CN115254172A - 一种囊泡状g-C3N4光催化剂及其制备方法 - Google Patents

一种囊泡状g-C3N4光催化剂及其制备方法 Download PDF

Info

Publication number
CN115254172A
CN115254172A CN202211039096.3A CN202211039096A CN115254172A CN 115254172 A CN115254172 A CN 115254172A CN 202211039096 A CN202211039096 A CN 202211039096A CN 115254172 A CN115254172 A CN 115254172A
Authority
CN
China
Prior art keywords
photocatalyst
solvent
vesicular
melamine
cyanuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211039096.3A
Other languages
English (en)
Other versions
CN115254172B (zh
Inventor
施伟龙
郭峰
孙鑫海
石宇星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202211039096.3A priority Critical patent/CN115254172B/zh
Publication of CN115254172A publication Critical patent/CN115254172A/zh
Priority to KR1020230110895A priority patent/KR20230141657A/ko
Application granted granted Critical
Publication of CN115254172B publication Critical patent/CN115254172B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种囊泡状g‑C3N4光催化剂、制备方法及应用,所述光催化剂的结构为三维多孔囊泡结构中空的壳体,其壳层表面具有多孔结构,囊泡直径为170~360nm,壳层的厚度为3~6nm,其孔径的平均孔径为13~20nm;所述制备方法通过将三聚氰胺和三聚氰酸分别分散在二甲亚基砜中形成溶剂,将三聚氰酸溶剂逐滴加入三聚氰胺溶剂得到前驱体,加热保温后得到;本发明的囊泡状g‑C3N4光催化剂增加了比表面积,增加了光散射和可访问通道的数量,以及用于光催化反应的更短的扩散通道,同时制备工艺简单、生产成本低且易操作。

Description

一种囊泡状g-C3N4光催化剂及其制备方法
技术领域
本发明涉及一种g-C3N4光催化剂,尤其涉及一种囊泡状g-C3N4光催化剂,还涉及其制备方法。
背景技术
非金属半导体聚合物石墨碳氮化物(g-C3N4)由于其可见光反应、无毒、高化学稳定性和低成本,以及地球上丰富的碳和氮元素,被认为是一种极有前途的析氢反应(HER)的光催化剂。然而,纯相g-C3N4有各种缺点,如低表面积,光利用率不足,电子传输路径长,以及光产生的载体快速重组。
Tang等人受自然光合作用系统中囊泡状体的有序堆叠纳米结构和高度集成功能的启发,使用具有不同壳层的SiO2硬模板制备了三层球形g-C3N4,对入射光进行多次散射和反射,其独特的介孔结构和高比表面积特性可以提高光生电荷的分离效率。Liang等人以SiO2为模板制备均匀的g-C3N4纳米球,将CeO2偶联得到所需的核壳型g-C3N4@CeO2,在可见光照射下表现出较大的CO2吸附能力和显著的CO2还原性能。此外,Chen等人选择三聚氯氰和硫粉作为前驱体,构建中空结构g-C3N4,以改进光催化水分解成H2。然而,上述三维多孔结构g-C3N4的合成方法是使用有毒的原料前体或繁琐的SiO2硬模板方法,随后需要用有害试剂(HF或NH4HF2)去除,不利于大规模安全生产。
发明内容
发明目的:本发明的目的是提供一种比表面积更大、光散射通道数量更多、光催化扩散通道更短的囊泡状g-C3N4光催化剂,第二目的是提供无需模板的g-C3N4光催化剂的制备方法。
技术方案:本发明所述的囊泡状g-C3N4光催化剂,其结构为中空的壳层,其壳层表面具有多孔结构,囊泡的直径为170~360nm,壳层的厚度为3~6nm。
优选的,囊泡状g-C3N4光催化剂壳层表面的多孔结构,其孔径的平均孔径为13~20nm。
本发明所述的制备方法,包括以下步骤:
(1)将三聚氰胺和三聚氰酸分别分散在二甲亚基砜中,搅拌,形成三聚氰酸溶剂和三聚氰胺溶剂;
(2)取三聚氰胺溶剂,进行搅拌,在搅拌过程中,将三聚氰酸溶剂逐滴加入三聚氰胺溶剂,三聚氰酸溶剂和三聚氰胺溶剂的质量比为1:1.5~1:1.7,接着搅拌至反应结束,将反应后的混合溶液加入水,静置形成白色沉淀,将沉淀离心、过滤、洗涤、干燥并研磨得到前驱体;
(3)加热前驱体,升温后保温,然后冷却到室温后,研磨得到本发明所述的囊泡状g-C3N4光催化剂。
优选的,步骤(1)中,三聚氰酸溶剂的浓度为0.09~0.11g/mL;三聚氰胺溶剂的浓度为0.04~0.06g/mL;所述搅拌为磁力搅拌,速率为500~600r/min。
优选的,步骤(2)中,搅拌为磁力搅拌,速率为500~600r/min;反应后的混合溶液与水的质量比为1:1.6~1:1.7;静置时间为8~10h。
优选的,步骤(3)中,升温速率为2~2.3℃/分钟,保温温度为530~550℃,保温时间为3.5~4h。
发明原理:本发明开发了一种简便的无模板自组装策略来制造具有不同尺寸的三维多孔g-C3N4纳米囊泡结构,用于光催化水分解制氢。经过溶解过程,三聚氰酸的含氧羟基与二甲基亚砜溶液中的三聚氰胺氨基形成强氢键。当三聚氰胺和三聚氰酸达到一定质量比时,三聚氰胺和三聚氰酸在DMSO溶剂中饱和,形成完全自组装。水的加入促使混合物形成强烈的相互作用,从而驱动这些有机分子排列成超分子聚集体。此外,热聚合过程中伴随的物质和质量损失导致前驱体中的大空隙,这些空隙在热解过程中由结构坍塌和气体冲击(如NH3和CO2)形成,产生具有三维多孔纳米囊泡结构的g-C3N4
通过调控不同质量比进行性能测试,结果表明,本发明制备的三维多孔纳米囊泡结构具有比g-C3N4更好的光催化活性,其中当三聚氰酸溶剂和三聚氰胺溶剂的质量比为1:1.5制得的大尺寸囊泡结构具有最佳性能,H2产率高达10.3mmol h-1g-1,其制氢性能显著提高的主要是由于以下原因:三维多孔纳米囊泡结构通过无模板自组装热缩合形成的具有丰富结构缺陷的多孔结构使其能够吸附质子,极大地增强了光催化析氢;三维多孔纳米囊泡结构具有更高的比表面积,增加了活性位点,加速了光催化制氢反应的向前进行;三维多孔纳米囊泡结构的超薄壳结构为光致电子提供了可接近的通道,并为电子从体积迁移到表面提供了更短的扩散通道。大尺寸囊泡结构具有最小的接触角和最好的亲水性,可加速电子传输并导致光生电荷载流子的快速分离。在阳光照射下,三维多孔纳米囊泡结构g-C3N4很容易被激发产生有效的光生电子-空穴对,价带中的电子被激导带中,根据H++e-→1/2H2,质子被还原以产生氢气。同时,导带中的空穴会氧化水溶液中的三乙醇胺(TEOA+h+→TEOA+)。此外,大尺寸囊泡结构可以降低HER的过电位,进一步增强光生电子的还原能力,加速光生电荷的迁移。
有益效果:与现有技术相比,本发明具有如下显著优点:(1)本发明的囊泡状g-C3N4光催化剂,三维多孔囊泡结构提供了更高的比表面积,增加了活性位点,加快了光催化析氢反应的进程,其内部的吸光折射反射过程能够形成更多发光通路,对光的利用率更高,加速光催化反应;(2)本发明囊泡状g-C3N4光催化剂的无模板自组装制备方法,采用环境友好的材料,且在常温常压环境下即可制得,工艺简单,生产成本低。
附图说明
图1是实施例和对比例中三个不同大小尺寸三维多孔囊泡结构g-C3N4光催化剂的扫描电子显微镜(SEM)和透射电子显微镜(TEM);其中图a为实施例1光催化剂的扫描电子显微镜(SEM);图b为实施例2光催化剂的扫描电子显微镜(SEM);图c为实施例3光催化剂的扫描电子显微镜(SEM);图d为实施例1光催化剂的扫描电子显微镜(SEM);图e为实施例2光催化剂的扫描电子显微镜(SEM);图f为实施例3光催化剂的扫描电子显微镜(SEM);图g为实施例1光催化剂的透射电子显微镜(TEM);图h为实施例2光催化剂的透射电子显微镜(TEM);图i为实施例3光催化剂的透射电子显微镜(TEM)。
图2是对比例1的纯相CN的扫描电子显微镜(SEM);
图3是对比例中的多孔管状,多孔球状扫描电子显微镜(SEM);其中图a为对比例2光催化剂的扫描电子显微镜(SEM);图b为实施例3光催化剂的扫描电子显微镜(SEM);
图4是对比例中的不同原料配比的g-C3N4扫描电子显微镜(SEM);其中图a为对比例4光催化剂的扫描电子显微镜(SEM);图b为实施例5光催化剂的扫描电子显微镜(SEM);
图5是实施例和对比例中三个不同大小尺寸三维多孔囊泡结构g-C3N4光催化剂与纯相CN的X射线衍射(XRD)图谱;
图6为实施例和对比例中三个不同大小尺寸三维多孔囊泡结构g-C3N4光催化剂与纯相CN的傅里叶红外变换光谱(FT-IR)图谱;
图7为实施例和对比例中三维多孔囊泡结构g-C3N4光催化剂与纯相CN的X射线光电子能谱分析(XPS)图谱;
图8为实施例和对比例中三维多孔囊泡结构g-C3N4光催化剂与纯相CN的接触角;其中图a为对比例1光催化剂的接触角;图b为实施例1光催化剂的接触角;图c为实施例2光催化剂的接触角;图d为实施例3光催化剂的接触角;
图9为实施例和对比例中三个不同大小尺寸三维多孔囊泡结构g-C3N4光催化剂与纯相CN的固体紫外图谱;
图10为实施例和对比例中三维多孔囊泡结构g-C3N4光催化剂与纯相CN的荧光(PL)图谱;
图11为实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN的2小时析氢反应(HER);
图12为实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN的析氢速率;
图13为实施例1中囊泡状g-C3N4光催化剂析氢反应后的扫描电子显微镜(SEM);
图14为实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN的氮气吸附-脱附曲线;
图15为实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN的孔径分布;
图16为实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN的瞬态光电流响应曲线;
图17为实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN的电化学阻抗光谱(DAEIS)。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
(1)将1.26g三聚氰胺和1.93g三聚氰酸分别分散在30毫升和20毫升的二甲亚砜(DMSO)中,用磁力搅拌器以500r/min搅拌20分钟,形成三聚氰酸溶剂和三聚氰胺溶剂;
(2)取三聚氰胺溶剂,进行搅拌,在搅拌过程中,将三聚氰酸溶剂逐滴加入三聚氰胺溶剂,三聚氰酸溶剂和三聚氰胺溶剂的质量比为1:1.5,接着用磁力搅拌器以500r/min的速度将混合溶剂再搅拌2小时,将反应后的混合溶液加入100mL水,静置8小时,形成白色沉淀,将沉淀离心、过滤、洗涤、干燥并研磨得到前驱体;
(3)将前驱体沉淀物放入坩埚中,置于马弗炉中,以2.3℃/分钟的加热速度将其温度从室温加热到550℃,然后在恒温下保持4小时。将得到的样品放在玛瑙研钵中研磨,收集备用,样品标记为PCNNVs-L,尺寸为直径为360nm。
实施例2
与实施例1相比,改变三聚氰胺和三聚氰酸的比值:
(1)将1.26g三聚氰胺和2.06g三聚氰酸分别分散在30毫升和20毫升的二甲亚砜(DMSO)中,用磁力搅拌器以500r/min搅拌20分钟,形成三聚氰酸溶剂和三聚氰胺溶剂;
(2)取三聚氰胺溶剂,进行搅拌,在搅拌过程中,将三聚氰酸溶剂逐滴加入三聚氰胺溶剂,三聚氰酸溶剂和三聚氰胺溶剂的质量比为1:1.6,接着用磁力搅拌器以500r/min的速度将混合溶剂再搅拌2小时,将反应后的混合溶液加入100mL水,静置8小时,形成白色沉淀,将沉淀离心、过滤、洗涤、干燥并研磨得到前驱体;
(3)将前驱体沉淀物放入坩埚中,置于马弗炉中,以2.3℃/分钟的加热速度将其温度从室温加热到550℃,然后在恒温下保持4小时。将得到的样品放在玛瑙研钵中研磨,收集备用,样品标记为PCNNVs-M,直径为280nm。
实施例3
与实施例1相比,改变三聚氰胺和三聚氰酸的比值:
(1)将1.26g三聚氰胺和2.19g三聚氰酸分别分散在30毫升和20毫升的二甲亚砜(DMSO)中,用磁力搅拌器以500r/min搅拌20分钟,形成三聚氰酸溶剂和三聚氰胺溶剂;
(2)取三聚氰胺溶剂,进行搅拌,在搅拌过程中,将三聚氰酸溶剂逐滴加入三聚氰胺溶剂,三聚氰酸溶剂和三聚氰胺溶剂的质量比为1:1.7,接着用磁力搅拌器以500r/min的速度将混合溶剂再搅拌2小时,将反应后的混合溶液加入100mL水,静置8小时,形成白色沉淀,将沉淀离心、过滤、洗涤、干燥并研磨得到前驱体;
(3)将前驱体沉淀物放入坩埚中,置于马弗炉中,以2.3℃/分钟的加热速度将其温度从室温加热到550℃,然后在恒温下保持4小时。将得到的样品放在玛瑙研钵中研磨,收集备用,样品标记为PCNNVs-S,直径为170nm。
对比例1
纯相CN的制备:在室温下1.26克三聚氰胺放入坩埚中,放入坩埚中,置于马弗炉中,以2.3℃/分钟的加热速度将其温度从室温加热到550℃,然后在恒温下保持4小时。将得到的样品放在玛瑙研钵中研磨,收集备用,标记为BCN。
对比例2
与实施例1相比,制备管状g-C3N4
(1)将8g尿素和5g三聚氰胺分散80mL去粒子水中,用磁力搅拌器以500r/min搅拌3h,形成溶液;
(2)将得到的混合溶液加入反应釜中,以180℃加热20h。
(3)将沉淀离心、过滤、洗涤、干燥并研磨;
(4)将前驱体沉淀物放入坩埚中,置于马弗炉中,以5℃/分钟的加热速度将其温度从室温加热到550℃,然后在恒温下保持4小时。将得到的样品放在玛瑙研钵中研磨,收集备用,样品标记为T-CN。
对比例3
与实施例1相比,制备空心球状g-C3N4
(1)将150mL去离子水,60mL乙醇和2mL30%氨水融合形成溶液,0.16g十六烷基三甲基溴化铵(CTAB)分散到该溶液,用磁力搅拌器以500r/min搅拌1h;
(2)将得到的混合溶液加入0.5mL硅酯基乙烷(BTSE)的和0.5mL的硅酸乙酯(TEOS)用磁力搅拌器以500r/min搅拌24h;
(3)将沉淀离心、过滤、洗涤、干燥,得到前驱体放入坩埚中,置于马弗炉中,以2℃/分钟的加热速度将其温度从室温加热到550℃,然后在恒温下保持6小时。将得到的样品放在玛瑙研钵中研磨,收集备用,将样品标记为SiO2纳米球。
(4)将0.25gSiO2纳米球与5g氰胺混合,加入12.5mL去粒子水中,用磁力搅拌器以500r/min搅拌8h;
(5)将沉淀离心、过滤、洗涤、干燥,得到前驱体放入坩埚中,置于马弗炉中,以5℃/分钟的加热速度将其温度从室温加热到550℃,然后在恒温下保持4小时。将得到的样品放在玛瑙研钵中研磨,收集备用,将样品标记为S-CN。
对比例4
与实施例1相比,改变三聚氰胺和三聚氰酸的比值:
(1)将1.26g三聚氰胺和1.80g三聚氰酸分别分散在30毫升和20毫升的二甲亚砜(DMSO)中,用磁力搅拌器以500r/min搅拌20分钟,形成三聚氰酸溶剂和三聚氰胺溶剂;
(2)取三聚氰胺溶剂,进行搅拌,在搅拌过程中,将三聚氰酸溶剂逐滴加入三聚氰胺溶剂,三聚氰酸溶剂和三聚氰胺溶剂的质量比为1:1.4,接着用磁力搅拌器以500r/min的速度将混合溶剂再搅拌2小时,将反应后的混合溶液加入100mL水,静置8小时,形成白色沉淀,将沉淀离心、过滤、洗涤、干燥并研磨得到前驱体;
(3)将前驱体沉淀物放入坩埚中,置于马弗炉中,以2.3℃/分钟的加热速度将其温度从室温加热到550℃,然后在恒温下保持4小时。将得到的样品放在玛瑙研钵中研磨,收集备用,样品标记为对比例4。
对比例5
与实施例1相比,改变三聚氰胺和三聚氰酸的比值:
(1)将1.26g三聚氰胺和2.32g三聚氰酸分别分散在30毫升和20毫升的二甲亚砜(DMSO)中,用磁力搅拌器以500r/min搅拌20分钟,形成三聚氰酸溶剂和三聚氰胺溶剂;
(2)取三聚氰胺溶剂,进行搅拌,在搅拌过程中,将三聚氰酸溶剂逐滴加入三聚氰胺溶剂,三聚氰酸溶剂和三聚氰胺溶剂的质量比为1:1.8,接着用磁力搅拌器以500r/min的速度将混合溶剂再搅拌2小时,将反应后的混合溶液加入100mL水,静置8小时,形成白色沉淀,将沉淀离心、过滤、洗涤、干燥并研磨得到前驱体;
(3)将前驱体沉淀物放入坩埚中,置于马弗炉中,以2.3℃/分钟的加热速度将其温度从室温加热到550℃,然后在恒温下保持4小时。将得到的样品放在玛瑙研钵中研磨,收集备用,样品标记为对比例5。
如图1所示,对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂进行扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征。从扫描电子显微镜(SEM)可以看出,制备的PCNNVs-L,PCNNVs-M和PCNNVs-S表现出独特的多孔空心的囊泡结构,与图2所示纯相CN的结构不同。三维多孔g-C3N4纳米颗粒上的空腔,这可能是由结构崩溃和气体冲击(如NH3和CO2)在热解过程中形成。此外,包含大量的纳米孔洞的纳米颗粒结构在作为制备的样品被进一步确认的透射电子显微镜(TEM)图像。通过测量得到了三种不同尺寸的囊泡,PCNNVs-L、PCNNVs-M和PCNNVs-S的直径分别为360、280和170nm,表明在热聚合过程中,调节前驱体的质量比可以在气体影响下产生不同尺寸的囊泡结构。此外,PCNNVs-L、PCNNVs-M和PCNNVs-S的囊泡壳层的厚度可以测量为分别为5、3和6nm。这样的薄壁囊泡结构能够为光诱导的电子提供可访问的通道和较短的扩散通道。
如图3所示,对不同形貌的g-C3N4光催化剂进行扫描电子显微镜(SEM)表征。从扫描电子显微镜(SEM)可以看出,制备的样品分别表现出管状结构和球状结构,对其进行2小时析氢反应(HER)实验,经计算光催化HER速率分别为2.5和1.9mmol/h/g,低于囊泡状g-C3N4的光催化析氢速率。
如图4所示,对于对比例4和对比例5中不同原料配比合成的g-C3N4光催化剂进行扫描电子显微镜(SEM)表征。从扫描电子显微镜(SEM)可以看出,制备的样品表现出块状结构,这是与囊泡状g-C3N4结构不同。对其进行2小时析氢反应(HER)实验,经计算光催化HER速率分别为4.3和1.9mmol/h/g,低于囊泡状g-C3N4的光催化析氢速率。
如图5所示,对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂进行XRD表征。使用具有CuKα辐射,其λ为0.1540558nm的推进型XRD衍射仪记录样品的粉末X射线衍射图案,数据收集采用θ/2θ扫描模式,在10°到80°范围内连续扫描完成,扫描速度为7°/min。所有样品均呈现与(100)和(002)面对应的特征峰。这表明尽管改变形态,g-C3N4的晶体结构在三维多孔囊泡结构g-C3N4材料中保存完好。
如图6所示,对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂FT-IR表征,800cm-1的峰值对应于三-s-三嗪环的平面外弯曲振动。1200-1700cm-1区域的典型拉伸模式则对应于CN杂环。3300-3600cm-1的宽带与未凝结的氨基和羟基的拉伸振动有关。囊泡状g-C3N4光催化剂表现出与CN相似的FT-IR光谱,表明形态改变并未改变g-C3N4结构。
如图7所示,对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂进行XPS表征,PCNNVs-1与CN的主要组成元素都是C,N,O,表明形态改变并未改变g-C3N4元素组成。
如图8所示,用水滴的接触角来确定样品的表面性质,较低的接触角意味着表面的亲水性更强。落在BCN表面的水滴形状接近球形(图8a),水接触角为108.7°,说明该BCN材料具有明显的疏水性。PCNNVs-L(图8b)、PCNNVs-M(图8c)和PCNNVs-S(图8d)的样品的接触角分别为17.5°、22.6°和33.1°。因此,PCNNVs成功地将g-C3N4的润湿性从疏水转变为亲水,明显地加速了电子转移,导致光诱导载流子的快速分离。PCNNVs-L对光诱导电子-空穴对具有最小的接触角和最高的分离效率,从而具有优越的光催化H2演化性能。
如图9所示,对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂进行紫外可见漫反射表征,所有的实例都表现出强烈的紫外线吸收(λ<400纳米),但在可见光区域(400<λ<800纳米)略有不同。在这方面,纯相CN样品呈现出弱的可见光吸附,其吸收边缘在470纳米左右。值得注意的是,通过自组装形成的三维多孔囊泡结构g-C3N4光催化剂有效地增强了对可见光的吸收,这归因于接触面积、传播路径强度和可见光散射的增加。
对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂进行荧光表征,图10显示了纯相CN在460纳米附近可以检测到一个明显的发射峰。与纯相CN相比,三维多孔囊泡结构g-C3N4光催化剂的发射峰位置发生了轻微的红移,这进一步证实了囊泡结构的变化。总的来说,光催化剂的PL信号逐渐减少,这表明电荷载流子复合的抑制和光激发的电子-空穴对的有效分离。与纯相CN相比,PCNNVs-L光催化剂显示出较低的PL强度,表明电子-空穴结合在三维多孔囊泡结构中可以被有效抑制。
如图11所示,对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂的2小时析氢反应(HER)实验,图11表示所有实例在光催化过程中都能进行HER转化为H2。其中,囊泡状g-C3N4光催化剂表现出比BCN更高的活性,表明合成的囊泡结构更有利于光诱导载体的分离,进而促进析氢反应。
在图12中描述的所制备实例的光催化析氢速率,可以得到不同粒径的囊泡状g-C3N4对光催化性能的影响。具体来说,BCN、PCNNVs-L、PCNNVs-M和PCNNVs-S的光催化HER速率分别为1.5、10.3、6.6和4.6mmol/h/g。光催化H2的活性可以直观地按以下顺序排列。PCNNVs-L>PCNNVs-M>PCNNVs-S>BCN,这意味着囊泡尺寸越大,活性越好。
对实施例囊泡状g-C3N4光催化剂析氢反应后的扫描电子显微镜(SEM)表征。进一步证实了所制备的囊泡结构没有明显的结构变化,表明所制备的三维多孔囊泡结构g-C3N4材料具有良好的稳定性。
对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂的氮气吸附-脱附曲线表征。图14所示,所有实例都有类似的等温线形状,具有典型的IV型曲线,并伴有明显的H3滞后现象,表明囊泡结构中存在介孔。相应地,计算出的BCN、PCNNVs-L、PCNNVs-M和PCNNVs-S的Brunauer、Emmett和Teller(BET)比表面积分别为13.18m2 g-1、150.74m2 g-1、175.55m2 g-1和197.55m2 g-1。从反映了囊泡结构大大增加了g-C3N4材料的比表面积,这对提高制备的样品的光催化活性有很大的作用。
对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂的孔径分布表征。图15中的宽孔径分布进一步证实了囊泡结构的孔隙结构,与纯相CN相比,囊泡不断增加,表明囊泡结构的形成导致BET表面积和孔隙体积的增加。通过构建三维多孔囊泡结构扩大的孔隙体积可以为光催化过程提供更多的活性位点,有利于光催化活性。
对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂的瞬态光电流响应曲线表征。图16显示了光催化剂在200s的光开关周期中的瞬态光电流。在黑暗条件下,所有四个样品的光电流密度都接近于零,而在氙灯照射下,它们的光电流反应明显增加。四种光催化剂的光电流强度的增加顺序为:。PCNNVs-L>PCNNVs-M>PCNNVs-S>BCN,该顺序与光催化H2产量的顺序一致。同样,PCNNVs-L明显表现出最佳的光电流强度,表明大尺寸的三维多孔囊泡结构g-C3N4具有良好的光诱导e--h+分离效率。
对实施例和对比例中囊泡状g-C3N4光催化剂与纯相CN光催化剂的电化学阻抗光谱(DAEIS)表征。通过黑暗环境电化学阻抗光谱(DAEIS)测试进一步研究了囊泡结构的电荷转移效率。如图17所示,Nyquist图中圆弧半径减小,表明电子转移动力学更快,氧化还原反应的电荷转移电阻更低,而PCNNVs-L的圆弧半径最小,表明这种与尺寸大小有关的材料具有较低的载流子迁移电阻,这对提高光催化活性有利。

Claims (10)

1.一种囊泡状g-C3N4光催化剂,其特征在于,所述g-C3N4光催化剂的结构为中空的三维多孔囊泡状壳体,其壳层表面具有多孔结构,囊泡的直径为170~360nm。
2.根据权利要求1所述囊泡状g-C3N4光催化剂,其特征在于,所述囊泡状g-C3N4光催化剂的壳层的厚度为3~6nm。
3.根据权利要求1所述囊泡状g-C3N4光催化剂,其特征在于,所述囊泡状g-C3N4光催化剂壳层表面的多孔结构,孔径的直径为13~20nm。
4.权利要求1所述囊泡状g-C3N4光催化剂的制备方法,其特征在于,包括以下步骤:
(1)将三聚氰胺和三聚氰酸分别分散在二甲亚基砜中,搅拌,形成三聚氰酸溶剂和三聚氰胺溶剂;
(2)取三聚氰胺溶剂,进行搅拌,在搅拌过程中,将三聚氰酸溶剂逐滴加入三聚氰胺溶剂,三聚氰酸溶剂和三聚氰胺溶剂的质量比为1:1.5~1:1.7,接着搅拌至反应结束,将反应后的混合溶液加入水,静置形成白色沉淀,将沉淀离心、过滤、洗涤、干燥并研磨得到前驱体;
(3)加热前驱体,升温后保温,然后冷却到室温后,研磨得到本发明所述的囊泡状g-C3N4光催化剂。
5.根据权利要求4所述制备方法,其特征在于,步骤(1)中,所述三聚氰酸溶剂的浓度为0.09~0.11g/mL。
6.根据权利要求4所述制备方法,其特征在于,步骤(1)中,所述三聚氰胺溶剂的浓度为0.04~0.06g/mL。
7.根据权利要求4所述制备方法,其特征在于,步骤(1)中,所述搅拌为磁力搅拌,速率为500~600r/min。
8.根据权利要求4所述制备方法,其特征在于,步骤(2)中,所述搅拌为磁力搅拌,速率为500~600r/min。
9.根据权利要求4所述制备方法,其特征在于,步骤(2)中,反应后的混合溶液与水的质量比为1:1.6~1:1.7,静置时间为8~10h。
10.根据权利要求4所述制备方法,其特征在于,步骤(3)中,升温速率为2~2.3℃/分钟,保温温度为530~550℃,保温时间为3.5~4h。
CN202211039096.3A 2022-08-29 2022-08-29 一种囊泡状g-C3N4光催化剂及其制备方法 Active CN115254172B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211039096.3A CN115254172B (zh) 2022-08-29 2022-08-29 一种囊泡状g-C3N4光催化剂及其制备方法
KR1020230110895A KR20230141657A (ko) 2022-08-29 2023-08-23 소낭 형상 g-C3N4 광 촉매제 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211039096.3A CN115254172B (zh) 2022-08-29 2022-08-29 一种囊泡状g-C3N4光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN115254172A true CN115254172A (zh) 2022-11-01
CN115254172B CN115254172B (zh) 2023-12-19

Family

ID=83754391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211039096.3A Active CN115254172B (zh) 2022-08-29 2022-08-29 一种囊泡状g-C3N4光催化剂及其制备方法

Country Status (2)

Country Link
KR (1) KR20230141657A (zh)
CN (1) CN115254172B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117000280A (zh) * 2023-04-13 2023-11-07 常州大学 一种用于光-酶协同催化的3D多孔蜂窝状CeO2/FCN复合材料的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026220A (zh) * 2019-04-22 2019-07-19 武汉科技大学 一种过渡金属碳化物/类石墨化碳复合粉体及其制备方法
CN111509237A (zh) * 2020-03-19 2020-08-07 郑州轻工业大学 一种多孔骨架材料及其制备方法、应用、金属-空气电池
CN111573638A (zh) * 2020-06-08 2020-08-25 江苏理工学院 一种高效降解废水中亚甲基蓝染料的光催化材料的制备方法
CN112675894A (zh) * 2021-01-04 2021-04-20 中国人民解放军陆军军医大学第二附属医院 一种空心环状氮化碳光催化剂及其制备方法
CN112892611A (zh) * 2021-01-21 2021-06-04 湖南大学 鱼鳞片管状氮化碳及其制备方法和应用
CN114558600A (zh) * 2022-01-20 2022-05-31 南京林业大学 一种混合维度S掺杂g-C3N4基范德华异质结光催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026220A (zh) * 2019-04-22 2019-07-19 武汉科技大学 一种过渡金属碳化物/类石墨化碳复合粉体及其制备方法
CN111509237A (zh) * 2020-03-19 2020-08-07 郑州轻工业大学 一种多孔骨架材料及其制备方法、应用、金属-空气电池
CN111573638A (zh) * 2020-06-08 2020-08-25 江苏理工学院 一种高效降解废水中亚甲基蓝染料的光催化材料的制备方法
CN112675894A (zh) * 2021-01-04 2021-04-20 中国人民解放军陆军军医大学第二附属医院 一种空心环状氮化碳光催化剂及其制备方法
CN112892611A (zh) * 2021-01-21 2021-06-04 湖南大学 鱼鳞片管状氮化碳及其制备方法和应用
CN114558600A (zh) * 2022-01-20 2022-05-31 南京林业大学 一种混合维度S掺杂g-C3N4基范德华异质结光催化剂及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117000280A (zh) * 2023-04-13 2023-11-07 常州大学 一种用于光-酶协同催化的3D多孔蜂窝状CeO2/FCN复合材料的制备方法及应用

Also Published As

Publication number Publication date
KR20230141657A (ko) 2023-10-10
CN115254172B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
Lin et al. Spatial positioning effect of dual cocatalysts accelerating charge transfer in three dimensionally ordered macroporous g-C3N4 for photocatalytic hydrogen evolution
Zhou et al. Template-free large-scale synthesis of gC 3 N 4 microtubes for enhanced visible light-driven photocatalytic H 2 production
Li et al. One-step synthesis of nanohybrid carbon dots and TiO 2 composites with enhanced ultraviolet light active photocatalysis
Wang et al. Precursor-induced fabrication of β-Bi 2 O 3 microspheres and their performance as visible-light-driven photocatalysts
CN106669756B (zh) 一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法
Xin et al. Microwave-assisted hydrothermal synthesis of chrysanthemum-like Ag/ZnO prismatic nanorods and their photocatalytic properties with multiple modes for dye degradation and hydrogen production
Li et al. Synthesis of three-dimensionally ordered macroporous composite Ag/Bi 2 O 3–TiO 2 by dual templates and its photocatalytic activities for degradation of organic pollutants under multiple modes
CN105126917B (zh) 一种铜/氧化亚铜/环化聚丙烯腈可见光催化剂的制备方法
CN109012731B (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
CN110102316A (zh) 一种多孔纳米球状硫化锌镉固溶体的制备方法
Rambaud et al. One‐Pot Synthesis of Functional Helicoidal Hybrid Organic–Inorganic Nanofibers with Periodically Organized Mesoporosity
CN112588283A (zh) 一种碳量子点/介孔层状二氧化钛及其制备方法和应用
Du et al. Cage-like hierarchically mesoporous hollow silica microspheres templated by mesomorphous polyelectrolyte-surfactant complexes for noble metal nanoparticles immobilization
CN112076774A (zh) 一种碳化钛量子点负载碳缺陷反蛋白石氮化碳的催化剂及其制备方法
CN101519223A (zh) 一种大量制备单分散硫化锌纳米空心球的一步无模板方法
Wang et al. Titanocene dichloride (Cp 2 TiCl 2) as a precursor for template-free fabrication of hollow TiO 2 nanostructures with enhanced photocatalytic hydrogen production
CN115254172B (zh) 一种囊泡状g-C3N4光催化剂及其制备方法
Wan et al. Facile fabrication of oxygen and carbon co-doped carbon nitride nanosheets for efficient visible light photocatalytic H 2 evolution and CO 2 reduction
Luo et al. Facile fabrication of metal-free urchin-like gC 3 N 4 with superior photocatalytic activity
Pouretedal et al. Characterization and Photocatalytic Activity of ZnO, ZnS, ZnO/ZnS, CdO, CdS and CdO/CdS Nanoparticles in Mesoporous SBA-15
CN108927201B (zh) 一种AgBr/g-C3N4复合粉体的制备方法及应用
Zhang et al. Polymer nanoreactor mediated controllable synthesis of flexible semiconductor quantum dot nanofiber films
CN107008337A (zh) 一种非化学计量比铋酸铜纳米材料及其制备方法和应用
Cao et al. Fabrication and photoactivity of short rod-shaped mesoporous SiO 2@ TiO 2 composites with TiO 2 shell
CN110563036A (zh) 一种富含氧空位的氧化铋纳米材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant