立过程相同,采用的参数值不同;
所述创建第一映射模型与第二映射模型,包括:
对原始叶片吸力面和压力面的几何型线进行单位化,生成单位化的映射样条曲面,建立第一映射模型和第二映射模型。
可选地,所述对原始叶片吸力面和压力面的几何型线进行单位化,生成单位化的映射样条曲面,建立第一映射模型和第二映射模型,包括:
S11、根据下述公式(1)定义横坐标,根据下述公式(2)定义纵坐标,分别对原始叶片吸力面和原始叶片压力面的几何型线进行单位化:
Figure 275129DEST_PATH_IMAGE001
式中,
Figure 545443DEST_PATH_IMAGE002
是型线单位化后的横坐标,
Figure 75781DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 625711DEST_PATH_IMAGE004
是型线标号,
Figure 834976DEST_PATH_IMAGE005
是第
Figure 722029DEST_PATH_IMAGE006
段弧长,
Figure 700349DEST_PATH_IMAGE007
是第
Figure 155601DEST_PATH_IMAGE004
条型线;
Figure 524266DEST_PATH_IMAGE008
式中,
Figure 679259DEST_PATH_IMAGE009
是型线单位化后的纵坐标
Figure 449769DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 75922DEST_PATH_IMAGE010
是型线标号,
Figure 56516DEST_PATH_IMAGE011
是第
Figure 895159DEST_PATH_IMAGE012
段弧长,而
Figure 864384DEST_PATH_IMAGE013
Figure 927018DEST_PATH_IMAGE003
条型线;
S12、根据下述公式(3),生成单位映射样条曲面:
Figure 739116DEST_PATH_IMAGE014
式中,
Figure 506083DEST_PATH_IMAGE015
是单位化的映射样条曲面上的点坐标,
Figure 782344DEST_PATH_IMAGE016
是样条曲面控制顶点坐标,
Figure 953562DEST_PATH_IMAGE017
是样条曲面上的横坐标的标号,
Figure 892437DEST_PATH_IMAGE018
样条曲面上的横坐标的控制顶点数,
Figure 869621DEST_PATH_IMAGE019
是样条曲面上的 纵坐标的标号,
Figure 203650DEST_PATH_IMAGE020
样条曲面上的纵坐标的控制顶点数,
Figure 670403DEST_PATH_IMAGE021
Figure 519411DEST_PATH_IMAGE022
是伯恩斯坦基函 数,其中
Figure 237968DEST_PATH_IMAGE023
Figure 301870DEST_PATH_IMAGE024
是映射参数;
S13、根据下述公式(4),分别建立第一映射模型以及第二映射模型:
Figure 877208DEST_PATH_IMAGE025
式中,
Figure 151194DEST_PATH_IMAGE026
是原始叶片表面的变化量。
可选地,所述预设优化算法包括蒙特卡略算法或启发式算法。
可选地,所述S4的基于所述原始叶片表面的变化量,确定新的叶片几何构型,包括:
将所述原始叶片表面的变化量叠加在原始叶片表面的坐标值上,确定新叶片表面的坐标值,进而确定新的叶片几何构型。
可选地,所述设定额定工况下离心压气机叶片的气动构型优化流程的目标函数和约束条件,包括:
设定离心压气机叶片的绝热效率最大值为额定工况下离心压气机叶片的气动构型优化流程的目标函数,设定总压比不降低为额定工况下离心压气机叶片的气动构型优化流程的约束条件,其中,所述总压比为离心压气机出口总压力与进口总压力之比。
另一方面,提供了一种离心压气机额定工况下的叶片构型设计优化装置,该装置应用于离心压气机额定工况下的叶片构型设计优化方法,该装置包括:
创建模块,用于创建第一映射模型与第二映射模型,所述第一映射模型为原始叶片吸力面与单位样条曲面的映射模型,所述第二映射模型为原始叶片压力面与单位样条曲面的映射模型;
更新模块,用于确定单位样条曲面的设计顶点变量和设计空间,获取样本数据,对所述样本数据进行初始化,得到更新后的样本数据;
求解模块,用于基于所述第一映射模型、第二映射模型以及更新后的样本数据,采用预设优化算法,求解所述第一映射模型以及第二映射模型的非线性方程组的局部特征参数,确定原始叶片表面的变化量;
确定模块,用于基于所述原始叶片表面的变化量,确定新的叶片几何构型;
划分模块,用于基于预设的网格模板文件,对所述新的叶片几何构型进行网格划分,生成新的离心压气机叶轮网格模型;
计算模块,用于对新的离心压气机叶轮网格模型进行额定工况的定常数值模拟计算,得到气动性能;
寻优模块,用于设定额定工况下离心压气机叶片的气动构型优化流程的目标函数和约束条件,基于所述气动性能,利用单目标粒子群优化算法,对设计顶点的变量进行寻优,得到优化结果;
判断模块,用于判断所述优化结果是否满足寻优结束条件,如果所述优化结果不满足寻优结束条件,则基于得到的优化结果更新样本数据,基于更新后的样本数据转去执行S3;如果所述优化结果满足寻优结束条件,则结束优化流程,根据所述优化结果确定离心压气机叶片的最佳几何构型。
可选地,所述创建模块,用于:
对原始叶片吸力面和压力面的几何型线进行单位化,生成单位化的映射样条曲面,建立第一映射模型和第二映射模型。
可选地,所述第一映射模型和所述第二映射模型的建立过程相同,采用的参数值不同;
所述创建模块,用于:
S11、根据下述公式(1)定义横坐标,根据下述公式(2)定义纵坐标,分别对原始叶片吸力面和原始叶片压力面的几何型线进行单位化:
Figure 798076DEST_PATH_IMAGE001
式中,
Figure 106698DEST_PATH_IMAGE002
是型线单位化后的横坐标,
Figure 430101DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 988121DEST_PATH_IMAGE027
是型线标号,
Figure 314060DEST_PATH_IMAGE005
是第
Figure 336243DEST_PATH_IMAGE006
段弧长,
Figure 722225DEST_PATH_IMAGE007
是第
Figure 111749DEST_PATH_IMAGE004
条型线;
Figure 710221DEST_PATH_IMAGE008
式中,
Figure 852489DEST_PATH_IMAGE009
是型线单位化后的纵坐标
Figure 206110DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 941985DEST_PATH_IMAGE010
是型线标号,
Figure 718049DEST_PATH_IMAGE011
是第
Figure 386927DEST_PATH_IMAGE012
段弧长,而
Figure 114712DEST_PATH_IMAGE013
Figure 196937DEST_PATH_IMAGE003
条型线;
S12、根据下述公式(3),生成单位化的映射样条曲面:
Figure 199528DEST_PATH_IMAGE014
式中,
Figure 191755DEST_PATH_IMAGE015
是单位化的映射样条曲面上的点坐标,
Figure 700228DEST_PATH_IMAGE016
是样条曲面控制顶点坐标,
Figure 941854DEST_PATH_IMAGE017
是样条曲面上的横坐标的标号,
Figure 951398DEST_PATH_IMAGE018
样条曲面上的横坐标的控制顶点数,
Figure 922765DEST_PATH_IMAGE019
是样条曲面上的 纵坐标的标号,
Figure 726773DEST_PATH_IMAGE020
样条曲面上的纵坐标的控制顶点数,
Figure 721274DEST_PATH_IMAGE021
Figure 642831DEST_PATH_IMAGE022
是伯恩斯坦基函 数,其中
Figure 344071DEST_PATH_IMAGE023
Figure 443614DEST_PATH_IMAGE024
是映射参数;
S13、根据下述公式(4),分别建立第一映射模型以及第二映射模型:
Figure 925411DEST_PATH_IMAGE025
其中,
Figure 276758DEST_PATH_IMAGE026
是原始叶片表面的变化量。
可选地,所述预设优化算法包括蒙特卡略算法或启发式算法。
可选地,所述确定模块,用于:
将所述原始叶片表面的变化量叠加在原始叶片表面的坐标值上,确定新叶片表面的坐标值,进而确定新的叶片几何构型。
可选地,所述寻优模块,用于:
设定离心压气机叶片的绝热效率最大值为额定工况下离心压气机叶片的气动构型优化流程的目标函数,设定总压比不降低为额定工况下离心压气机叶片的气动构型优化流程的约束条件,其中,所述总压比为离心压气机出口总压力与进口总压力之比。
另一方面,提供了一种电子设备,所述电子设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述离心压气机额定工况下的叶片构型设计优化方法。
另一方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由处理器加载并执行以实现上述离心压气机额定工况下的叶片构型设计优化方法。
本发明实施例提供的技术方案带来的有益效果至少包括:
本发明实施例中,通过一种离心压气机的叶片构型优化方法,在单目标额定工况下,只需少量的设计变量即可实现离心压气机复杂曲面叶片的灵活构型,缩小了设计空间,提高了寻优效率;采用了伯恩斯坦基函数,宜于全局优化,有利于快速求解出离心压气机复杂曲面叶片几何构型的优化解;几何控制参数上增加了径向约束;同时本发明可以保证叶轮与机匣的相交,有助于提高优化过程中的网格生成率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种离心压气机额定工况下的叶片构型设计优化方法流程图;
图2是本发明实施例提供的一种离心压气机额定工况下的叶片构型设计优化方法流程框图;
图3是本发明实施例提供的一种绝热效率-流量气动性能曲线变化图;
图4是本发明实施例提供的一种绝热效率-总压比气动性能曲线变化图;
图5是本发明实施例提供的一种离心压气机额定工况下的叶片构型设计优化装置框图;
图6是本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明实施例提供了一种离心压气机额定工况下的叶片构型设计优化方法,该方法可以由电子设备实现,该电子设备可以是终端或服务器。如图1所示的离心压气机额定工况下的叶片构型设计优化方法流程图,如图2所示的离心压气机额定工况下的叶片构型设计优化方法流程框图,该方法的处理流程可以包括如下的步骤:
S1、创建第一映射模型与第二映射模型。
其中,第一映射模型为原始叶片吸力面与单位样条曲面的映射模型,第二映射模型为原始叶片压力面与单位样条曲面的映射模型。
一种可行的实施方式中,采用型面映射参数化方法,对原始离心压气机叶片的几何构型进行参数化表达,具体地说,对原始叶片吸力面和压力面的几何型线进行单位化,生成单位化的映射样条曲面,建立第一映射模型和第二映射模型,第一映射模型和所述第二映射模型的建立过程相同,采用的参数值不同。相应地,S1可以具体包括以下步骤S11-S13:
S11、根据下述公式(1)定义横坐标,根据下述公式(2)定义纵坐标,分别对原始叶片吸力面和原始叶片压力面的几何型线进行单位化:
Figure 707870DEST_PATH_IMAGE001
式中,
Figure 119260DEST_PATH_IMAGE028
是型线单位化后的横坐标,
Figure 150670DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 836866DEST_PATH_IMAGE004
是型线标号,
Figure 778277DEST_PATH_IMAGE005
是第
Figure 203311DEST_PATH_IMAGE006
段弧长,
Figure 394121DEST_PATH_IMAGE007
是第
Figure 87271DEST_PATH_IMAGE004
条型线。
Figure 742243DEST_PATH_IMAGE008
式中,
Figure 495435DEST_PATH_IMAGE009
是型线单位化后的纵坐标
Figure 173541DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 14590DEST_PATH_IMAGE010
是型线标号,
Figure 665014DEST_PATH_IMAGE011
是第
Figure 385845DEST_PATH_IMAGE012
段弧长,而
Figure 879143DEST_PATH_IMAGE013
Figure 648516DEST_PATH_IMAGE003
条型线。
需要说明的是,原始叶型吸力面和压力面的型线单位化方法相同,因此,原始叶型吸力面和压力面均采用上述公式(1)定义横坐标,均采用上述公式(2)定义纵坐标。
S12、根据下述公式(3),生成单位映射样条曲面:
Figure 950185DEST_PATH_IMAGE029
式中,
Figure 419081DEST_PATH_IMAGE015
是单位化的映射样条曲面上的点坐标,
Figure 9462DEST_PATH_IMAGE016
是样条曲面控制顶点坐标,
Figure 379264DEST_PATH_IMAGE017
是样条曲面上的横坐标的标号,
Figure 128914DEST_PATH_IMAGE018
样条曲面上的横坐标的控制顶点数,
Figure 129231DEST_PATH_IMAGE019
是样条曲面上的 纵坐标的标号,
Figure 3646DEST_PATH_IMAGE020
样条曲面上的纵坐标的控制顶点数,
Figure 521346DEST_PATH_IMAGE021
Figure 735290DEST_PATH_IMAGE022
是伯恩斯坦基函 数,其中
Figure 296721DEST_PATH_IMAGE023
Figure 658432DEST_PATH_IMAGE024
是映射参数。
S13、根据下述公式(4),分别建立第一映射模型以及第二映射模型:
Figure 307719DEST_PATH_IMAGE025
式中,
Figure 281229DEST_PATH_IMAGE026
是原始叶片表面的变化量。
需要说明的是,第一映射模型和第二映射模型的数学表达式相同,均采用上述公式(4)建立。
S2、确定单位样条曲面的设计顶点变量和设计空间,获取样本数据,对样本数据进行初始化,得到更新后的样本数据。
可选地,对样本数据进行初始化的方式可以包括采用拉丁超立方抽样方法初始化样本数据。
一种可行的实施方式中,分别在吸力面和压力面的映射平面上,横轴布局6个设计变量,纵轴布局3个设计变量,基于离心压气机气动特性,在前后缘及叶顶处设计点布局密,密处相邻设计点之间距离为5%;初始化50个样本点,每一维变量分成50个小区间,每个样本点在小区间内是随机分布的,所选取的50个样本点对任意一个维度投影时,该维度上的每一个小区间内有且仅有一个样本点。
S3、基于第一映射模型、第二映射模型以及更新后的样本数据,采用预设优化算法,求解第一映射模型以及第二映射模型的非线性方程组的局部特征参数,确定原始叶片表面的变化量。
可选地,由于蒙特卡略算法或启发式算法的鲁棒性比较强,因此,预设优化算法可以是蒙特卡略算法或启发式算法。
一种可行的实施方式中,建立映射函数与真实叶片数据点的误差模型,数学表达式如下公式(5):
Figure 685666DEST_PATH_IMAGE030
式中,
Figure 737936DEST_PATH_IMAGE031
为映射参数,
Figure 315547DEST_PATH_IMAGE032
为映射值与真实值的误差为,
Figure 769663DEST_PATH_IMAGE033
为真实坐标,
Figure 345000DEST_PATH_IMAGE034
是样条曲面控制顶点坐标,
Figure 759932DEST_PATH_IMAGE017
是样条曲面上的横坐标的标号,
Figure 16601DEST_PATH_IMAGE018
样条曲面上的横坐标的控 制顶点数,
Figure 449857DEST_PATH_IMAGE019
是样条曲面上的纵坐标的标号,
Figure 196096DEST_PATH_IMAGE020
样条曲面上的纵坐标的控制顶点数,
Figure 691799DEST_PATH_IMAGE035
Figure 403358DEST_PATH_IMAGE036
是伯恩斯坦基函数,其中
Figure 363224DEST_PATH_IMAGE037
Figure 483627DEST_PATH_IMAGE038
是映射参数。
首先,初始化映射参数
Figure 856839DEST_PATH_IMAGE039
,计算初始差值
Figure 720890DEST_PATH_IMAGE040
,设定一正数
Figure 535263DEST_PATH_IMAGE041
。再次,在 区间
Figure 967512DEST_PATH_IMAGE042
上生成随机数向量
Figure 437808DEST_PATH_IMAGE043
,计算
Figure 636708DEST_PATH_IMAGE044
。当
Figure 899062DEST_PATH_IMAGE045
Figure 626846DEST_PATH_IMAGE046
Figure 161602DEST_PATH_IMAGE047
Figure 429772DEST_PATH_IMAGE048
。若随机生成的多组随机向量仍不满足
Figure 546633DEST_PATH_IMAGE049
,则令
Figure 914160DEST_PATH_IMAGE050
,如此循环计算,直到
Figure 499993DEST_PATH_IMAGE051
Figure 306275DEST_PATH_IMAGE052
,进 而得到最佳映射参数。
S4、基于原始叶片表面的变化量,确定新的叶片几何构型。
可选地,将原始叶片表面的变化量叠加在原始叶片表面的坐标值上,得到新叶片几何的坐标值,而几何构型就是由点坐标构成的,确定新叶片几何的坐标值后,通过新叶片几何的坐标值确定新的叶片几何构型。
一种可行的实施方式中,可以通过下述公式(6)确定新叶片表面的坐标值:
Figure 153009DEST_PATH_IMAGE053
式中,
Figure 81650DEST_PATH_IMAGE054
是新叶片坐标值,
Figure 13834DEST_PATH_IMAGE055
是原始叶片坐标值,
Figure 623807DEST_PATH_IMAGE056
是原变化量。
S5、基于预设的网格模板文件,对新的叶片几何构型进行网格划分,生成新的离心压气机叶轮网格模型。
一种可行的实施方式中,预设的网格模板文件的相关参数可以是:网格主拓扑采 用
Figure 964528DEST_PATH_IMAGE057
,叶尖间隙拓扑采用
Figure 673858DEST_PATH_IMAGE058
,网格划分总数为120万,采用FINE/TURBO的Autogrid5模 块生成
Figure 155654DEST_PATH_IMAGE059
文件的网格模板。
S6、对新的离心压气机叶轮网格模型进行额定工况的定常数值模拟计算,得到气动性能。
一种可行的实施方式中,采用NUMECA的EURANUS求解器计算三维稳态Reynolds平均Navier-Stokes方程,得到离心叶轮稳态流场,湍流模型采用-方程模型,叶轮进口总温度为293K,总压为101325 Pa,进口方向为轴向,出口为平均静压。通过逐渐增大背压,从堵塞点向近喘振点推进计算,得到绝热效率、质量流量和总压比。
S7、设定额定工况下离心压气机叶片的气动构型优化流程的目标函数和约束条件,基于气动性能,利用单目标粒子群优化算法,对设计顶点的变量进行寻优,得到优化结果。
其中,设定离心压气机叶片的绝热效率最大值为额定工况下离心压气机叶片的气动构型优化流程的目标函数,设定总压比不降低为额定工况下离心压气机叶片的气动构型优化流程的约束条件,其中,总压比为离心压气机出口总压力与进口总压力之比。
一种可行的实施方式中,基于步骤S6得到的气动性能,利用单目标粒子群优化算法对设计顶点变量进行寻优。
本发明实施例设定一种可行的实施方式为:粒子样本数为50,迭代次数为20,粒子群算法寻优流程可以如下:
每个粒子的速度和位置的数学定义如下:
Figure 631635DEST_PATH_IMAGE060
式中,第
Figure 187381DEST_PATH_IMAGE061
代中的每个单独粒子
Figure 129930DEST_PATH_IMAGE062
以公式1中的速度
Figure 912072DEST_PATH_IMAGE063
更新其位置。速度
Figure 801531DEST_PATH_IMAGE064
由公 式2可得,
Figure 601996DEST_PATH_IMAGE065
代表先前速度,
Figure 981025DEST_PATH_IMAGE066
代表每个粒子的历史最佳解,
Figure 375097DEST_PATH_IMAGE067
代表整个种群的最 佳解,
Figure 176569DEST_PATH_IMAGE068
Figure 769224DEST_PATH_IMAGE069
Figure 522417DEST_PATH_IMAGE070
中的两个随机数,
Figure 997260DEST_PATH_IMAGE071
Figure 494101DEST_PATH_IMAGE072
分别表示向个体历史最优和种群全局 最优的学习率,设置为1.49445,
Figure 941263DEST_PATH_IMAGE073
是线性权重自适应系数,数学表达式如下:
Figure 740723DEST_PATH_IMAGE074
式中,
Figure 843808DEST_PATH_IMAGE075
是迭代次数,
Figure 3394DEST_PATH_IMAGE076
是要进行的最大代数,线性权重自适应系数
Figure 305062DEST_PATH_IMAGE077
随着 迭代次数
Figure 134478DEST_PATH_IMAGE075
线性地从0.9下降到0.4。
S8、判断优化结果是否满足寻优结束条件,如果优化结果不满足寻优结束条件,则基于得到的优化结果更新样本数据,基于更新后的样本数据转去执行S3;如果优化结果满足寻优结束条件,则结束优化流程,根据优化结果确定离心压气机叶片的最佳几何构型。
一种可行的实施方式中,寻优结束条件可以根据用户的需求自行设置,例如,可以设定迭代次数达到1000次,也即,当迭代次数达到1000次时,判断寻优流程结束,根据最后一次优化结果确定离心压气机叶片的最佳几何构型。
下面对本发明实施例的实施效果进行说明:
以上流程只需采用24个设计变量即可实现对离心压气机复杂曲面叶片的全局几何构型寻优,具有较强的通用性,对推动离心压气机叶片气动设计技术的发展有一定的积极意义。
采用离心压气机叶片几何构型的额定工况气动设计优化方法有效地提高了离心压气机的气动综合性能,如表1。优化过程中只需少量的设计变量即可实现离心压气机复杂曲面叶片的灵活构型,缩小了设计空间,提高了寻优效率,采用了伯恩斯坦基函数,适合于全局优化,同时几何控制参数上增加了径向约束。
表1
Figure 98760DEST_PATH_IMAGE078
研究结果表明离心压气机主叶片轮毂处叶片通道的低速区减少,逆压梯度降低。分流叶片轮毂处的后弯角增加,做功能力增强。叶片顶端正攻角减少入口气流匹配性得到改善,激波损失降低。优化后气动性能曲线明显整体上移,绝热效率-流量性能曲线如图3,绝热效率-总压比性能曲线如图4,气动性能改善较为明显:设计工况的流量增大5.96%,总压比提升0.4%,绝热效率提高+1.1%,喘振裕度提升0.2%。
通过应用案例可知,与传统设计优化方法相比,本发明实施例中提出的一种离心压气机额定工况下的叶片构型设计优化方法在寻优过程可有效减少设计变量个数,缩小设计空间,提高优化效率,离心压气机的气动性能有了较大幅度的改善,实现了形性优化的目的,同时验证了该方法的可行性和普适性,具有良好的推广应用价值。
本发明实施例中,通过一种离心压气机的叶片构型优化方法,在单目标额定工况下,只需少量的设计变量即可实现离心压气机复杂曲面叶片的灵活构型,缩小了设计空间,提高了寻优效率;采用了伯恩斯坦基函数,宜于全局优化,有利于快速求解出离心压气机复杂曲面叶片几何构型的优化解;几何控制参数上增加了径向约束;同时本发明可以保证叶轮与机匣的相交,有助于提高优化过程中的网格生成率。
图5是根据一示例性实施例示出的一种离心压气机额定工况下的叶片构型设计优化装置框图500。参照图5,该装置包括创建模块510、更新模块520、求解模块530、确定模块540、划分模块550、计算模块560、寻优模块570以及判断模块580;其中:
创建模块510,用于创建第一映射模型与第二映射模型,所述第一映射模型为原始叶片吸力面与单位样条曲面的映射模型,所述第二映射模型为原始叶片压力面与单位样条曲面的映射模型;
更新模块520,用于确定单位样条曲面的设计顶点变量和设计空间,获取样本数据,对所述样本数据进行初始化,得到更新后的样本数据;
求解模块530,用于基于所述第一映射模型、第二映射模型以及更新后的样本数据,采用预设优化算法,求解所述第一映射模型以及第二映射模型的非线性方程组的局部特征参数,确定原始叶片表面的变化量;
确定模块540,用于基于所述原始叶片表面的变化量,确定新的叶片几何构型;
划分模块550,用于基于预设的网格模板文件,对所述新的叶片几何构型进行网格划分,生成新的离心压气机叶轮网格模型;
计算模块560,用于对新的离心压气机叶轮网格模型进行额定工况的定常数值模拟计算,得到气动性能;
寻优模块570,用于设定额定工况下离心压气机叶片的气动构型优化流程的目标函数和约束条件,基于所述气动性能,利用单目标粒子群优化算法,对设计顶点的变量进行寻优,得到优化结果;
判断模块580,用于判断所述优化结果是否满足寻优结束条件,如果所述优化结果不满足寻优结束条件,则基于得到的优化结果更新样本数据,基于更新后的样本数据转去执行S3;如果所述优化结果满足寻优结束条件,则结束优化流程,根据所述优化结果确定离心压气机叶片的最佳几何构型。
可选地,所述创建模块510,用于:
对原始叶片吸力面和压力面的几何型线进行单位化,生成单位化的映射样条曲面,建立第一映射模型和第二映射模型。
可选地,所述第一映射模型和所述第二映射模型的建立过程相同,采用的参数值不同;
所述创建模块510,用于:
S11、根据下述公式(1)定义横坐标,根据下述公式(2)定义纵坐标,分别对原始叶片吸力面和原始叶片压力面的几何型线进行单位化:
Figure 734141DEST_PATH_IMAGE001
式中,
Figure 359158DEST_PATH_IMAGE028
是型线单位化后的横坐标,
Figure 484108DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 358523DEST_PATH_IMAGE004
是型线标号,
Figure 735278DEST_PATH_IMAGE005
是第
Figure 824588DEST_PATH_IMAGE006
段弧长,
Figure 261386DEST_PATH_IMAGE007
是第
Figure 623097DEST_PATH_IMAGE004
条型线;
Figure 928176DEST_PATH_IMAGE008
式中,
Figure 262206DEST_PATH_IMAGE009
是型线单位化后的纵坐标
Figure 243806DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 30496DEST_PATH_IMAGE010
是型线标号,
Figure 139266DEST_PATH_IMAGE011
是第
Figure 390119DEST_PATH_IMAGE012
段弧长,而
Figure 168719DEST_PATH_IMAGE013
Figure 52493DEST_PATH_IMAGE003
条型线;
S12、根据下述公式(3),生成单位化的映射样条曲面:
Figure 371479DEST_PATH_IMAGE029
式中,
Figure 680100DEST_PATH_IMAGE015
是单位化的映射样条曲面上的点坐标,
Figure 488656DEST_PATH_IMAGE016
是样条曲面控制顶点坐标,
Figure 515518DEST_PATH_IMAGE017
是样条曲面上的横坐标的标号,
Figure 372616DEST_PATH_IMAGE018
样条曲面上的横坐标的控制顶点数,
Figure 175224DEST_PATH_IMAGE019
是样条曲面上的 纵坐标的标号,
Figure 30048DEST_PATH_IMAGE020
样条曲面上的纵坐标的控制顶点数,
Figure 403261DEST_PATH_IMAGE021
Figure 64049DEST_PATH_IMAGE022
是伯恩斯坦基函 数,其中
Figure 347263DEST_PATH_IMAGE023
Figure 248354DEST_PATH_IMAGE024
是映射参数;
S13、根据下述公式(4),分别建立第一映射模型以及第二映射模型:
Figure 984229DEST_PATH_IMAGE025
其中,
Figure 448708DEST_PATH_IMAGE026
是原始叶片表面的变化量。
可选地,所述预设优化算法包括蒙特卡略算法或启发式算法。
可选地,所述确定模块540,用于:
将所述原始叶片表面的变化量叠加在原始叶片表面的坐标值上,确定新叶片表面的坐标值,进而确定新的叶片几何构型。
可选地,所述寻优模块570,用于:
设定离心压气机叶片的绝热效率最大值为额定工况下离心压气机叶片的气动构型优化流程的目标函数,设定总压比不降低为额定工况下离心压气机叶片的气动构型优化流程的约束条件,其中,所述总压比为离心压气机出口总压力与进口总压力之比。
本发明实施例中,通过一种离心压气机的叶片构型优化方法,在单目标额定工况下,只需少量的设计变量即可实现离心压气机复杂曲面叶片的灵活构型,缩小了设计空间,提高了寻优效率;采用了伯恩斯坦基函数,宜于全局优化,有利于快速求解出离心压气机复杂曲面叶片几何构型的优化解;几何控制参数上增加了径向约束;同时本发明可以保证叶轮与机匣的相交,有助于提高优化过程中的网格生成率。
图6是本发明实施例提供的一种电子设备600的结构示意图,该电子设备600可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(centralprocessing units,CPU)601和一个或一个以上的存储器602,其中,所述存储器602中存储有至少一条指令,所述至少一条指令由所述处理器601加载并执行以实现上述离心压气机额定工况下的叶片构型设计优化方法的步骤。
在示例性实施例中,还提供了一种计算机可读存储介质,例如包括指令的存储器,上述指令可由终端中的处理器执行以完成上述离心压气机额定工况下的叶片构型设计优化方法。例如,所述计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种离心压气机额定工况下的叶片构型设计优化方法,其特征在于,所述方法包括:
S1、创建第一映射模型与第二映射模型,所述第一映射模型为原始叶片吸力面与单位样条曲面的映射模型,所述第二映射模型为原始叶片压力面与单位样条曲面的映射模型;
S2、确定单位样条曲面的设计顶点变量和设计空间,获取样本数据,对所述样本数据进行初始化,得到更新后的样本数据;
S3、基于所述第一映射模型、第二映射模型以及更新后的样本数据,采用预设优化算法,求解所述第一映射模型以及第二映射模型的非线性方程组的局部特征参数,确定原始叶片表面的变化量;
S4、基于所述原始叶片表面的变化量,确定新的叶片几何构型;
S5、基于预设的网格模板文件,对所述新的叶片几何构型进行网格划分,生成新的离心压气机叶轮网格模型;
S6、对新的离心压气机叶轮网格模型进行额定工况的定常数值模拟计算,得到气动性能;
S7、设定额定工况下离心压气机叶片的气动构型优化流程的目标函数和约束条件,基于所述气动性能,利用单目标粒子群优化算法,对设计顶点的变量进行寻优,得到优化结果;
S8、判断所述优化结果是否满足寻优结束条件,如果所述优化结果不满足寻优结束条件,则基于得到的优化结果更新样本数据,基于更新后的样本数据转去执行S3;如果所述优化结果满足寻优结束条件,则结束优化流程,根据所述优化结果确定离心压气机叶片的最佳几何构型。
2.根据权利要求1所述的方法,其特征在于,所述创建第一映射模型与第二映射模型,包括:
对原始叶片吸力面和压力面的几何型线进行单位化,生成单位化的映射样条曲面,建立第一映射模型和第二映射模型。
3.根据权利要求2所述的方法,其特征在于,所述第一映射模型和所述第二映射模型的建立过程相同,采用的参数值不同;
所述对原始叶片吸力面和压力面的几何型线进行单位化,生成单位化的映射样条曲面,建立第一映射模型和第二映射模型,包括:
S11、根据下述公式(1)定义横坐标,根据下述公式(2)定义纵坐标,分别对原始叶片吸力面和原始叶片压力面的几何型线进行单位化:
Figure 189296DEST_PATH_IMAGE001
式中,
Figure 773861DEST_PATH_IMAGE002
是型线单位化后的横坐标,
Figure 128488DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 140306DEST_PATH_IMAGE004
是型线标号,
Figure 698326DEST_PATH_IMAGE005
是第
Figure 86582DEST_PATH_IMAGE006
段 弧长,
Figure 46448DEST_PATH_IMAGE007
是第
Figure 979900DEST_PATH_IMAGE008
条型线;
Figure 290796DEST_PATH_IMAGE009
式中,
Figure 217163DEST_PATH_IMAGE010
是型线单位化后的纵坐标
Figure 31536DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 650736DEST_PATH_IMAGE011
是型线标号,
Figure 183348DEST_PATH_IMAGE012
是第
Figure 162674DEST_PATH_IMAGE013
段 弧长,而
Figure 831553DEST_PATH_IMAGE014
Figure 356075DEST_PATH_IMAGE003
条型线;
S12、根据下述公式(3),生成单位化的映射样条曲面:
Figure 641563DEST_PATH_IMAGE015
式中,
Figure 644154DEST_PATH_IMAGE016
是单位化的映射样条曲面上的点坐标,
Figure 449430DEST_PATH_IMAGE017
是样条曲面控制顶点坐标,
Figure 144854DEST_PATH_IMAGE018
是样 条曲面上的横坐标的标号,
Figure 386479DEST_PATH_IMAGE019
样条曲面上的横坐标的控制顶点数,
Figure 458341DEST_PATH_IMAGE020
是样条曲面上的纵坐标 的标号,
Figure 367391DEST_PATH_IMAGE021
样条曲面上的纵坐标的控制顶点数,
Figure 233716DEST_PATH_IMAGE022
Figure 477484DEST_PATH_IMAGE023
是伯恩斯坦基函数,其 中
Figure 87457DEST_PATH_IMAGE024
Figure 851014DEST_PATH_IMAGE025
是映射参数;
S13、根据下述公式(4),分别建立第一映射模型以及第二映射模型的数学模型:
Figure 888240DEST_PATH_IMAGE026
其中,
Figure 370037DEST_PATH_IMAGE027
是原始叶片表面的变化量。
4.根据权利要求1所述的方法,其特征在于,所述预设优化算法包括蒙特卡略算法或启发式算法。
5.根据权利要求1所述的方法,其特征在于,所述S4的基于所述原始叶片表面的变化量,确定新的叶片几何构型,包括:
将所述原始叶片表面的变化量叠加在原始叶片表面的坐标值上,确定新叶片表面的坐标值,进而确定新的叶片几何构型。
6.根据权利要求1所述的方法,其特征在于,所述设定额定工况下离心压气机叶片的气动构型优化流程的目标函数和约束条件,包括:
设定离心压气机叶片的绝热效率最大值为额定工况下离心压气机叶片的气动构型优化流程的目标函数,设定总压比不降低为额定工况下离心压气机叶片的气动构型优化流程的约束条件,其中,所述总压比为离心压气机出口总压力与进口总压力之比。
7.一种离心压气机额定工况下的叶片构型设计优化装置,其特征在于,所述装置包括:
创建模块,用于创建第一映射模型与第二映射模型,所述第一映射模型为原始叶片吸力面与单位样条曲面的映射模型,所述第二映射模型为原始叶片压力面与单位样条曲面的映射模型;
更新模块,用于确定单位样条曲面的设计顶点变量和设计空间,获取样本数据,对所述样本数据进行初始化,得到更新后的样本数据;
求解模块,用于基于所述第一映射模型、第二映射模型以及更新后的样本数据,采用预设优化算法,求解所述第一映射模型以及第二映射模型的非线性方程组的局部特征参数,确定原始叶片表面的变化量;
确定模块,用于基于所述原始叶片表面的变化量,确定新的叶片几何构型;
划分模块,用于基于预设的网格模板文件,对所述新的叶片几何构型进行网格划分,生成新的离心压气机叶轮网格模型;
计算模块,用于对新的离心压气机叶轮网格模型进行额定工况的定常数值模拟计算,得到气动性能;
寻优模块,用于设定额定工况下离心压气机叶片的气动构型优化流程的目标函数和约束条件,基于所述气动性能,利用单目标粒子群优化算法,对设计顶点的变量进行寻优,得到优化结果;
判断模块,用于判断所述优化结果是否满足寻优结束条件,如果所述优化结果不满足寻优结束条件,则基于得到的优化结果更新样本数据,基于更新后的样本数据转去执行S3;如果所述优化结果满足寻优结束条件,则结束优化流程,根据所述优化结果确定离心压气机叶片的最佳几何构型。
8.根据权利要求7所述的装置,其特征在于,所述创建模块,用于:
对原始叶片吸力面和压力面的几何型线进行单位化,生成单位化的映射样条曲面,建立第一映射模型和第二映射模型。
9.根据权利要求8所述的装置,其特征在于,所述第一映射模型和所述第二映射模型的建立过程相同,采用的参数值不同;
所述创建模块,用于:
S11、根据下述公式(1)定义横坐标,根据下述公式(2)定义纵坐标,分别对原始叶片吸力面和原始叶片压力面的几何型线进行单位化:
Figure 534433DEST_PATH_IMAGE001
式中,
Figure 152496DEST_PATH_IMAGE002
是型线单位化后的横坐标,
Figure 626203DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 329717DEST_PATH_IMAGE004
是型线标号,
Figure 281492DEST_PATH_IMAGE005
是第
Figure 19641DEST_PATH_IMAGE006
段 弧长,
Figure 647937DEST_PATH_IMAGE007
是第
Figure 838747DEST_PATH_IMAGE008
条型线;
Figure 594213DEST_PATH_IMAGE009
式中,
Figure 452448DEST_PATH_IMAGE010
是型线单位化后的纵坐标
Figure 18690DEST_PATH_IMAGE003
是型线上弧长段号,
Figure 696796DEST_PATH_IMAGE011
是型线标号,
Figure 724795DEST_PATH_IMAGE012
是第
Figure 437536DEST_PATH_IMAGE013
段 弧长,而
Figure 158367DEST_PATH_IMAGE014
Figure 323769DEST_PATH_IMAGE003
条型线;
S12、根据下述公式(3),生成单位化的映射样条曲面:
Figure 670306DEST_PATH_IMAGE028
式中,
Figure 971974DEST_PATH_IMAGE016
是单位化的映射样条曲面上的点坐标,
Figure 863707DEST_PATH_IMAGE017
是样条曲面控制顶点坐标,
Figure 781984DEST_PATH_IMAGE018
是样 条曲面上的横坐标的标号,
Figure 151786DEST_PATH_IMAGE019
样条曲面上的横坐标的控制顶点数,
Figure 573540DEST_PATH_IMAGE020
是样条曲面上的纵坐标 的标号,
Figure 652485DEST_PATH_IMAGE021
样条曲面上的纵坐标的控制顶点数,
Figure 526900DEST_PATH_IMAGE022
Figure 965972DEST_PATH_IMAGE023
是伯恩斯坦基函数,其 中
Figure 507812DEST_PATH_IMAGE024
Figure 741347DEST_PATH_IMAGE025
是映射参数;
S13、根据下述公式(4),分别建立第一映射模型以及第二映射模型:
Figure 368637DEST_PATH_IMAGE026
其中,
Figure 153728DEST_PATH_IMAGE027
是原始叶片表面的变化量。
10.根据权利要求7所述的装置,其特征在于,所述预设优化算法包括蒙特卡略算法或启发式算法。
CN202211204810.XA 2022-09-30 2022-09-30 离心压气机额定工况下的叶片构型设计优化方法及装置 Active CN115270362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211204810.XA CN115270362B (zh) 2022-09-30 2022-09-30 离心压气机额定工况下的叶片构型设计优化方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211204810.XA CN115270362B (zh) 2022-09-30 2022-09-30 离心压气机额定工况下的叶片构型设计优化方法及装置

Publications (2)

Publication Number Publication Date
CN115270362A true CN115270362A (zh) 2022-11-01
CN115270362B CN115270362B (zh) 2023-01-24

Family

ID=83757859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211204810.XA Active CN115270362B (zh) 2022-09-30 2022-09-30 离心压气机额定工况下的叶片构型设计优化方法及装置

Country Status (1)

Country Link
CN (1) CN115270362B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117172161A (zh) * 2023-11-03 2023-12-05 北京大学 一种流场模拟方法、装置、计算机设备及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065636A1 (en) * 2000-09-05 2002-05-30 Yoshihiro Yamaguchi Blade shape designing method, program thereof and information medium having the program recorded thereon
CN106227967A (zh) * 2016-08-01 2016-12-14 杭州汽轮机股份有限公司 工业汽轮机低压级组叶片型线优化方法
CN108153998A (zh) * 2018-01-25 2018-06-12 哈尔滨工业大学 离心鼓风机叶轮的全三维气动优化设计方法
CN108717485A (zh) * 2018-02-08 2018-10-30 中船重工龙江广瀚燃气轮机有限公司 一种轴流式压气机叶片的逆向造型方法
CN110688768A (zh) * 2019-10-11 2020-01-14 广东工业大学 一种新能源汽车空调压缩机型线优化方法、装置和设备
US20210209264A1 (en) * 2020-01-02 2021-07-08 Viettel Group Modeling and calculation aerodynamic performances of multi-stage transonic axial compressors
CN113569354A (zh) * 2021-07-26 2021-10-29 中国科学院工程热物理研究所 一种叶轮机械叶片的自动优化方法
US20220033062A1 (en) * 2019-10-24 2022-02-03 Nanjing University Of Aeronautics And Astronautics Method and system for determining helicopter rotor airfoil
CN115017843A (zh) * 2022-08-09 2022-09-06 钛灵特压缩机无锡有限公司 一种离心压缩机气动性能优化设计方法
CN115081130A (zh) * 2022-06-01 2022-09-20 中国科学院工程热物理研究所 基于动态支持向量回归的叶片与端壁联合气动优化方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065636A1 (en) * 2000-09-05 2002-05-30 Yoshihiro Yamaguchi Blade shape designing method, program thereof and information medium having the program recorded thereon
CN106227967A (zh) * 2016-08-01 2016-12-14 杭州汽轮机股份有限公司 工业汽轮机低压级组叶片型线优化方法
CN108153998A (zh) * 2018-01-25 2018-06-12 哈尔滨工业大学 离心鼓风机叶轮的全三维气动优化设计方法
CN108717485A (zh) * 2018-02-08 2018-10-30 中船重工龙江广瀚燃气轮机有限公司 一种轴流式压气机叶片的逆向造型方法
CN110688768A (zh) * 2019-10-11 2020-01-14 广东工业大学 一种新能源汽车空调压缩机型线优化方法、装置和设备
US20220033062A1 (en) * 2019-10-24 2022-02-03 Nanjing University Of Aeronautics And Astronautics Method and system for determining helicopter rotor airfoil
US20210209264A1 (en) * 2020-01-02 2021-07-08 Viettel Group Modeling and calculation aerodynamic performances of multi-stage transonic axial compressors
CN113569354A (zh) * 2021-07-26 2021-10-29 中国科学院工程热物理研究所 一种叶轮机械叶片的自动优化方法
CN115081130A (zh) * 2022-06-01 2022-09-20 中国科学院工程热物理研究所 基于动态支持向量回归的叶片与端壁联合气动优化方法
CN115017843A (zh) * 2022-08-09 2022-09-06 钛灵特压缩机无锡有限公司 一种离心压缩机气动性能优化设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘基盛等: "一种新颖的离心叶轮多工况气动优化设计方法", 《推进技术》 *
邓敬亮等: "离心风机叶轮叶片气动优化研究", 《流体机械》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117172161A (zh) * 2023-11-03 2023-12-05 北京大学 一种流场模拟方法、装置、计算机设备及存储介质
CN117172161B (zh) * 2023-11-03 2024-02-02 北京大学 一种流场模拟方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
CN115270362B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
CN110727995B (zh) 叶片形状的构造方法、叶片以及计算机设备
Lee et al. Design optimization of low-speed axial flow fan blade with three-dimensional RANS analysis
CN115270362B (zh) 离心压气机额定工况下的叶片构型设计优化方法及装置
CN112417773B (zh) 多级轴流膨胀机的多学科优化设计方法、装置及设备
CN110750855B (zh) 一种外形定尺寸限制下的蜗壳型线设计方法
CN110083968B (zh) 基于修正气封泄露量影响数值模型的压气机特性预测方法
CN115481511A (zh) 基于ffd的离心叶轮多工况局部构型气动优化方法及装置
CN111295657A (zh) 利用卷积神经网络代理经由梯度下降的技术设备的外形优化
CN108167229A (zh) 一种叶片前缘凸起的冷却风扇及其气动噪声计算方法
CN115270363B (zh) 基于多代理模型的离心压气机叶片优化设计方法及装置
Xiang et al. Aerothermodynamics optimal design of a multistage axial compressor in a gas turbine using directly manipulated free-form deformation
CN115510583B (zh) 基于分段精细寻优策略的叶轮多工况气动优化方法及装置
CN117077302A (zh) 一种叶轮的参数化设计方法
JP2009523211A (ja) 凹状先端を有するタービンブレード
CN115270361B (zh) 高效求解约束问题的离心压气机叶轮优化设计方法及装置
Arbabi et al. Aerodynamic inverse blade design of axial compressors in three-dimensional flow using a commercial CFD program
Cheng et al. Design and optimization of tandem cascade based on parallel differential evolution algorithm
Li et al. The optimization of a centrifugal impeller based on a new multi-objective evolutionary strategy
Lotfi et al. Aerodynamic optimization of industrial fan blade cascades
Zhang et al. Numerical investigation and modeling of sweep effects on inlet flow field of axial compressor cascades
CN111859567B (zh) 体积力构建方法、计算设备及可读存储介质
Jiang et al. Advanced axial compressor airfoils design and optimization
Sun et al. Optimization design of IGV profile in centrifugal compressor
CN117763878B (zh) 压气机叶型的确定方法、装置及存储介质
Hanimann et al. Development of a novel mixing plane interface using a fully implicit averaging for stage analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant