CN115254114B - 一种生物质基M@Biomass-C催化剂的制备方法及应用 - Google Patents

一种生物质基M@Biomass-C催化剂的制备方法及应用 Download PDF

Info

Publication number
CN115254114B
CN115254114B CN202210915167.5A CN202210915167A CN115254114B CN 115254114 B CN115254114 B CN 115254114B CN 202210915167 A CN202210915167 A CN 202210915167A CN 115254114 B CN115254114 B CN 115254114B
Authority
CN
China
Prior art keywords
biomass
catalyst
hours
alcohol
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210915167.5A
Other languages
English (en)
Other versions
CN115254114A (zh
Inventor
林鹿
陈高峰
曾宪海
闫贵花
杨述良
孙勇
唐兴
雷廷宙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202210915167.5A priority Critical patent/CN115254114B/zh
Publication of CN115254114A publication Critical patent/CN115254114A/zh
Application granted granted Critical
Publication of CN115254114B publication Critical patent/CN115254114B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及用于生物质基合成气制备低碳醇催化剂的制备方法及应用。所述催化剂以低廉废弃的生物质为载体,直接利用生物质结构单元纤维素的多羟基基团与金属离子进行配位,在生物质骨架内部限域金属离子;高温惰性气氛下,生物质自身的热解碳不仅起到载体的功能,还可原位还原生成金属纳米颗粒,得到纳米颗粒在生物质孔道内部限域型催化剂。在生物质基合成气制备低碳醇反应中,本发明的催化剂表现出优良的CO加氢活性和C2+醇的选择性,且催化剂的寿命超过350h。本发明的催化剂制备工艺流程简单可控,以生物质为原料,极大提高催化剂的经济性,并直接用于催化生物质转化反应,可实现生物质全组分的高效利用,在生物质利用上有广泛应用前景。

Description

一种生物质基M@Biomass-C催化剂的制备方法及应用
技术领域
本发明属于能源转化利用技术领域,具体涉及一种煤炭、生物质、天然气等来源的合成气制备低碳醇生物质基M@Biomass-C催化剂及其制备方法。
背景技术
化石燃料的不断消耗和环境污染的加重严重制约了人类社会的发展进步,为了解决这些难题,学者们进行了不断地尝试和探索。寻求新的清洁能源可有效替代化石能源并缓解环境危机。以农林废弃物等生物质资源为原料通过间接液化制备低碳醇(液体燃料),是一种有望替代石油资源的绿色能源利用方式。此外,低碳醇可作为重要的化学品中间体、药物、溶剂、燃料添加剂及氢载体。目前用于低碳醇合成的催化剂主要有Rh基催化剂、Mo基催化剂、改性甲醇合成催化剂和改性费托合成催化剂。目前合成气制备低碳醇的技术瓶颈从反应本身出发主要是CO加氢涉及的基元反应多,伴随着CO2、CH4、水等副反应的生成,直接影响了低碳醇的产率;还有催化剂的成本较高,尤其是现有的催化剂,常常需要在载体上花费大量的资金投入。低廉经济环保型催化剂的研发是低碳醇合成技术的核心和关键。
其中,改性费托合成CuCo基催化剂由于CO加氢活性高、反应条件温和、成本较低,且由于Cu-Co双活性中心的协同作用,是最有潜力实现低碳醇产业化应用的一类催化剂。以农林废弃物等生物质热解碳为载体负载CuCo等活性组分,能在降低催化剂成本的同时减少秸秆等焚烧带来的环境污染问题。而研究表明Cu-Co双活性中心空间位置约接近越能更好地发挥协同催化作用,因此开发生物质基多金属负载协同催化作用的催化剂可极大地降低催化剂的成本,实现生物质全组分的高效清洁利用。
因此,现有技术的催化剂体系存在CO转化率低,催化剂稳定性差,产物碳数分布宽,尤其是乙醇选择性差等缺陷,有必要进一步研发高CO加氢活性和低碳醇选择性的生物质基M@Biomass-C催化剂。
发明内容
本发明的目的是克服现有催化剂体系的不足,通过生物质本身纤维素的多羟基基团与金属离子配位,惰性气氛下高温焙烧得到一种高CO加氢活性和低碳醇选择性的生物质基M@Biomass-C催化剂。
本发明提供一种生物质基M@Biomass-C催化剂的制备方法,其直接以农林废弃物等生物质为原料,通过多羟基基团与金属在溶剂中配位,在惰性气氛下高温焙烧,得到了碳纤维骨架内螯合的金属纳米颗粒,其中,所述的生物质原料选自木材、秸秆、竹材中的一种或多种;所述的活性金属M选自Cu、Co、Fe、Ni、Mo、Mn、Nb中的一种或多种,尤其是铜和/或钴,更优选为铜和钴两种金属离子;所述的溶剂为水、乙醇、乙二醇、1,2-丙二醇或甘油中的一种或多种,优选为水和醇的混合溶剂,更优选为水和1,2-丙二醇混合溶剂。
在具体的实施方式中,将生物质浸泡至一种或多种金属离子M的盐溶液的水和/或醇溶液中,取出后再真空干燥,将得到的材料于惰性气氛下焙烧,即得生物质基M@Biomass-C催化剂;更具体地,配制一种或多种金属盐溶液的水或醇溶液,将木材浸泡至上述溶液12-36h,随后在50-70℃真空干燥12-36h,将得到的材料于惰性气氛下焙烧,先在240-270℃保持2-4h,再在700-900℃保持4-8h,升温速率5度/分钟,即得生物质基M@Biomass-C催化剂。
优选地,所述的水-醇溶液中的醇选自乙醇、乙二醇、1,2-丙二醇或甘油中的一种或多种,优选1,2-丙二醇。所述的金属盐溶液的浓度优选0.05-0.15,优选为0.1mol/L。
本发明还提供如所述的制备方法所得到的生物质基M@Biomass-C催化剂。
进一步地,本发明提供上述生物质基M@Biomass-C催化剂在合成气制备低碳醇中的应用。例如,在煤炭、生物质、天然气等来源的合成气制备低碳醇中的应用。
本发明具有以下特点:①本发明直接以农林废弃物等生物质原料为催化剂载体,通过生物质本身的羟基及多羟基溶剂与金属配位螯合,一锅法制备了生物炭纤维骨架内配位的金属纳米颗粒催化剂M@Biomass-C;②在生物质纤维骨架内部金属M离子与羟基配位,焙烧过程形成了碳包裹的均匀分布的金属纳米颗粒,配位作用限域了金属纳米颗粒的团聚和烧结;③惰性气氛高温焙烧,生物质本身热解得到的生物碳可同步还原高价态的金属,节省了低碳醇合成步骤催化剂的还原预处理过程,节省氢气和能耗;④碳纤维网络结构的多孔性和通透性有利于气体分子在孔道内部的传输,增加了活性位点的暴露。上述制备过程可控,稳定性好,价格低廉。
本发明所述的生物质基催化剂在煤炭、生物质、天然气等来源的合成气制备低碳醇上有很好的应用潜力。与现有技术相比,本发明有如下优点:采用本发明的催化剂,可以降低催化剂的成本,解决农林废弃物的环境污染问题,因此,本发明具有良好的工业应用前景。
附图说明
图1为本发明中实施例2的场发射扫描电子显微镜(SEM)。
图2为本发明中实施例2的透射电镜(TEM)、高分辨透射电镜(HR-TEM)、高角度环形暗场-扫描透射电镜(HAADF-STEM)及其对应的能量色散X射线光谱(EDS)。
图3为本发明中实施例2的寿命测试。
图4a至图4d为本发明实施例2所得低碳醇的GC-MS谱图。其中,图4a为产物低碳醇的GC图谱,图4b为乙醇的MS图谱,图4c为正丙醇的MS图谱,图4d为正丁醇的MS图谱。
具体实施方式
以下以具体实施例来说明本发明的技术方案,但本发明的保护范围不限于此。
实施例1
本实施例的生物质基M@Biomass-C催化剂的制备步骤如下:
①将2.42g硝酸铜(Cu(NO3)2·3H2O)、2.91g硝酸钴(Co(NO3)2·6H2O)溶解于100mL去离子水中;将0.3g木材(长50mm×宽20mm×高3mm)浸泡到上述溶液中,浸渍24h,随后60℃真空干燥24h,直至溶剂完全被除去。将得到的材料于管式炉中260℃稳定3h后,再在800℃氮气气氛下热解碳化6h,升温速率5℃/min,得到所述催化剂A。
②低碳醇合成反应在高压固定床反应器中进行,反应条件:280℃,3.0MPa,4.0L/g.cat.h,合成气组成为V(H2)/V(CO)/V(N2)=60/30/10,催化剂用量0.3g。为保证定态操作数据的可靠性,催化剂运行24h后方可开始分析取样,反应原料及气体产物和液体产物在Agilent GC 7890B上分析,结果见表1。
实施例2
本实施例的生物质基M@Biomass-C催化剂的制备步骤如下:
①将2.42g硝酸铜(Cu(NO3)2·3H2O)、2.91g硝酸钴(Co(NO3)2·6H2O)溶解于50mL去离子水和50mL1,2丙-二醇中;将0.3g木材(长50mm×宽20mm×高3mm)浸泡到上述溶液中,浸渍30h,随后60℃真空干燥28h,直至溶剂完全被除去。将得到的材料于管式炉中250℃稳定4h后,再在800℃氮气气氛下热解碳化6h,升温速率5℃/min,得到所述催化剂B。
②低碳醇合成反应在高压固定床反应器中进行,反应条件:260℃,2.8MPa,4.5L/g.cat.h,合成气组成为V(H2)/V(CO)/V(N2)=60/30/10,催化剂用量0.3g。为保证定态操作数据的可靠性,催化剂运行24h后方可开始分析取样,反应原料及气体产物和液体产物在Agilent GC 7890B上分析,结果见表1。图4a-图4d显示了本实施例所得到的低碳醇的GC-MS谱图。其中,图4a为产物低碳醇的GC图谱,图4b为乙醇的MS图谱,图4c为正丙醇的MS图谱,图4d为正丁醇的MS图谱。
实施例3
本实施例的生物质基M@Biomass-C催化剂的制备步骤如下:
①将2.42g硝酸铜(Cu(NO3)2·3H2O)、2.91g硝酸钴(Co(NO3)2·6H2O)溶解于30mL去离子水和70mL1,2-丙二醇中;将0.3g木材(长50mm×宽20mm×高3mm)浸泡到上述溶液中,浸渍26h,随后60℃真空干燥24h,直至溶剂完全被除去。将得到的材料于管式炉中260℃稳定3h后,再在800℃氮气气氛下热解碳化6h,升温速率5℃/min,得到所述催化剂C。
②低碳醇合成反应在高压固定床反应器中进行,反应条件:250℃,2.6MPa,4.3L/g.cat.h,合成气组成为V(H2)/V(CO)/V(N2)=60/30/10,催化剂用量0.3g。为保证定态操作数据的可靠性,催化剂运行24h后方可开始分析取样,反应原料及气体产物和液体产物在Agilent GC 7890B上分析,结果见表1。
实施例4
本实施例的生物质基M@Biomass-C催化剂的制备步骤如下:
①将2.42g硝酸铜(Cu(NO3)2·3H2O)溶解于50mL去离子水和50mL1,2-丙二醇中;将0.3g木材(长50mm×宽20mm×高3mm)浸泡到上述溶液中,浸渍26h,随后64℃真空干燥20h,直至溶剂完全被除去。将得到的材料于管式炉中260℃稳定3h后,再在800℃氮气气氛下热解碳化6h,升温速率5℃/min,得到所述催化剂C。
②低碳醇合成反应在高压固定床反应器中进行,反应条件:260℃,2.5MPa,4.0L/g.cat.h,合成气组成为V(H2)/V(CO)/V(N2)=60/30/10,催化剂用量0.3g。为保证定态操作数据的可靠性,催化剂运行24h后方可开始分析取样,反应原料及气体产物和液体产物在Agilent GC 7890B上分析,结果见表1。
实施例5
本实施例的生物质基M@Biomass-C催化剂的制备步骤如下:
①2.91g硝酸钴(Co(NO3)2·6H2O)溶解于50mL去离子水和50mL1,2-丙二醇中;将0.3g木材(长50mm×宽20mm×高3mm)浸泡到上述溶液中,浸渍26h,随后60℃真空干燥24h,直至溶剂完全被除去。将得到的材料于管式炉中260℃稳定3h后,再在800℃氮气气氛下热解碳化6h,升温速率5℃/min,得到所述催化剂C。
②低碳醇合成反应在高压固定床反应器中进行,反应条件:270℃,2.7MPa,4.8L/g.cat.h,合成气组成为V(H2)/V(CO)/V(N2)=60/30/10,催化剂用量0.3g。为保证定态操作数据的可靠性,催化剂运行24h后方可开始分析取样,反应原料及气体产物和液体产物在Agilent GC 7890B上分析,结果见表1。
表1实施例1~5中催化剂性能评价结果
从上述实施例1-5中催化剂性能评价数据中可以得出结论:1)相比于单金属体系(实施例4和实施例5),双金属组成的催化剂(实施例1、实施例2和实施例3)表现出更高的CO转化率和醇类产物选择性,说明Cu、Co双金属的协同催化作用可以明显提高催化剂的活性;2)双金属催化剂体系中水和1,2-丙二醇溶剂的比例对催化剂的活性也有显著影响,发现加入1,2-丙二醇双羟基溶剂能明显提高催化剂的CO转化率和低碳醇的选择性,是因为增强了金属的配位作用,其中二者溶剂体积比为1:1时,催化剂具备最高的活性。
实施例6
利用场发射扫描电子显微镜(SEM)对本发明中实施例2的催化剂进行表征,结果如图1所示。图1显示碳化后生物质保持较为完整的纤维骨架结构,放大的SEM图显示均匀负载的CuCo纳米颗粒,说明生物质结构单元纤维素的多羟基基团与金属离子进行配位,从而将金属纳米颗粒限域到生物质纤维骨架结构中,有效抑制焙烧过程中纳米颗粒的团聚和烧结。图2是本发明实施例2催化剂的透射电镜、高分辨透射电镜、高角度环形暗场-扫描透射电镜及其对应的能量色散X射线光谱,从图谱可以观察到Cu、Co纳米颗粒较为均匀分散在催化剂载体的纤维骨架中。
实施例7
以实施例2制备得到的催化剂为例,进行催化剂的稳定性测试。反应条件:260℃,2.8MPa,4.5L/g.cat.h,合成气组成为V(H2)/V(CO)/V(N2)=60/30/10,催化剂用量0.3g。测试时间350h,结果如图3所示。在超过350h反应中,CO转化率和产物选择性分布均保持稳定无明显变化。表明本发明的生物质基催化剂具备超高的稳定性,这种卓越的稳定性得益于生物碳纤维骨架结构对金属纳米颗粒的限域效应。
实施例8
将合成气制备低碳醇体系中目前报道的有代表性的部分催化剂的反应评价结果列于表2,可以看出本发明实施例2制备的催化剂的CO转化率和低碳醇产率都表现出杰出的性能。
表2与已有文献报道的催化剂性能评价结果比较
其中,所述的参考文献分别为:
[1]Dong X,Liang X,Li H,Lin G,Zhang P,Zhang H.Preparation andcharacterization of carbon nanotube-promoted Co-Cu catalyst for higher alcholsynthesis from syngas.Catalysis Today,2009,147:158-165.
[2]Cao A,Liu G,Wang L,Liu J,Yue Y,Zhang L,Liu Y.Growing layereddouble hydroxides on CNTs and their catalytic performance for higher alcoholsynthesis from syngas.J Mater Sci,2016,51:5216-5231.
[3]NiuT,LiuG,ChenY,YangJ,WuJ,CaoY,LiuY.Hydrothermal synthesis ofgraphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higheralcohol synthesis from syngas.ApplSurfSci,2016,364:388-399.
[4]Chen G,Lei T,Wang Z,Liu S,He X,Guan Q,Xin X,Xu H.Preparation ofhigher alcohols by biomass-based syngas from wheat straw over CoCuK/ZrO2-SiO2catalyst.Industrial Crops&Products,2019,131:54-61.
[5]Cao A,Liu G,Yue Y,Zhang L,Liu Y.Nanoparticles of Cu-Co alloyderived from layered double hydroxides and their catalytic performance forhigher alcohol syntheis from syngas.RSC Advances,2015,5(72):58804-58812.
[6]Li Z,Luo G,Chen T,Zeng Z,Guo S,Lv J,Huang S,Wang Y,Ma X.BimetallicCoCu catalyst derived from in-situ grown Cu-ZIF-67encapsulated inside KIT-6for higher alchol synthesis from syngas.Fuel,2020,278:118292-118301.
[7]Sun K,Wu Y,Tan M,Wang L,Yang G,Zhang M,Zhang W,Tan Y.Ethanol andhigher alcohols synthesis from syngas over CuCoM(M=Fe,Cr,Ga ans Al)nanoplates derived from hydrotalcite-like precursors.Chemcatchem,2019,11:2695-2706.
[8]Xiang Y,Barbosa R,Li X,Kruse N.Ternary cobalt–copper–niobiumcatalysts for the selective CO hydrogenation to higher alcohols.ACS Catal2015,5:2929-2934.
[9]Xiang Y,Barbosa R,Kruse N.Higher alcohols through CO hydrogenationover CoCu catalysts:Influence of precursor activation.ACS Catal 2014,4:2792-2800.
以参考文献中低碳醇产率较高的文献1为例,采用共沉淀法以层状双氢氧化物为前驱体在碳纳米管上负载CuCo催化剂。其在催化低碳醇合成反应中CO转化率为39%,醇产率为28.9%。相比于参考文献1,本发明以实施例2为例,无论从原料(品种少、价格低廉)、制备方法(无需繁琐的载体预处理工艺和苛刻的制备环境)、低碳醇合成中CO转化率(74.8%)和醇产率(39.1%)上都具备明显优势。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (6)

1.一种用于催化生物质基合成气制备低碳醇的生物质基催化剂M@Biomass-C的制备方法,其特征在于,所述催化剂以生物质为载体,直接利用生物质结构单元纤维素的多羟基基团与水和1,2-丙二醇混合溶剂作为溶剂的金属离子M的溶液中进行配位,在生物质纤维骨架内部限域生长活性纳米颗粒;将得到的材料于惰性气氛下焙烧,即得生物质基M@Biomass-C催化剂;
其中,所选的金属离子M选自Cu、Co两种的组合;水和1,2-丙二醇混合溶剂中水和1,2-丙二醇的体积比为1:1;
所述方法是将生物质浸泡至金属离子M的盐溶液的水和1,2-丙二醇混合溶剂溶液中浸泡12-36h,取出后在50-70℃真空干燥12-36h,将得到的材料于惰性气氛下先在240-270℃保持2-4h,再在700-900℃保持4-8h,升温速率3-7℃/分钟,即得生物质基M@Biomass-C催化剂;
所述的载体选自木材、秸秆、竹材中的一种或多种。
2.如权利要求1所述的生物质基催化剂M@Biomass-C的制备方法,其特征在于,所选的金属离子M的浓度为0.05-0.15mol/L。
3.如权利要求1所述的生物质基催化剂M@Biomass-C的制备方法,其特征在于,所述的惰性气体是氩气或氮气中的一种。
4.如权利要求1所述的生物质基催化剂M@Biomass-C的制备方法,其特征在于,所述升温速率为5℃/分钟。
5.如权利要求1-4任一项所述的制备方法所得到的生物质基催化剂M@Biomass-C。
6.如权利要求5所述的生物质基催化剂M@Biomass-C在生物质基合成气制备低碳醇中的应用。
CN202210915167.5A 2022-08-01 2022-08-01 一种生物质基M@Biomass-C催化剂的制备方法及应用 Active CN115254114B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210915167.5A CN115254114B (zh) 2022-08-01 2022-08-01 一种生物质基M@Biomass-C催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210915167.5A CN115254114B (zh) 2022-08-01 2022-08-01 一种生物质基M@Biomass-C催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN115254114A CN115254114A (zh) 2022-11-01
CN115254114B true CN115254114B (zh) 2024-05-14

Family

ID=83746366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210915167.5A Active CN115254114B (zh) 2022-08-01 2022-08-01 一种生物质基M@Biomass-C催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115254114B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106140192A (zh) * 2015-04-22 2016-11-23 裴彦鹏 一种改善合成气转化产物选择性的催化剂及其制法和应用
CN112844446A (zh) * 2021-02-04 2021-05-28 厦门大学 一种溶剂配位金属催化剂的制备方法及应用
CN113457657A (zh) * 2021-06-29 2021-10-01 大连大学 一种碳基甲醇制氢催化剂及其制备方法和应用
CN113522339A (zh) * 2021-07-20 2021-10-22 厦门大学 一种加氢m@c-n催化剂的制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384987B2 (en) * 2004-06-01 2008-06-10 Syntec Biofuel, Inc. Catalysts and processes for the manufacture of lower aliphatic alcohols from syngas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106140192A (zh) * 2015-04-22 2016-11-23 裴彦鹏 一种改善合成气转化产物选择性的催化剂及其制法和应用
CN112844446A (zh) * 2021-02-04 2021-05-28 厦门大学 一种溶剂配位金属催化剂的制备方法及应用
CN113457657A (zh) * 2021-06-29 2021-10-01 大连大学 一种碳基甲醇制氢催化剂及其制备方法和应用
CN113522339A (zh) * 2021-07-20 2021-10-22 厦门大学 一种加氢m@c-n催化剂的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PerStenius.森林产品化学 第3版.北京:中国轻工业出版社,2017,第23-31段. *

Also Published As

Publication number Publication date
CN115254114A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Saka et al. Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from NaBH4 methanolysis using CuB, NiB, and FeB metal catalysts
Wang et al. Advances in metal/biochar catalysts for biomass hydro-upgrading: A review
Kaya Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis
CN113522339B (zh) 一种加氢m@c-n催化剂的制备方法及应用
CN109759064B (zh) 一种Co@C/生物质催化剂及其制备方法和应用
CN111085219B (zh) 一种用于碱性氢析出反应碳担载的氧化镍修饰的铂铑纳米棒电催化剂及其制备方法与应用
CN112844446B (zh) 一种溶剂配位金属催化剂的制备方法及应用
CN109718776B (zh) 加氢催化剂Co@C/生物质及其制备方法和应用
CN111468116B (zh) 一种褐煤焦负载纳米钴复合催化剂及其制备方法
CN108623436B (zh) 一种一锅法转化纤维素为生物乙醇的方法
CN104001538A (zh) 二氧化铈改性镍负载sba-15催化剂及其制备方法和应用
Li et al. Transforming biomass tar into a highly active Ni-based carbon-supported catalyst for selective hydrogenation-transalkylation of guaiacol
CN113753855A (zh) 一种生物质炭基催化剂耦合微波效应催化重整制氢的方法
Wang et al. Bimetallic ordered mesoporous carbon from lignin for catalytic selective hydrogenation of levulinic acid to γ-valerolactone
CN114308132B (zh) 一种质子化的CdS-COF-366-M复合光催化剂及其制备方法
Wang et al. Anchoring Co on CeO2 nanoflower as an efficient catalyst for hydrogenolysis of 5-hydroxymethylfurfural
CN103191744A (zh) 一种改性蛭石负载镍催化剂及其制备方法
Valizadeh et al. Microalgae gasification over Ni loaded perovskites for enhanced biohydrogen generation
Chen et al. Ni/Ce co-doping metal–organic framework catalysts with oxygen vacancy for catalytic transfer hydrodeoxygenation of lignin derivatives vanillin
CN102658145B (zh) 一种MgO(111)负载镍基催化剂的制备方法和应用
Fang et al. A theoretical and experimental study on steam reforming of bio-oil over Ni/Co modified carbon-based catalysts
CN115254114B (zh) 一种生物质基M@Biomass-C催化剂的制备方法及应用
Lan et al. Effect of Ni/Fe ratio in Ni–Fe catalysts prepared under external magnetic field on CO2 methanation
CN114260016A (zh) 一种将Pd/ZnFexAl2-xO4催化剂用于甲醇重整制氢的方法
CN110479323B (zh) 一种逆水气变换法制取co用催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant