CN115254162A - 一种缺陷g-C3N4光催化材料及其制备方法和应用 - Google Patents

一种缺陷g-C3N4光催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN115254162A
CN115254162A CN202111470730.4A CN202111470730A CN115254162A CN 115254162 A CN115254162 A CN 115254162A CN 202111470730 A CN202111470730 A CN 202111470730A CN 115254162 A CN115254162 A CN 115254162A
Authority
CN
China
Prior art keywords
defect
photocatalytic material
melamine
product
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111470730.4A
Other languages
English (en)
Other versions
CN115254162B (zh
Inventor
柳海萍
李士恒
郭丽
梁晶
高前程
郑宾国
王泽华
周建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Aeronautics
Original Assignee
Zhengzhou University of Aeronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Aeronautics filed Critical Zhengzhou University of Aeronautics
Priority to CN202111470730.4A priority Critical patent/CN115254162B/zh
Publication of CN115254162A publication Critical patent/CN115254162A/zh
Application granted granted Critical
Publication of CN115254162B publication Critical patent/CN115254162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种缺陷g‑C3N4光催化材料及其制备方法和应用,属于光催化材料技术领域。缺陷g‑C3N4光催化材料按照以下步骤进行制备:以蒸馏水为溶剂,三聚氰胺和酒石酸作为前驱物,经过搅拌和冷冻干燥,得到产物A;将产物A进行热聚合反应,经过研磨、多次洗涤和离心处理后,干燥、二次研磨得到缺陷g‑C3N4光催化材料。本发明提供了一种缺陷浓度可调控的g‑C3N4的制备技术,通过缺陷调控的方法,增强g‑C3N4光催化剂的活性。

Description

一种缺陷g-C3N4光催化材料及其制备方法和应用
技术领域
本发明涉及光催化材料技术领域,更具体的涉及一种缺陷g-C3N4光催化材料及其制备方法和应用。
背景技术
经济增长和社会的快速发展为全球带来巨大的能源和环境危机。利用光催化技术解决能源短缺和环境恶化的难题具有重要的意义。TiO2作为一种传统的光催化材料,具有无毒、无害、无腐蚀性、安全经济的特点,但本征TiO 2的禁带宽度较大(约3.2eV),光响应范围较窄(仅对紫外区387.5nm以下的太阳光响应),量子效率比较低。所以寻找高效,绿色,经济的新型半导体光催化材料是光催化技术持续发展的方向之一。
石墨相氮化碳(g-C3N4)光催化剂由于价格低廉、制备简单、热稳定性和化学稳定性良好、本征光催化性能较好等优点备受关注,但比表面积小和光生载流子复合严重制约了其实际应用。现有文献报道可通过金属/非金属掺杂,界面工程调控,构筑异质结,缺陷工程调控等手段调控光生载流子分离。现有技术中缺陷工程虽然可调控g-C3N4的电子结构,促进光生载流子分离,但仍缺乏系统的研究,尤其是在制备缺陷g-C3N4的方法方面。
发明内容
针对以上问题,本发明提供了一种缺陷g-C3N4光催化材料及其制备方法和应用,以g-C3N4二维材料为研究对象,围绕g-C3N4光生载流子有效分离展开工作,开发缺陷浓度可调控的g-C3N4的制备技术,通过缺陷调控的方法,增强g-C3N4光催化剂的活性。
本发明的第一个目的是提供一种缺陷g-C3N4光催化材料的制备方法,按照以下步骤进行制备:
S1、以蒸馏水为溶剂,三聚氰胺和酒石酸作为前驱物,经过搅拌和冷冻干燥,得到产物A;
S2、将产物A进行热聚合反应,经过研磨、多次洗涤和离心处理后,干燥、二次研磨得到缺陷g-C3N4光催化材料。
优选的,S2中,所述热聚合反应的条件为:在520-580℃下煅烧4-5h。
优选的,S1中,搅拌的转速为500-600rpm,搅拌的时间为5-12h;三聚氰胺和酒石酸的摩尔比为1:0.1-0.5;三聚氰胺与蒸馏水的比值为6.35g:40- 80ml。
优选的,S1中,三聚氰胺与酒石酸的摩尔比为1:0.3;三聚氰胺与蒸馏水的比值为6.35g:40ml。
优选的,S1中,冷冻干燥的温度为-50℃,干燥时间为6-8h。
优选的,S2中,干燥温度为50-60℃,干燥时间为9-10h。
本发明的第二个目的是提供一种根据上述制备方法制备得到的缺陷g- C3N4光催化材料。
本发明的第三个目的是提供上述一种缺陷g-C3N4光催化材料在降解抗生素中的应用。
与现有技术相比,本发明具有以下有益效果:
基于冷冻干燥和热聚合过程中的钻孔效应,本发明开发了一种冷热法制备缺陷材料技术,将三聚氰胺和酒石酸混合物冷冻干燥和热聚合,通过调节三聚氰胺和酒石酸的摩尔比,制备出表面氮缺陷含量可精准调控的系列缺陷氮化碳材料。该方法利用酒石酸的酸性特点,使其在与三聚氰胺接触及冷热处理的过程中呈现钻孔效应,并且在g-C3N4形成过程中夺取g-C3N4分子结构中的的NH2,使其形成富含氮空位缺陷的电子结构。本发明制备得到的缺陷 g-C3N4光催化材料,解决本征g-C3N4光生电荷空间分离不足的问题,进一步提高了g-C3N4光催化材料光催化性能;创新了高活性g-C3N4的制备技术。该制备技术成本低,污染低。
附图说明
图1为实施例1制备缺陷g-C3N4光催化材料的流程图;
图2为实施例1-4以及对比例1的XRD图;
图3为实施例1-4及对比例1制备的样品的EPR谱图;
图4为实施例3和对比例1制备的样品的FE-SEM图,其中,图4a为实施例3制备的样品的FE-SEM图,图4b为对比例1制备的样品的FE-SEM图;
图5为实施例3和对比例1制备的样品的TEM,其中,图5a为实施例3 制备的样品的TEM图,图5b为对比例1制备的样品的TEM图;
图6为实施例3和对比例1制备的样品的UV-vis DRS图;
图7为实施例3和对比例1制备的样品的PL图;
图8为实施例3和对比例1制备的样品的电化学阻抗谱图;
图9为不同光催化材料在可见光照射下对四环素的降解效率对比图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
称取6.35g三聚氰胺,按照三聚氰胺和酒石酸的摩尔比为1:0.1称取酒石酸,将三聚氰胺和酒石酸加入到烧杯中,在烧杯中加入40ml蒸馏水,加入转子,用磁力搅拌器在常温条件下,500rpm的转速下猛烈搅拌6h,把搅拌好的溶液放在培养皿中,放在冷冻干燥仪中-50℃冷冻干燥6h后取出,得到产物 A;将产物A放在马弗炉中550℃下煅烧4h,待马弗炉冷却至室温,取出块状产物,放入玛瑙研钵研磨成粉末状,经过三次水洗、离心、醇洗、离心交替进行,离心转速为8000rpm/min,离心时间为10min,然后在真空干燥箱中50℃干燥10h,干燥好的样品再次用玛瑙研钵研磨成粉末状,得到缺陷g- C3N4光催化材料,密封保存,样品记为CN-1,制备缺陷g-C3N4光催化材料的流程图如图1所示。
实施例2
称取6.35g三聚氰胺,按照三聚氰胺和酒石酸的摩尔比为1:0.2称取酒石酸,将三聚氰胺和酒石酸加入到烧杯中,在烧杯中加入40ml蒸馏水,加入转子,用磁力搅拌器在常温条件下,500rpm的转速下猛烈搅拌6h,把搅拌好的溶液放在培养皿中,放在冷冻干燥仪中-50℃冷冻干燥6h后取出,得到产物 A;将产物A放在马弗炉中550℃下煅烧4h,待马弗炉冷却至室温,取出块状产物,放入玛瑙研钵研磨成粉末状,经过三次水洗、离心、醇洗、离心交替进行,离心转速为8000rpm/min,离心时间为10min,然后在真空干燥箱中 50℃干燥10h,干燥好的样品再次用玛瑙研钵研磨成粉末状,得到缺陷g- C3N4光催化材料,密封保存,样品记为CN-2。
实施例3
称取6.35g三聚氰胺,按照三聚氰胺和酒石酸的摩尔比为1:0.3称取酒石酸,将三聚氰胺和酒石酸加入到烧杯中,在烧杯中加入40ml蒸馏水,加入转子,用磁力搅拌器在常温条件下,500rpm的转速下猛烈搅拌6h,把搅拌好的溶液放在培养皿中,放在冷冻干燥仪中-50℃冷冻干燥6h后取出,得到产物 A;将产物A放在马弗炉中550℃下煅烧4h,待马弗炉冷却至室温,取出块状产物,放入玛瑙研钵研磨成粉末状,经过三次水洗、离心、醇洗、离心交替进行,离心转速为8000rpm/min,离心时间为10min,然后在真空干燥箱中 50℃干燥10h,干燥好的样品再次用玛瑙研钵研磨成粉末状,得到缺陷g- C3N4光催化材料,密封保存,样品记为CN-3。
实施例4
称取6.35g三聚氰胺,按照三聚氰胺和酒石酸的摩尔比为1:0.5称取酒石酸,将三聚氰胺和酒石酸加入到烧杯中,在烧杯中加入40ml蒸馏水,加入转子,用磁力搅拌器在常温条件下,500rpm的转速下猛烈搅拌6h,把搅拌好的溶液放在培养皿中,放在冷冻干燥仪中-50℃冷冻干燥6h后取出,得到产物 A;将产物A放在马弗炉中550℃下煅烧4h,待马弗炉冷却至室温,取出块状产物,放入玛瑙研钵研磨成粉末状,经过三次水洗、离心、醇洗、离心交替进行,离心转速为8000rpm/min,离心时间为10min,然后在真空干燥箱中 50℃干燥10h,干燥好的样品再次用玛瑙研钵研磨成粉末状,得到缺陷g- C3N4光催化材料,密封保存,样品记为CN-4。
实施例5
称取6.35g三聚氰胺,按照三聚氰胺和酒石酸的摩尔比为1:0.3称取酒石酸,将三聚氰胺和酒石酸加入到烧杯中,在烧杯中加入50ml蒸馏水,加入转子,用磁力搅拌器在常温条件下,500rpm的转速下猛烈搅拌6h,把搅拌好的溶液放在培养皿中,放在冷冻干燥仪中-50℃冷冻干燥8h后取出,得到产物 A;将产物A放在马弗炉中550℃下煅烧4h,待马弗炉冷却至室温,取出块状产物,放入玛瑙研钵研磨成粉末状,经过三次水洗、离心、醇洗、离心交替进行,离心转速为8000rpm/min,离心时间为10min,然后在真空干燥箱中 50℃干燥10h,干燥好的样品再次用玛瑙研钵研磨成粉末状,得到缺陷g- C3N4光催化材料,密封保存。
实施例6
称取6.35g三聚氰胺,按照三聚氰胺和酒石酸的摩尔比为1:0.3称取酒石酸,将三聚氰胺和酒石酸加入到烧杯中,在烧杯中加入45ml蒸馏水,加入转子,用磁力搅拌器在常温条件下,550rpm的转速下猛烈搅拌5h,把搅拌好的溶液放在培养皿中,放在冷冻干燥仪中-50℃冷冻干燥7h后取出,得到产物 A;将产物A放在马弗炉中550℃下煅烧4h,待马弗炉冷却至室温,取出块状产物,放入玛瑙研钵研磨成粉末状,经过三次水洗、离心、醇洗、离心交替进行,离心转速为8000rpm/min,离心时间为10min,然后在真空干燥箱中 55℃干燥9.5h,干燥好的样品再次用玛瑙研钵研磨成粉末状,得到缺陷g- C3N4光催化材料,密封保存。
实施例7
称取6.35g三聚氰胺,按照三聚氰胺和酒石酸的摩尔比为1:0.3称取酒石酸,将三聚氰胺和酒石酸加入到烧杯中,在烧杯中加入80ml蒸馏水,加入转子,用磁力搅拌器在常温条件下,600rpm的转速下猛烈搅拌9h,把搅拌好的溶液放在培养皿中,放在冷冻干燥仪中-50℃冷冻干燥6h后取出,得到产物 A;将产物A放在马弗炉中520℃下煅烧5h,待马弗炉冷却至室温,取出块状产物,放入玛瑙研钵研磨成粉末状,经过三次水洗、离心、醇洗、离心交交替进行,离心转速为8000rpm/min,离心时间为10min,然后在真空干燥箱中60℃干燥9h,,干燥好的样品再次用玛瑙研钵研磨成粉末状,得到缺陷g- C3N4光催化材料,密封保存。
实施例8
称取6.35g三聚氰胺,按照三聚氰胺和酒石酸的摩尔比为1:0.3称取酒石酸,将三聚氰胺和酒石酸加入到烧杯中,在烧杯中加入60ml蒸馏水,加入转子,用磁力搅拌器在常温条件下,550rpm的转速下猛烈搅拌12h,把搅拌好的溶液放在培养皿中,放在冷冻干燥仪中-50℃冷冻干燥6h后取出,得到产物A;将产物A放在马弗炉中580℃下煅烧4.5h,待马弗炉冷却至室温,取出块状产物,放入玛瑙研钵研磨成粉末状,经过三次水洗、离心、醇洗、离心交替进行,离心转速为8000rpm/min,离心时间为10min,然后在真空干燥箱中50℃干燥10h,干燥好的样品再次用玛瑙研钵研磨成粉末状,得到缺陷g- C3N4光催化材料,密封保存。
对比例1
将三聚氰胺放在马弗炉中550℃下煅烧4h,待马弗炉冷却至室温,取出块状产物,放入玛瑙研钵研磨成粉末状,经过三次水洗、离心、醇洗、离心交替进行,离心转速为8000rpm/min,离心时间为10min,然后在真空干燥箱中50℃干燥10h,干燥好的样品再次用玛瑙研钵研磨成粉末状,密封保存,样品记为CN。
图2为实施例1-4以及对比例1的XRD图。样品的晶体结构和相纯度通过XRD测量,如图2所示,所有样品的衍射峰均归属于石墨碳相g-C3N4,无杂峰存在。约在13.1°和27.4°的衍射峰分别归属于g-C3N4的(100)和(002) 晶面,其分别对应于面内结构堆叠和芳香部分的层间堆叠,证明了改性后g- C3N4(即实施例1-4制备的样品)化学骨架保持不变。对比于CN,缺陷CN-x 样品的(100)和(002)晶面的衍射峰强度逐渐变弱,表明其结晶度逐渐降低,这可能是因为制备过程中随着酒石酸量的增加缺陷逐渐增多,从而导致样品的结晶度降低。CN-x表示CN-1、CN-2、CN-3、CN-4的统称。对比于 CN,缺陷CN-x样品中约在27.4°的(002)面的峰轻微的向低角移动,表明 CN-x具有增大的层间距。以上分析表明成功地合成了g-C3N4纳米片。
图3为实施例1-4及对比例1制备的样品的EPR谱图,图3中的EPR谱表明缺陷CN-x样品具有良好的电子离域能力。所有的样品显示相似的单洛伦磁线且g值为2.0032,这是由在p键纳米尺寸簇中嗪环中碳原子上的未成对电子引起的。相比CN,缺陷CN-x样品具有增强的EPR信号,并且EPR信号强度随着制备过程使用酒石酸量的增加而增加,表明其具有较高浓度的孤电子,这可能是因为缺陷CN-x中位于大π-键的离域电子发生重排,重新分布,促进了电荷转移和传递。
图4为实施例3和对比例1制备的样品的FE-SEM图,通过FE-SEM观察缺陷样品CN-3(图4a)和CN(图4b)的微观形貌。由图4b可以看出,CN 显示了光滑平面和团聚的体相结构,这不利于材料的传荷传质及光吸收。由图4a可以看出,缺陷CN-3样品具有卷曲结构的薄纳米片的特征,表明通过热聚合冷冻干燥前驱体的过程,g-C3N4体相被分层为少层的纳米片。缺陷g- C3N4光催化材料包含许多孔洞,其直径从几到几百纳米,并且由于表面能减小纳米片的边呈圆滑卷曲状。由于具有较小尺寸,CN-3在竖直面和面内方向电荷从材料内部迁移至表面的距离明显缩短。
图5为实施例3和对比例1制备的样品的TEM,图5a为实施例3制备的缺陷样品CN-3的TEM图,图5b为对比例1制备的的CN的TEM图,图5b 揭示了CN具有折叠的多层状结构,图5a清楚的揭示了缺陷样品CN-3具有分层结构并且包含丰富的纳米尺寸孔,这很可能是由冷冻干燥和热聚合过程的冷热交替产生的剥离效应和钻孔效应导致。热聚合过程中酒石酸与三嗪环中氨基(–NH2和=NH)的反应也能在氨基位置周围引起大量的孔。这些具有丰富孔的分层纳米片可以提供具有许多活性位点的大比表面积,利于光催化界面反应。
图6为实施例3和对比例1制备的样品的UV-vis DRS图,考察了缺陷样品CN-3光催化材料的光吸收能力,从图6可以看出,CN的光吸收范围为 350nm到400nm。对比于CN,缺陷CN-3样品显示轻微的本征吸收边红移以及较高的光吸收。在450-800nm光吸收的增加主要是因为在孔分层纳米片结构内入射光的多重反射或散射。
图7为实施例3和对比例1制备的样品的PL图,由于电荷复合会诱导荧光发光,所以光致发光谱一般用来考察光生电子和空穴的迁移,转移和分离效率。在图7中,由于电子和空穴的带带复合,CN的PL谱在460nm处显示一个宽发射峰。对比于CN,缺陷CN-3样品具有衰减的PL峰强度,表明其具有有效的电荷分离,这可能是由于形成的缺陷态阻碍了电荷复合。
图8为实施例3和对比例1制备的样品的电化学阻抗谱(EIS)图,电化学阻抗测试用来考察光催化剂光致电子和空穴的分离和迁移。图8为可见光光照条件下CN和CN-3样品的EIS图。其中CN-3具有较小的弧直径,表明其具有较小的电荷转移阻抗,这是由有效的光生电子和空穴分离和快速的界面电荷传输导致。
以四环素为降解目标物来评价样品的光催化效果,使用500W的氙灯配置滤光片提供可见光光源(λ≥420nm),四环素的起始浓度为20mg/L;将20mg CN和CN-x光催化材料分别均匀分散在盛有20mL四环素水溶液(20mg/L) 的石英试管中,置于黑暗中搅拌30min达到吸附-脱附平衡。打开光源,每隔 30min取2mL样品,经离心分离后取上层清液,使用微量石英比色皿 (1mL)于上海仪电L5紫外可见分光光度计在最大吸收波长360nm处进行测定和分析,从而评价样品的可见光光催化性能。
图9为不同光催化材料在可见光照射下对四环素的降解效率对比图。由图可以看出,经过120可见光光照,CN-x光催化剂对四环素的降解效率均高于CN,其中CN-3对四环素的降解率为73%。随着缺陷浓度的增加,CN-x的光催化活性先增大后减小,说明缺陷对材料的光催化活性起着重要的作用。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

1.一种缺陷g-C3N4光催化材料的制备方法,其特征在于,按照以下步骤进行制备:
S1、以蒸馏水为溶剂,三聚氰胺和酒石酸作为前驱物,经过搅拌和冷冻干燥,得到产物A;
S2、将产物A进行热聚合反应,经过研磨、多次洗涤和离心处理后,干燥、二次研磨得到缺陷g-C3N4光催化材料。
2.根据权利要求1所述的一种缺陷g-C3N4光催化材料的制备方法,其特征在于,S2中,所述热聚合反应的条件为:在520-580℃下煅烧4-5h。
3.根据权利要求1所述的一种缺陷g-C3N4光催化材料的制备方法,其特征在于,S1中,搅拌的转速为500-600rpm,搅拌的时间为5-12h;三聚氰胺和酒石酸的摩尔比为1:0.1-0.5;三聚氰胺与蒸馏水的比值为6.35g:40-80ml。
4.根据权利要求1所述的一种缺陷g-C3N4光催化材料的制备方法,其特征在于,S1中,三聚氰胺与酒石酸的摩尔比为1:0.3;三聚氰胺与蒸馏水的比值为6.35g:40ml。
5.根据权利要求1所述的一种缺陷g-C3N4光催化材料的制备方法,其特征在于,S1中,冷冻干燥的温度为-50℃,干燥时间为6-8h。
6.根据权利要求1所述的一种缺陷g-C3N4光催化材料的制备方法,其特征在于,S2中,干燥温度为50-60℃,干燥时间为9-10h。
7.一种权利要求1-6任一项制备方法制备得到的缺陷g-C3N4光催化材料。
8.一种权利要求7所述的缺陷g-C3N4光催化材料在降解抗生素中的应用。
CN202111470730.4A 2021-12-03 2021-12-03 一种缺陷g-C3N4光催化材料及其制备方法和应用 Active CN115254162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111470730.4A CN115254162B (zh) 2021-12-03 2021-12-03 一种缺陷g-C3N4光催化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111470730.4A CN115254162B (zh) 2021-12-03 2021-12-03 一种缺陷g-C3N4光催化材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115254162A true CN115254162A (zh) 2022-11-01
CN115254162B CN115254162B (zh) 2023-11-14

Family

ID=83758539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111470730.4A Active CN115254162B (zh) 2021-12-03 2021-12-03 一种缺陷g-C3N4光催化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115254162B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116689008A (zh) * 2022-12-31 2023-09-05 深圳中农秸美科技股份有限公司 一种用于木质素解聚的过渡金属掺杂缺陷型g-C3N4光催化材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026226A (zh) * 2019-05-20 2019-07-19 郑州大学 一种石墨相氮化碳纳米片多孔材料及其制备方法和应用
CN111974436A (zh) * 2020-09-23 2020-11-24 中国科学技术大学 一种石墨相氮化碳及其制备方法、以及光催化水产氢的方法
CN112121846A (zh) * 2020-10-27 2020-12-25 广州大学 一种可见光下高效降解四环素的光催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026226A (zh) * 2019-05-20 2019-07-19 郑州大学 一种石墨相氮化碳纳米片多孔材料及其制备方法和应用
CN111974436A (zh) * 2020-09-23 2020-11-24 中国科学技术大学 一种石墨相氮化碳及其制备方法、以及光催化水产氢的方法
CN112121846A (zh) * 2020-10-27 2020-12-25 广州大学 一种可见光下高效降解四环素的光催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAINAN SHI ET AL.: ""Defects Promote Ultrafast Charge Seperation in Graphitic Carbon Nitride for Enhanced Visible-light-Driven CO2 Reduction Activity"", 《CHEMISTRY A EUROPEAN JOURNAL》 *
JIU WANG ET AL.: ""Nanocages of Polymeric Carbon Nitride from Low-Temperature Supramolecular Preorganization for Photocatalytic CO2 Reduction"", 《SOLAR RRL》 *
王睿源: ""氮化碳(g-C3N4)改性金属氧化物光催化剂的制备及性能研究"", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116689008A (zh) * 2022-12-31 2023-09-05 深圳中农秸美科技股份有限公司 一种用于木质素解聚的过渡金属掺杂缺陷型g-C3N4光催化材料及其制备方法
CN116689008B (zh) * 2022-12-31 2024-05-28 深圳中农秸美科技股份有限公司 一种用于木质素解聚的过渡金属掺杂缺陷型g-C3N4光催化材料及其制备方法

Also Published As

Publication number Publication date
CN115254162B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
Han et al. Effect of Fe doping on structural and optical properties of ZnO films and nanorods
Xie et al. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells
Zhang et al. Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment
Khan et al. Modifications in structural, morphological, optical and photocatalytic properties of ZnO: Mn nanoparticles by sol-gel protocol
Chang et al. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis
Manikandan et al. Comparative investigation of structural, optical properties and dye-sensitized solar cell applications of ZnO nanostructures
CN110368962B (zh) 一种BiOI/WO3异质结高效光电催化电极的制备方法、产品及应用
CN113130762B (zh) 太阳能电池的吸光层材料、三元阳离子钙钛矿太阳能电池及其制备方法
Feng et al. Near‐Stoichiometric and Homogenized Perovskite Films for Solar Cells with Minimized Performance Variation
CN110683523A (zh) 一种绿色氮化碳及其制备方法和应用
Chornii et al. Enhancement of emission intensity of LaVO4: RE3+ luminescent solar light absorbers
CN112007632A (zh) 一种新型花状SnO2/g-C3N4异质结光催化剂的制备方法
Wei et al. Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells
Lv et al. The preparation of all-inorganic CsPbI2− xBr1+ x perovskite solar cells based on electrodeposited PbO2 film
CN113193126A (zh) 一种实现无甲胺钙钛矿薄膜表面重构的制备方法及其应用
CN115254162A (zh) 一种缺陷g-C3N4光催化材料及其制备方法和应用
Wu et al. In situ nanocrystal seeding perovskite crystallization toward high-performance solar cells
Tonejc et al. Transmission electron microscopy studies of nanophase TiO2
Febriansyah et al. Inorganic frameworks of low-dimensional perovskites dictate the performance and stability of mixed-dimensional perovskite solar cells
Zhao et al. Highly efficient A-site cation exchange in perovskite quantum dot for solar cells
Keriti et al. Photoluminescence and photocatalytic properties of Er 3+-doped In 2 O 3 thin films prepared by sol–gel: application to Rhodamine B degradation under solar light
Bhatia et al. Erbium-doped nanoparticles/films for enhancing percentage photodegradation of direct red-31 dye
Wang et al. The visible-light photocatalytic activity for enhancing RhB degradation and hydrogen evolution from SrTiO3 nanoparticles decorated red phosphorus nanorods as photocatalysts
Zhang et al. Pre-crystallisation applied in sequential deposition approaches to improve the photovoltaic performance of perovskite solar cells
CN109994610A (zh) 一种双组分界面混合式电子传输层及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant