CN115260529A - 一种高性能、低摩擦的纳米复合水凝胶的制备方法及应用 - Google Patents

一种高性能、低摩擦的纳米复合水凝胶的制备方法及应用 Download PDF

Info

Publication number
CN115260529A
CN115260529A CN202210850842.0A CN202210850842A CN115260529A CN 115260529 A CN115260529 A CN 115260529A CN 202210850842 A CN202210850842 A CN 202210850842A CN 115260529 A CN115260529 A CN 115260529A
Authority
CN
China
Prior art keywords
hydrogel
psbma
composite hydrogel
stirring
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210850842.0A
Other languages
English (en)
Inventor
王仲楠
张跃
孟凡杰
郭慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN202210850842.0A priority Critical patent/CN115260529A/zh
Publication of CN115260529A publication Critical patent/CN115260529A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/387Esters containing sulfur and containing nitrogen and oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种一种高性能、低摩擦的纳米复合水凝胶的制备方法,包括如下步骤:将单体SBMA、交联剂EGDMA、引发剂过硫酸铵APS和Ti3C2胶体水溶液,加入去离子水中混合搅拌;完全混合后,加入加速剂四甲基乙二胺TMEDA进行搅拌;然后倒入模具,静置后得到模具形状的Ti3C2‑PSBMA复合水凝胶。本发明简单易操作,反应迅速,所制备的水凝胶只会发生溶胀而不会降解,结构稳定性好。无论实验材料还是制备过程,成本均比较低。Ti3C2的加入,显著增强了纯PSBMA水凝胶的各项力学性能,摩擦学性能也比较优良。纳米复合水凝胶显示出较好的生物相容性、亲水性和热稳定性,有潜力成为关节软骨替代材料。

Description

一种高性能、低摩擦的纳米复合水凝胶的制备方法及应用
技术领域
本发明涉及一种两性离子纳米复合水凝胶的制备方法和应用。
背景技术
水凝胶具有类似于天然关节软骨的三维网络结构,所以它具有一系列特殊的力学性质,如可承受较大形变、生物相容性好、化学性能稳定及成型性良好等,为生物医学领域的发展提供了巨大的潜力,可以考虑作为一种潜在的生物相容材料来替代天然组织,如关节软骨、肌腱和韧带。近年来,高分子水凝胶,如双网络(double network,DN)水凝胶、两性离子共聚物(zwitterionic copolymer)水凝胶和纳米复合水凝胶,在关节软骨缺损、修复方面得到了深入的研究。两性离子水凝胶因具有高亲水性、高离子密度及离子敏感性等特点而备受瞩目,并在近十余年的研究中取得了长足的发展。
近几年来对甜菜碱两性离子水凝胶研究较多的是其对外界环境的响应性能,两性离子水凝胶目前已广泛应用于生物医学领域,包括医用植入物和组织等,但两性离子水凝胶由于其机械上的脆弱而不能承受较大的力,因此迫切需要提高和调节两性离子水凝胶的机械强度和润滑性能来满足各种生物医学应用。如:通过常用化学交联剂N,N'-亚甲基双丙烯酰胺(BIS)合成的聚甲基磺基甜菜碱(polySBMA)水凝胶的断裂压缩应力不到100kPa。
PolySBMA化学凝胶的弱力学性能极大程度上限制了它的应用范围。为解决这一问题,近几年,研究者们研究了各种制备方法用来提高甜菜碱两性离子水凝胶的力学强度以扩展其应用领域。例如,通过增加交联剂的含量来提高水凝胶的机械性能。但是,由于BIS在水中的溶解度较低,很难通过增加BIS交联剂的含量来提高polySBMA水凝胶的力学性能。鉴于此原因,Kasak等制备了新型水溶性交联剂N,N-双(甲基丙烯酰氧基乙基)-N-甲基-N-(3磺基丙基)铵甜菜碱(CL1),用于改善polySBMA水凝胶的力学性能。结果表明,通过增加CL1含量,polySBMA水凝胶的力学性能得到很大程度上的提高(当CLl含量为20mol%单体含量时,断裂时的压缩应力高达4400kPa,断裂时的压缩应变约为85%)。Zhang等人通过将物理交联与化学交联相结合的方法制备出双网络结构的polySBMA水凝胶,也在一定程度上提高了polySBMA水凝胶的力学性能。然而,尽管这两种方法可以在一定程度上提高两性离子聚合物水凝胶的力学性能,但是受共价键的限制,化学交联制备的水凝胶在较小的形变下即发生断裂,力学性能普遍较差,如通过化学交联制备的polySBMA水凝胶的拉伸断裂应力仅5kPa,而其断裂伸长率只能达到10%。
发明内容
目前来说,不论是仿生滑液的宏观润滑机理,还是仿生水凝胶材料的承载和润滑性能方面,均难以满足实际的人体关节需求,这些问题极大的限制了这些材料的生物医学应用。本发明针对上述问题,进行了一些针对性的研究,通过添加新型二维纳米材料的方式,以期获得具有优良润滑性能、足够力学性能以及良好生物相容性的两性离子纳米复合水凝胶。
为达到以上目的,本发明采取的技术方案是:
一种高性能、低摩擦的纳米复合水凝胶的制备方法,包括如下步骤:
步骤1、将两性离子单体、交联剂、引发剂和Ti3C2水溶液,加入去离子水中混合搅拌;
步骤2、完全混合后,加入加速剂进行搅拌;
步骤3、然后倒入模具,静置后得到模具形状的Ti3C2-PSBMA复合水凝胶。
两性离子单体为甲基磺基甜菜碱,交联剂为乙二醇二甲基丙烯酸酯,引发剂为过硫酸铵,加速剂为四甲基乙二胺。
两性离子单体、交联剂、引发剂、加速剂在混合溶液中的浓度分别为1-2.5mol L-1、0.2-1.5mol L-1、0.02-0.25mol L-1、0.2-1.0mol L-1
Ti3C2在混合溶液中的质量分数为0.001-1wt%。
Ti3C2在混合溶液中的质量分数为0.005wt%,0.01wt%,0.015wt%,0.02wt%,或者0.025wt%。
步骤1中,以200-1000r/min进行恒温磁力混合搅拌至少4小时。
步骤2中,搅拌时间为1-3min。
步骤3中,静置时间为10-30min。
得到的Ti3C2-PSBMA复合水凝胶在纯水中浸泡至少3天,以去除未反应的物质。
所述Ti3C2-PSBMA复合水凝胶在关节软骨替代中的应用。
本发明的有益效果:本发明采用化学交联的方法制备了复合水凝胶。这种方法简单易操作,反应迅速,成型时间短,所制备的水凝胶只会发生溶胀而不会降解,结构稳定性好。无论实验材料还是制备过程,成本均比较低。
1.在两性离子水凝胶中引入单层Ti3C2,这是一种新型二维材料MXene,利用简单搅拌,通过自由基聚合以及物理静电吸附作用,形成了交织的纳米复合水凝胶网络。
2.Ti3C2的加入,显著增强了纯PSBMA水凝胶的各项力学性能,其抗压强度增加了320%(从0.067到0.217MPa),抗拉强度提高了360%(从0.027到0.097MPa)。
3.使用水凝胶这种软材料与硅片进行往复摩擦运动,获得了低摩擦系数(约0.0126)。因此Ti3C2-PSBMA复合水凝胶的摩擦学性能也比较优良。
4.得到的纳米复合水凝胶显示出较好的生物相容性、亲水性和热稳定性,有潜力成为关节软骨替代材料。
进行了动态力学和应力松弛实验,在整个角频率范围内,几个浓度的样品的储能模量远大于损耗模量,这是强水凝胶的一个显著特征。同时,储能模量值随角频率的增加有微弱的增大趋势,这与天然关节软骨的性质一致。另外,几个浓度的损耗因子均在天然关节软骨的损耗因子0.01~0.1范围内波动,同时具备较高的储能模量和较低的损耗模量。
附图说明
本发明有如下附图:
图1推测的EGDMA、Ti3C2和SBMA之间水凝胶网络形成机理的示意图。
图2中,(a)图为不同浓度的Ti3C2-PSBMA复合水凝胶的压缩应力-应变图,(b)图为不同浓度的Ti3C2-PSBMA复合水凝胶的拉伸应力-应变图,(c)图为储能模量G'和损耗模量G",(d)图为损耗因子(tanδ),(e)图为归一化压缩松弛模量曲线。
图3中,a图为水凝胶半球和硅片作为摩擦副的摩擦系数测量图;b图为以Ti3C2浓度为实验变量,摩擦系数(COF)随时间的变化图;c图为在1N的恒定法向载荷下,摩擦系数随滑动速度的变化曲线;d图为在30mm/s的滑动速度下,摩擦系数随载荷变化图。
图4中,a图为PSBMA在100倍下扫描电镜的形貌图,b图为Ti3C2(0.005wt%)-PSBMA在100倍下扫描电镜的形貌图,c图为Ti3C2(0.015wt%)-PSBMA在100倍下扫描电镜的形貌图,d图为PSBMA在1000倍下扫描电镜的形貌图,e图为Ti3C2(0.005wt%)-PSBMA在1000倍下扫描电镜的形貌图,f图为Ti3C2(0.015wt%)-PSBMA在1000倍下扫描电镜的形貌图。
图5中,(a)图为Ti3C2-PSBMA复合水凝胶的FT-IR光谱图,(b)图为Ti3C2-PSBMA复合水凝胶的拉曼光谱图,(c)图为Ti3C2-PSBMA复合水凝胶的热重曲线图,(d)图为Ti3C2-PSBMA复合水凝胶的接触角。
图6中,a图为空白对照组的细胞形态图,b图为加入纯PSBMA水凝胶浸提液的细胞形态图,c图为阳性对照组的细胞形态图,d图为阴性对照组的细胞形态图。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本发明没有采用常用的化学交联剂,比如戊二醛和环氧氯丙烷等,它们通常难以去除,且会降低水凝胶的生物相容性,影响其生物医学应用。本发明使用交联剂乙二醇二甲基丙烯酸酯(EGDMA)通过简单搅拌完成化学交联过程,并对纯PSBMA水凝胶进行了细胞毒性的测试,证明了水凝胶样品无潜在的细胞毒性。
实施例1:PSBMA水凝胶的制备方法,包括如下步骤:
将单体SBMA(279.35g mol-1)(作为水凝胶网络的聚合物链)、交联剂EGDMA(198.22g mol-1)和引发剂过硫酸铵APS(228.20gmol-1)加入水中,以600r/min进行恒温磁力混合搅拌至少4小时。完全混合后,加入加速剂四甲基乙二胺TMEDA(116.20g mol-1)搅拌1min,单体SBMA、交联剂EGDMA、引发剂过硫酸铵APS、四甲基乙二胺TMEDA在混合溶液中的浓度分别为2.5mol L-1、1mol L-1、0.22mol L-1和0.5mol L-1。然后倒入模具,静置10min后得到模具形状的PSBMA水凝胶。四种试剂的化学结构式见式a)、b)、c)、d)。
Figure BDA0003754587800000071
四种试剂的化学结构式:a)SBMA,b)APS,c)EGDMA,d)TMEDA。
通过类似的方法制备了Ti3C2-PSBMA复合水凝胶:将不同含量的单层Ti3C2胶体水溶液(作为纳米添加材料)在搅拌前加入混合溶液,Ti3C2是一种新型的MXene二维材料。Ti3C2的含量根据最终混合溶液的质量而定,Ti3C2在混合溶液中的质量分数可以为0.001-1wt%。
两种水凝胶的凝胶化过程维持10-30min。所得的PSBMA和Ti3C2-PSBMA复合水凝胶在纯水中浸泡至少3天,以去除未反应的物质。纯水每天换三次。
实施例2
一种高性能、低摩擦的纳米复合水凝胶的制备方法,包括如下步骤:
将单体SBMA、交联剂EGDMA、引发剂过硫酸铵APS和Ti3C2胶体水溶液加入去离子水中,以600r/min进行恒温磁力混合搅拌至少4小时。完全混合后,加入加速剂四甲基乙二胺TMEDA搅拌2min;单体SBMA、交联剂EGDMA、引发剂过硫酸铵APS、四甲基乙二胺TMEDA在混合溶液中的浓度分别为2.5mol L-1、1mol L-1、0.15mol L-1和0.5mol L-1。然后倒入模具,静置20min后得到模具形状的Ti3C2-PSBMA复合水凝胶。
所得的Ti3C2-PSBMA复合水凝胶在纯水中浸泡3天,以去除未反应的物质。纯水每天换三次。
实施例3
一种高性能、低摩擦的纳米复合水凝胶的制备方法,包括如下步骤:
将单体SBMA、交联剂EGDMA、引发剂过硫酸铵APS和Ti3C2胶体水溶液加入去离子水中,以400r/min进行恒温磁力混合搅拌至少4小时。完全混合后,加入加速剂四甲基乙二胺TMEDA搅拌1min;单体SBMA、交联剂EGDMA、引发剂过硫酸铵APS、四甲基乙二胺TMEDA在混合溶液中的浓度分别为1.5mol L-1、0.2mol L-1、0.05mol L-1和0.2mol L-1。然后倒入模具,静置10min后得到模具形状的Ti3C2-PSBMA复合水凝胶。
所得的Ti3C2-PSBMA复合水凝胶在纯水中浸泡1天,以去除未反应的物质。纯水每天换三次。
实施例4
一种高性能、低摩擦的纳米复合水凝胶的制备方法,包括如下步骤:
将单体SBMA、交联剂EGDMA、引发剂过硫酸铵APS和Ti3C2胶体水溶液加入去离子水中,以800r/min进行恒温磁力混合搅拌至少4小时。完全混合后,加入加速剂四甲基乙二胺TMEDA搅拌3min;单体SBMA、交联剂EGDMA、引发剂过硫酸铵APS、四甲基乙二胺TMEDA在混合溶液中的浓度分别为2mol L-1、1.5mol L-1、0.25mol L-1和1mol L-1。然后倒入模具,静置30min后得到模具形状的Ti3C2-PSBMA复合水凝胶。
所得的Ti3C2-PSBMA复合水凝胶在纯水中浸泡2天,以去除未反应的物质。纯水每天换三次。
我们推测,SBMA聚合物链、交联剂EGDMA和Ti3C2之间的合成机理可分为2个反应:
(1)单体SBMA和交联剂EGDMA之间通过自由基聚合实现化学结合。所谓自由基聚合(free radical polymerization),即用自由基引发,使链增长(链生长)自由基不断增长的聚合反应。又称游离基聚合。
(2)纳米复合颗粒Ti3C2纳米片是通过强静电相互作用附着在SBMA聚合物链上。具体为单层Ti3C2表面游离羟基上带负电的氧原子与PSBMA链上每个单体中带正电的氮原子相互吸引,通过物理作用相互结合。如图1所示。
本发明成功合成了纳米复合水凝胶,旨在揭示其在化学表征、力学性能、摩擦学性能以及生物相容性方面的潜在相互作用。
图4为本发明的复合水凝胶样品达到溶胀饱和后冷冻干燥后的扫描电镜截面形貌图。
图5为本发明的复合水凝胶的一系列表征实验结果。
从图2-5可以看出,本发明制备的复合水凝胶与纯PSBMA水凝胶相比力学性能和摩擦学性能都有显著提高。其抗压强度增加了320%(从0.067到0.217MPa),抗拉强度提高了360%(从0.027到0.097MPa)。Ti3C2加入之后,还显著增强了纯PSBMA水凝胶的消散静态载荷能力和动态力学性能。将其与硅片进行往复摩擦运动,也获得了低摩擦系数(约0.0126)。
PSBMA复合水凝胶的细胞毒性实验:
图6中,显示了加入100%PSBMA浸提液和三个对照组(包括空白对照组、阳性对照组和阴性对照组)后观察到的细胞形态图像。通过观察空白对照组(含10%FBS的MEM培养液,Hyclone)的细胞形态,发现细胞质中均为离散的细胞颗粒,且没有细胞溶解,90%以上的细胞形态良好,如a图所示。与空白对照组相比,在加入100%PSBMA水凝胶浸提液后,如b图所示,PSBMA水凝胶浸提液培养的细胞存活率在70%以上,表明PSBMA水凝胶没有潜在的细胞毒性。而在c图所示的阳性对照组(高密度聚乙烯薄膜,海门市扬子医疗器械有限公司)中,细胞层几乎完全被破坏,细胞活力也很低,仅为1.3~6.6%。在d图中,阴性对照组(用高压灭菌的植入物级GUR1020UHMWPE(超高分子量聚乙烯,Ultra-high molecular weightpolyethylene),Hatano Research Institute,FDSC)中的细胞存活率超过80%,仅观察到少量的细胞溶解,并且几乎观察不到细胞生长被抑制的现象。
图6只给出了加入100%PSBMA浸提液的细胞形态图像,实验过程中还用不同浓度的PSBMA浸提液进行了实验,图b就是100%浓度PSBMA浸提液的实验结果。25%PSBMA浸提液,50%PSBMA浸提液,75%PSBMA浸提液,这三个结果均比100%PSBMA浸提液的更好,因此不同浓度的PSBMA水凝胶浸提液培养的细胞存活率均在70%以上,表明PSBMA水凝胶没有潜在的细胞毒性。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的实质和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的保护范围。
本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (10)

1.一种高性能、低摩擦的纳米复合水凝胶的制备方法,其特征在于,包括如下步骤:
步骤1、将两性离子单体、交联剂、引发剂和Ti3C2水溶液,加入去离子水中混合搅拌;
步骤2、完全混合后,加入加速剂进行搅拌;
步骤3、然后倒入模具,静置后得到模具形状的Ti3C2-PSBMA复合水凝胶。
2.如权利要求1所述的高性能、低摩擦的纳米复合水凝胶的制备方法,其特征在于:两性离子单体为甲基磺基甜菜碱,交联剂为乙二醇二甲基丙烯酸酯,引发剂为过硫酸铵,加速剂为四甲基乙二胺。
3.如权利要求1所述的高性能、低摩擦的纳米复合水凝胶的制备方法,其特征在于:两性离子单体、交联剂、引发剂、加速剂在混合溶液中的浓度分别为1-2.5mol L-1、0.2-1.5molL-1、0.02-0.25mol L-1、0.2-1.0mol L-1
4.如权利要求1所述的高性能、低摩擦的纳米复合水凝胶的制备方法,其特征在于:Ti3C2在混合溶液中的质量分数为0.001-1wt%。
5.如权利要求4所述的高性能、低摩擦的纳米复合水凝胶的制备方法,其特征在于:Ti3C2在混合溶液中的质量分数为0.005wt%,0.01wt%,0.015wt%,0.02wt%,或者0.025wt%。
6.如权利要求1所述的高性能、低摩擦的纳米复合水凝胶的制备方法,其特征在于:步骤1中,以200-1000r/min进行恒温磁力混合搅拌至少4小时。
7.如权利要求1所述的高性能、低摩擦的纳米复合水凝胶的制备方法,其特征在于:步骤2中,搅拌时间为1-3min。
8.如权利要求1所述的高性能、低摩擦的纳米复合水凝胶的制备方法,其特征在于:步骤3中,静置时间为10-30min。
9.如权利要求1所述的高性能、低摩擦的纳米复合水凝胶的制备方法,其特征在于:得到的Ti3C2-PSBMA复合水凝胶在纯水中浸泡至少3天,以去除未反应的物质。
10.如权利要求1-9任一所述的方法得到的Ti3C2-PSBMA复合水凝胶在关节软骨替代中的应用。
CN202210850842.0A 2022-07-20 2022-07-20 一种高性能、低摩擦的纳米复合水凝胶的制备方法及应用 Pending CN115260529A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210850842.0A CN115260529A (zh) 2022-07-20 2022-07-20 一种高性能、低摩擦的纳米复合水凝胶的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210850842.0A CN115260529A (zh) 2022-07-20 2022-07-20 一种高性能、低摩擦的纳米复合水凝胶的制备方法及应用

Publications (1)

Publication Number Publication Date
CN115260529A true CN115260529A (zh) 2022-11-01

Family

ID=83767284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210850842.0A Pending CN115260529A (zh) 2022-07-20 2022-07-20 一种高性能、低摩擦的纳米复合水凝胶的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115260529A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105295073A (zh) * 2015-10-29 2016-02-03 温州医科大学 一种高柔韧性两性离子水凝胶制备方法
CA2898513A1 (en) * 2015-07-27 2017-01-27 Stephan HEATH Methods, products, and systems relating to making, providing, and using nanocrystalline (nc) products comprising nanocrystalline cellulose (ncc), nanocrystalline (nc) polymers and/or nanocrystalline (nc) plastics or other nanocrystals of cellulose composites or structures, in combination with other materials
CN110655080A (zh) * 2019-10-25 2020-01-07 山东大学 一种具有选择性杀灭癌细胞功能的无氧化Ti3C2量子点及其制备方法与应用
US20200052350A1 (en) * 2018-08-13 2020-02-13 Nanotek Instruments, Inc. Method of improving power density and fast-chargeability of a lithium secondary battery
CN112876585A (zh) * 2021-01-19 2021-06-01 中南大学 一种Ag/MXene引发的自由基聚合及有机水凝胶制备方法
CN114426682A (zh) * 2022-02-07 2022-05-03 西北工业大学 一种MXene高强度复合水凝胶及其制备方法和应用
CN114456308A (zh) * 2022-02-28 2022-05-10 华中科技大学 一种光热水凝胶、制备方法及其应用、光热转化蒸发器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2898513A1 (en) * 2015-07-27 2017-01-27 Stephan HEATH Methods, products, and systems relating to making, providing, and using nanocrystalline (nc) products comprising nanocrystalline cellulose (ncc), nanocrystalline (nc) polymers and/or nanocrystalline (nc) plastics or other nanocrystals of cellulose composites or structures, in combination with other materials
CN105295073A (zh) * 2015-10-29 2016-02-03 温州医科大学 一种高柔韧性两性离子水凝胶制备方法
US20200052350A1 (en) * 2018-08-13 2020-02-13 Nanotek Instruments, Inc. Method of improving power density and fast-chargeability of a lithium secondary battery
CN110655080A (zh) * 2019-10-25 2020-01-07 山东大学 一种具有选择性杀灭癌细胞功能的无氧化Ti3C2量子点及其制备方法与应用
CN112876585A (zh) * 2021-01-19 2021-06-01 中南大学 一种Ag/MXene引发的自由基聚合及有机水凝胶制备方法
CN114426682A (zh) * 2022-02-07 2022-05-03 西北工业大学 一种MXene高强度复合水凝胶及其制备方法和应用
CN114456308A (zh) * 2022-02-28 2022-05-10 华中科技大学 一种光热水凝胶、制备方法及其应用、光热转化蒸发器

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
WANG, XINYI等: "Polydopamine-Modified MXene-Integrated Poly(N-isopropylacrylamide) to Construct Ultrafast Photoresponsive Bilayer Hydrogel Actuators with Smart Adhesion", ACS APPLIED MATERIALS & INTERFACES, vol. 42, no. 15, 12 September 2023 (2023-09-12), pages 49689 - 49700 *
刘超: "MXene的功能化改性及其应用研究进展", 复合材料学报, vol. 38, no. 4, 30 April 2021 (2021-04-30), pages 1020 - 1028 *
张跃: "MXene-PSBMA 纳米复合水凝胶的网络构筑及摩擦学研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑, 31 December 2023 (2023-12-31) *
李晓彬: "自修复的MXene复合水凝胶的制备与传感性能研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, no. 3, 15 March 2022 (2022-03-15), pages 016 - 1848 *
洪惠著: "胶原蛋白与胶原蛋白肽功能与应用", vol. 1, 31 January 2022, 中国轻工业出版社, pages: 267 *
王佳乐: "MXene基低维材料的制备及其应用研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, no. 12, 15 December 2021 (2021-12-15), pages 020 - 166 *
郑伟等: "二维材料MXene的储能性能与应用", 材料导报, vol. 32, no. 8, 19 May 2018 (2018-05-19), pages 2513 - 2536 *

Similar Documents

Publication Publication Date Title
Shi et al. Polyhedral oligomeric silsesquioxanes (POSS)-based hybrid soft gels: Molecular design, material advantages, and emerging applications
Chen et al. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles
Nasseri et al. Cellulose nanocrystals in smart and stimuli-responsive materials: a review
Mredha et al. Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic–hydrophilic copolymers
Li et al. Enhanced mechanical properties of polyacrylamide/chitosan hydrogels by tuning the molecular structure of hyperbranched polysiloxane
Li et al. Soft/hard-coupled amphiphilic polymer nanospheres for water lubrication
Xue et al. Fabrication of poly (acrylic acid)/boron nitride composite hydrogels with excellent mechanical properties and rapid self-healing through hierarchically physical interactions
CN110551296B (zh) 一种果胶基双物理交联水凝胶及制备方法和应用
Wu et al. Preparation of PVA-GO composite hydrogel and effect of ionic coordination on its properties
Chen et al. Bioinspired, recyclable, stretchable hydrogel with boundary ultralubrication
Yoon et al. Enhancement of thermomechanical properties of poly (D, L-lactic-co-glycolic acid) and graphene oxide composite films for scaffolds
CN111040205A (zh) 一种基于聚乙二醇/明胶颗粒的双网络水凝胶及其制备方法和应用
Banerjee et al. A muscle mimetic polyelectrolyte–nanoclay organic–inorganic hybrid hydrogel: its self-healing, shape-memory and actuation properties
Cao et al. Fabrication of self-healing nanocomposite hydrogels with the cellulose nanocrystals-based Janus hybrid nanomaterials
Sun et al. Preparation and modification of chitosan-based membrane
Nguyen et al. Highly compressive and stretchable poly (ethylene glycol) based hydrogels synthesised using pH-responsive nanogels without free-radical chemistry
Pourjavadi et al. Preparation of PVA nanocomposites using salep-reduced graphene oxide with enhanced mechanical and biological properties
Wang et al. Poly (N, N-dimethylacrylamide-octadecyl acrylate)-clay hydrogels with high mechanical properties and shape memory ability
Zhang et al. Enhancement of mechanical property and absorption capability of hydrophobically associated polyacrylamide hydrogels by adding cellulose nanofiber
Liu et al. A simple coordination strategy for preparing a complex hydrophobic association hydrogel
Rymaruk et al. Effect of core cross-linking on the physical properties of poly (dimethylsiloxane)-based diblock copolymer worms prepared in silicone oil
Zhang et al. Enhanced mechanical properties and self‐healing behavior of PNIPAM nanocomposite hydrogel by using POSS as a physical crosslinker
Nowacka et al. Self-healing silsesquioxane-based materials
Yang et al. Modification of cellulose nanocrystal-reinforced composite hydrogels: effects of co-crosslinked and drying treatment
Li et al. Hybrid double-network hydrogels with excellent mechanical properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination