CN115247159B - 重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用 - Google Patents

重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用 Download PDF

Info

Publication number
CN115247159B
CN115247159B CN202210240632.XA CN202210240632A CN115247159B CN 115247159 B CN115247159 B CN 115247159B CN 202210240632 A CN202210240632 A CN 202210240632A CN 115247159 B CN115247159 B CN 115247159B
Authority
CN
China
Prior art keywords
pro
seq
leu
gly
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210240632.XA
Other languages
English (en)
Other versions
CN115247159A (zh
Inventor
薛哲勇
宋伟
华欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Forestry University
Original Assignee
Northeast Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Forestry University filed Critical Northeast Forestry University
Priority to CN202210240632.XA priority Critical patent/CN115247159B/zh
Publication of CN115247159A publication Critical patent/CN115247159A/zh
Application granted granted Critical
Publication of CN115247159B publication Critical patent/CN115247159B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1081Glycosyltransferases (2.4) transferring other glycosyl groups (2.4.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/06Hydroxylating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/20Preparation of steroids containing heterocyclic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

本发明涉及皂苷代谢途径,具体涉及重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用。本发明提供一种糖基转移酶,其氨基酸序列如SEQ ID NO:2或SEQ ID NO:4所示。还提供编码所述糖基转移酶的基因,其核苷酸序列如SEQ ID NO:1或SEQ ID NO:3所示。所述糖基转移酶能够催化甾体皂苷元、植物甾醇和甾体生物碱等多种类固醇糖基化,底物范围较广,在类固醇合成途径研究中具有良好的应用前景。

Description

重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用
技术领域
本发明涉及皂苷代谢途径,具体涉及重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用。
背景技术
类固醇(steroids)是由植物、动物和微生物产生的一种重要的次生代谢物。它们通常含有环戊烷多氢菲基本骨架,在C-10和C-13处含有角甲基,C-17处有侧链烷基取代。类固醇都来源于甲羟戊酸途径的中间产物2,3-氧化鲨烯(2,3-oxidosqualene),在氧化鲨烯环化酶(oxidosqualene cyclase)的作用下形成结构多样的三萜或甾体骨架(Xue etal.2018)。在动物和真菌中,甾醇的生物合成是通过2,3-氧化鲨烯环化成为羊毛甾醇(lanosterol),经过一系列酶转化,主要以胆固醇(cholesterol)和麦角固醇(ergosterol)的形式存在(Andreux et al.2014)。在植物中,环阿屯醇(cycloartenol)通过复杂的酶修饰产生植物甾醇、甾体皂苷、甾体生物碱、甾体激素、强心苷等种类和结构多样的类固醇(Kreis and Müller-Uri.2010)。植物甾醇存在于所有植物的细胞中,至今已发现超过250种,如豆甾醇(stigmasterol)、β-谷甾醇(β-sitosterol)和菜油甾醇(campesterol),是稳定植物生物膜的重要结构成分,还可作为合成重要生物活性化合物的前体,如油菜素甾体(Moreau et al.2018)。甾体皂苷是通过胆固醇骨架的一系列氧化和糖基化合成螺甾或呋甾烷醇衍生物,其苷元结构中具有稠合的O-杂环,如薯蓣皂苷元(diosgenin)、剑麻皂苷元(tigogenin)和知母皂苷元(sarsasapogenin)(Thakur et al.2011)。甾体生物碱也利用胆固醇作为前体,但通过侧链修饰结合胺基以产生苷元,如澳洲茄胺(solasodine)、茄啶(solanidine)和番茄碱(tomatidine)(Itkin et al.2013)。类固醇表现出巨大的化学多样性是由于其四环核心和甲基碳的不同氧化状态以及侧链的结构所致。
将疏水性的类固醇苷元与亲水性的糖苷结合,生成的类固醇糖苷往往具有更显著的生物活性。燕麦中的燕麦苷(avenacin)和番茄中的α-番茄碱(α-tomatine)以活性糖苷的形式积累,帮助植物抵御病原微生物、食草动物和竞争植物物种的侵害(Vincken etal.2007)。低浓度的原薯蓣皂苷(protodioscin)或其他皂苷可有效抑制玉米穗虫和秋粘虫的生长,减少害虫对农作物的危害(Dowd et al.2011)。植物甾醇能够以糖苷等形式存在于食品基质中,食用后可以抑制肠道对胆固醇的吸收,促进胆固醇的异化(Lin et al.2009)。重楼皂苷Ⅵ在非小细胞肺癌中通过ROS触发的mTOR信号通路诱导细胞凋亡和自噬(Teng etal.2019)。地高辛(digoxin)和洋地黄毒苷(digitoxin)等强心苷类化合物,通过靶向Na+/K+-ATP酶(NKA)并激活酪氨酸激酶(Src)显示出抗病毒活性,对新冠肺炎(COVID-19)也具有良好的治疗作用(Souza et al.2021)。糖基化通常是修饰植物次生代谢产物的最后一步,催化糖基化的酶被称为糖基转移酶(glycosyltransferase)。目前,根据糖基转移酶的序列相似性和催化机制可分为114个家族,其中大部分以尿苷二磷酸形式的糖基作为供体,催化糖基转移到受体分子(Bowles et al.2005)。相比黄酮等次生代谢物,类固醇由于合成途径复杂而相对迟滞,相关的糖基转移酶也有待进一步深入挖掘。
云南滇重楼(Paris polyphylla SMITH var.yunnanensis(FRANCH.)Hand.-Mazz.)是一种多年生草本植物,其富含多种甾体皂苷、甾醇等活性物质,药用价值高,品质优良,多以干燥的根茎入药,是很好的植物次生代谢途径研究材料。
发明内容
为促进类固醇合成途径的研究,本发明以滇重楼作为研究材料,利用转录组表达谱与代谢组关联分析,挖掘出与重楼皂苷、甾醇共表达的糖基转移酶基因,并进行了基因克隆、蛋白表达和功能验证。
本发明提供一种糖基转移酶,其氨基酸序列如SEQ ID NO:2或SEQ ID NO:4所示。
本发明还提供编码所述的糖基转移酶的基因。
所述基因的核苷酸序列如SEQ ID NO:1或SEQ ID NO:3所示。
含有所述基因的表达盒、载体或宿主菌也属于本发明的保护范围。
在一些实施例中,所述载体是克隆载体,例如,pClone007 Blunt Simple Vector。在另一些实施例中,所述载体是表达载体,例如,pGEX-6p-1载体。
在一些实施例中,所述宿主菌是用于基因克隆的宿主菌,例如大肠杆菌DH5α。在另一些实施例中,所述宿主菌是用于蛋白表达的宿主菌,例如大肠杆菌Rosetta(DE3)。
本发明还提供所述的糖基转移酶的制备方法,包括如下步骤:将所述基因导入表达载体,获得重组载体;将重组载体导入表达宿主菌中,获得重组菌;培养重组菌并诱导蛋白表达,获得所述糖基转移酶。
在一些实施例中,所述表达载体为pGEX-6p-1载体,所述表达宿主菌为大肠杆菌Rosetta(DE3)。在另一些实施例中,也可以使用其它表达载体和表达宿主菌。
在一些实施例中,从滇重楼植物材料中克隆得到所述基因。在另一些实施例中,通过人工合成的方法得到所述基因。
在一些实施例中,用于从滇重楼植物材料中克隆所述基因的引物对如SEQ ID NO:5和6或SEQ ID NO:7和8所示。
所述的糖基转移酶在糖基转移反应中的用途也属于本发明的保护范围。
在一些实施例中,所述糖基转移反应的糖基化受体为薯蓣皂苷元、偏诺皂苷元、鲁斯可皂苷元、胆固醇、豆甾醇、β-谷甾醇、澳州茄胺、藜芦胺或环巴胺。
所述的糖基转移酶在合成类固醇糖苷中的用途也属于本发明的保护范围。
在一些实施例中,所述类固醇糖苷为延龄草苷、偏诺皂苷元-3-O-糖苷、鲁斯可皂苷元-3-O-糖苷、胆固醇糖苷、豆甾醇糖苷、胡萝卜苷、γ-澳洲茄边碱、藜芦托素或环巴胺糖苷。
本发明提供的糖基转移酶命名为PpUGT80A33和PpUGT80A34。PpUGT80A33糖基转移酶包含589个氨基酸(SEQ ID NO:2),由PpUGT80A33基因(SEQ ID NO:1)编码。PpUGT80A34糖基转移酶包含590个氨基酸(SEQ ID NO:4),由PpUGT80A34基因(SEQ ID NO:3)编码。体外酶活性检测结果表明,PpUGT80A33或PpUGT80A34能够催化薯蓣皂苷元的糖基化反应,生成延龄草苷(图4);也能够催化其他甾体皂苷元(偏诺皂苷元和鲁斯可皂苷元)、甾醇(胆固醇、豆甾醇和β-谷甾醇)以及甾体生物碱(澳州茄胺、藜芦胺和环巴胺)产生相应的糖基化产物(图5)。
综上,PpUGT80A33和PpUGT80A34糖基转移酶能够催化甾体皂苷元、植物甾醇和甾体生物碱等类固醇的糖基化反应,具有良好的底物杂泛性。本发明为获得多种类固醇糖苷提供了酶资源。
附图说明
图1.PpUGT80A33和PpUGT80A34基因扩增产物的琼脂糖凝胶电泳图;泳道M为DNA分子量标准DL 2000,1和2为PpUGT80A33基因扩增产物,3和4为PpUGT80A34基因扩增产物。
图2.PpUGT80A33基因表达产物的SDS-PAGE电泳图;泳道M为Page-ruler预染蛋白Ladder,1为未经诱导的pGEX-PpUGT80A33-Rosetta(DE3)全菌蛋白,2为IPTG诱导后的pGEX-PpUGT80A33-Rosetta(DE3)菌体上清蛋白,3为IPTG诱导后的pGEX-PpUGT80A33-Rosetta(DE3)菌体沉淀,4为纯化的带GST标签的PpUGT80A33蛋白,其分子量为92.2KDa。
图3.PpUGT80A34基因表达产物的SDS-PAGE电泳图;泳道M为Page-ruler预染蛋白Ladder,1为未经诱导的pGEX-PpUGT80A34-Rosetta(DE3)全菌蛋白,2为IPTG诱导后的pGEX-PpUGT80A34-Rosetta(DE3)菌体上清蛋白,3为IPTG诱导后的pGEX-PpUGT80A34-Rosetta(DE3)菌体沉淀,4为纯化的带GST标签的PpUGT80A34蛋白,其分子量为92.0KDa。
图4.PpUGT80A33和PpUGT80A34与薯蓣皂苷元的反应产物的液相色谱和质谱分析;A为液相色谱图,横坐标为保留时间(min),纵坐标为电信号(mAU);B为质谱图,横坐标为质荷比,纵坐标为离子强度。
图5.PpUGT80A33和PpUGT80A34与不同类固醇的反应产物的液相色谱分析;横坐标为保留时间(min),纵坐标为电信号(mAU);1-9表示糖基化产物,其中1:延龄草苷,2:偏诺皂苷元-3-O-糖苷,3:鲁斯可皂苷元-3-O-糖苷,4:胆固醇糖苷,5:豆甾醇糖苷,6:胡萝卜苷,7:γ-澳洲茄边碱,8:藜芦托素,9:环巴胺糖苷;A-D表示样品,其中A:标准品,B:空载对照,C:PpUGT80A33+糖基化受体+UDP-葡萄糖,D:PpUGT80A34+糖基化受体+UDP-葡萄糖。
图6.PpUGT80A33和PpUGT80A34催化类固醇糖基化的流程图。
具体实施方式
下面结合实施例进一步描述本发明,需要理解的是,下述实施例仅作为对本发明的解释和说明,不以任何方式限制本发明的范围。
实验材料
云南滇重楼(Paris polyphylla SMITH var.yunnanensis(FRANCH.)Hand.-Mazz.),收录在《中华人民共和国药典》(2015版)中。《中华人民共和国药典》,作者:国家药典委员会,出版社:国医药科技出版社,出版时间:2015年6月5日。以下实验中使用的滇重楼植物材料采自云南大理,将滇重楼的不同组织用液氮速冻后带回实验室。
大肠杆菌(Escherichia coli)DH5α感受态细胞(CAT#:DL1001)和大肠杆菌Rosetta(DE3)感受态细胞(CAT#:EC1010)购于上海唯地生物技术有限公司。
克隆载体pClone007 Blunt Simple Vector购于北京擎科新业生物技术有限公司,货号:TSV-007BS。原核表达载体pGEX-6P-1为实验室保存,该载体可商购获得(优宝生物,产品编号VT1258)。
PCR引物
主要试剂
薯蓣皂苷元:CAS号:512-04-9,分子式:C27H42O3,英文名称diosgenin,购买自成都普瑞法科技开发有限公司,货号BP0504。
偏诺皂苷元:CAS号:507-89-1,分子式:C27H42O4,英文名称pennogenin,可从上海源叶生物科技有限公司购买,货号B50146。以下实验中使用的偏诺皂苷元通过重楼皂苷VI酶解分离纯化获得,酶解分离纯化方法参考Li,W.,Wang,Z.,Gu,J.,Chen,L.,Hou,W.,Jin,Y.P.,&Wang,Y.P.(2015).Bioconversion of ginsenoside Rd to ginsenoside M1 bysnailase hydrolysis and its enhancement effect on insulin secretion invitro.Die Pharmazie,70:340–346.中记载的方法。
鲁斯可皂苷元:CAS号:472-11-7,分子式:C27H42O4,英文名称ruscogenin,购买自成都普瑞法科技开发有限公司,货号BP1231。
胆固醇:CAS号:57-88-5,分子式:C27H46O,英文名称cholesterol,购买自阿拉丁试剂(上海)有限公司,货号C104029。
豆甾醇:CAS号:83-48-7,分子式:C29H48O,英文名称stigmasterol,购买自阿拉丁试剂(上海)有限公司,货号S111185。
β-谷甾醇:CAS号:83-46-5,分子式:C29H50O,英文名称β-sitosterol,购买自阿拉丁试剂(上海)有限公司,货号S111183。
澳州茄胺:CAS号:126-17-0,分子式:C27H43NO2,英文名称solasodine,购买自阿拉丁试剂(上海)有限公司,货号S125251。
藜芦胺:CAS号:60-70-8,分子式:C27H39NO2,英文名称veratramine,购买自成都普瑞法科技开发有限公司,货号BP1658。
环巴胺:CAS号:4449-51-8,分子式:C27H41NO2,英文名称cyclopamine,购买自成都普瑞法科技开发有限公司,货号BP0437。
UDP-葡萄糖:CAS号:28053-08-9,分子式:C15H22N2Na2O17P2,英文名称UDP-glucose,购买自北京酷来博科技有限公司,货号CU11611。
延龄草苷:CAS号:14144-06-0,分子式:C33H52O8,英文名称trillin,购买自成都普瑞法科技开发有限公司,货号BP1124。
色谱甲酸:CAS号:64-18-6,分子式:CH2O2,英文名称formic acid,购买自上海麦克林生化科技有限公司,货号:F809712;
色谱甲醇:购买自美国默克公司,货号:34885。
色谱乙腈:购买自美国默克公司,货号:34851。
PBS磷酸缓冲液(0.01M,pH 7.4):NaCl 8.0g,KCl 0.2g,Na2HPO4 1.44g,KH2PO40.24g,调节pH 7.4,加蒸馏水定容至1L。
PBS磷酸缓冲液(0.01M,pH 8.0):NaCl 8.0g,KCl 0.2g,Na2HPO4 1.44g,KH2PO40.24g,调节pH 8.0,加蒸馏水定容至1L。
若未特别说明,以下实施例中使用的试剂均为本领域常规试剂,可商购获得或按照本领域常规方法配制而得;使用的实验方法和条件均为本领域常规的实验方法和条件,可参考相关实验手册、公知文献或厂商说明书。除非另有定义,本文使用的所有技术和科学术语的含义与本发明所属领域普通技术人员通常理解的含义相同。
实施例1.PpUGT80A33和PpUGT80A34基因的发现、克隆与表达
1.基因发现
以云南滇重楼(Paris polyphylla SMITH var.yunnanensis(FRANCH.)Hand.-Mazz.)作为研究材料,我们发现了两个糖基转移酶基因,PpUGT80A33和PpUGT80A34。为了验证这两个基因在甾体皂苷合成中的功能,进行基因克隆与蛋白表达。
2.重楼叶片总RNA的提取
采用天根生化科技(北京)有限公司的RNAprep Pure Plant Kit(货号:DP441)提取重楼新鲜叶片的总RNA。步骤如下:
(1)将50-100mg重楼叶片在液氮中迅速研磨成粉末,加入450μL RL(使用前加入β-巯基乙醇),涡旋剧烈震荡混匀;
(2)将溶液转移至过滤柱CS上,12,000rpm离心2-5min,吸取收集管中的上清至RNase-Free的离心管中;
(3)加入0.5倍上清体积的无水乙醇混匀,得到的溶液和沉淀一起转入吸附柱CR3中,12,000rpm离心30-60sec,倒掉废液,将吸附柱CR3放回收集管中;
(4)向吸附柱CR3中加入350μL去蛋白液RW1,12,000rpm离心30-60sec,倒掉废液,将吸附柱CR3放回收集管中;
(5)DNase I工作液的配制:取10μL DNase I储存液放入新的RNase-Free离心管中,加入70μL RDD缓冲液,轻柔混匀;
(6)向吸附柱CR3中央加入80μL的DNase I工作液,室温放置15min;
(7)向吸附柱CR3中加入350μL去蛋白液RW1,12,000rpm离心30-60sec,倒掉废液,将吸附柱CR3放回收集管中;
(8)向吸附柱CR3中加入500μL漂洗液RW(使用前加入乙醇),室温静置2min,12,000rpm离心30-60sec,倒掉收集管中的废液,将吸附柱CR3放回收集管中,重复一次;
(9)12,000rpm离心2min,倒掉废液,将吸附柱CR3置于室温放置数分钟,彻底晾干残余的漂洗液;
(10)将吸附柱CR3放入一个新的RNase-Free离心管中,向吸附膜的中间部位悬空滴加30-100μL RNase-Free ddH2O,室温放置2min,12,000rpm离心2min,得到RNA溶液。
3.cDNA的合成
采用SuperScriptⅢRreverse Transcriptase试剂盒(Invitrogen,货号:18080085)按照试剂盒说明书对重楼叶片总RNA进行cDNA合成。步骤如下:
(1)RNA模板变性
将混合物置于65℃加热5min,然后迅速置于冰上骤冷,并在冰上静置2min。
(2)向上述(1)所得的反应物中加入下列组分,进行第一链cDNA合成
短暂离心混匀后,于55℃反应60min,70℃加热15min终止反应。将得到的重楼叶片cDNA置于-20℃保存。
4.基因扩增
以5倍稀释后的重楼叶片cDNA作为模板,使用2×Phanta Max Master Mix高保真酶(vazyme,货号:P515-02)扩增目的基因。PpUGT80A33基因的PCR引物为UGT80A33-ORF-F(SEQ ID NO:5)和UGT80A33-ORF-R(SEQ ID NO:6)。PpUGT80A34基因的PCR引物为UGT80A34-ORF-F(SEQ ID NO:7)和UGT80A34-ORF-R(SEQ ID NO:8)。反应体系如下:
反应条件:95℃预变性3min;95℃变性30sec,60℃退火30sec,72℃延伸1min,共33个循环;72℃彻底延伸7min。反应结束后,对PCR产物进行1%琼脂糖凝胶电泳检测。如图1所示,PCR产物的大小为2000bp左右,与预期的扩增片段大小相符。
5.DNA凝胶回收
使用Gel Extraction Kit(Omega,货号:D2500-02)试剂盒分别回收PpUGT80A33和PpUGT80A34基因片段。步骤如下:
(1)在紫外切胶仪中切下含有目的条带的琼脂糖凝胶,取等体积的结合缓冲液/Binding Buffer,混合物在55℃孵育7min至凝胶完全融化;
(2)吸取700μL混合液,转移到套有2mL收集管的DNA吸附柱内,静置1min,10,000g离心1min,弃滤液;
(3)将吸附柱置回收集管内,加入700μL无水乙醇稀释的SPW Wash Buffer,10,000g离心1min,弃滤液。重复一次;
(4)弃去滤液,将空吸附柱置回离心管内,12,000g离心2min。
(5)将空吸附柱置于灭菌的1.5mL离心管中,打开管盖静置1min,在吸附膜中央加入30μL无菌水(60℃预热),室温静置1min。12,000g离心1min,洗脱DNA。
6.克隆载体连接
分别将PpUGT80A33和PpUGT80A34基因片段克隆至pClone007 Blunt SimpleVector(北京擎科生物,货号:TSV-007BS)中。反应体系如下表:
反应条件:室温反应5min,得到连接产物pClone007-PpUGT80A33和pClone007-PpUGT80A34。
7.大肠杆菌转化
采用热激法将连接产物pClone007-PpUGT80A33和pClone007-PpUGT80A34分别转入大肠杆菌DH5α中。步骤如下:
(1)取100μL冰浴融化的感受态细胞DH5α(上海唯地生物,CAT#:DL1001),加入连接产物,轻轻混匀后冰浴放置30min;
(2)42℃水浴热激60s,将离心管迅速转移到冰浴中2min;
(3)向离心管中加入200μL无抗性的LB培养液,混匀后37℃摇床中180rpm培养1h,使细菌复苏;
(4)吸取上一步转化的感受态细胞,加到含有100mg/L氨苄青霉素(Amp)的LB琼脂培养基上,将细胞均匀涂开,吹干培养基表面液体,将培养基平板倒置于37℃恒温箱中过夜培养;
(5)挑取若干单菌落,加入含有100mg/L Amp的500μL LB液体培养基中,37℃180rpm培养4h。以菌液为模板,使用引物M13-F(SEQ ID NO:13)和M13-R(SEQ ID NO:14)进行PCR鉴定,反应体系和反应条件同上述基因扩增。将鉴定结果为阳性的单克隆送睿博兴科生物技术有限公司测序,得到序列正确的阳性克隆。
测序结果显示,PpUGT80A33基因的开放阅读框含有1770个碱基,其核苷酸序列如SEQ ID NO:1所示,编码的氨基酸序列如SEQ ID NO:2所示。PpUGT80A34基因的开放阅读框含有1773个碱基,其核苷酸序列如SEQ ID NO:3所示,编码的氨基酸序列如SEQ ID NO:4所示。
PpUGT80A33基因的开放阅读框:
ATGGAGAACTCGAATCCTTCGGCCATGAAGGAAGCGAATACGAAGGGCTCCGCCTCTTCGCCATCAGTGGTTGGTGACAGGAAACTACCTAGGGCAAATTCTATGCCTGAAGAGGTGAATAATTCTGAAAAGCCAGAGACATCCACAAGTAGTTTTCAATTGGAAAGGTCAAAAACTGAGAAACGAAGACAGAATAATATACGCGCTGATCATGCCACACAATTATTTGATGATAAGATCTCAATTAAGAAGAAGCTTAATATGCTAAACCAAATAGCTACTATGAATGACGACGGAACTGTAGCTGTTGAAGTTCCGAGTAATGTTGAATCTGCATCAATTGACCCTGGGTCTCAAGATGTTGGTAATGAAGCTCTTGATGATGAACCAATAGATTTAGCTGACATTCAGTATATACCTCCTATACAAATAGTTATTCTTATTGTTGGTACACGTGGAGATGTTCAACCTTTTGTTTCTATTGGTAAACGTTTACAGGATTTCGGGCATCGTGTTAGACTAGCAACTCATGCAAATTTCAAAGAATTTGTATTGACTGCTGGACTGGAATTTTACCCCTTAGGAGGAGACCCAAAAGTTCTGGCTGAATTCATGGTCAAGAATAAAGGGTTCTTACCTTCTTCACCTTCAGAAATTGCTATTCAACGAAAGCAAATGAAGGAAATCATATTTTCTTTGCTCCCAGCTTGCAAGGACCCAGATCCTGATTCTGGTATCCCTTTTAAAGCAGATGCCATTATTGCGAATCCCCCGGCTTATGGGCATACACATGTGGCAGAGGCGCTAAAGGTTCCGATACACATATTCTTCACAATGCCATGGACACCAACTAGTGAATTTCCACATCCTCTCTCTCGTGTCAAGCAGCCAGCTGGATATAGACTTTCTTACCAAATTGTTGACTCTTTGATCTGGCTTGGGATACGAGACATGATTAATGATTTTAGGAAAAGAAAGCTGAGGCTGCGACCTGTCACTTATCTGAGTGGTGCCCAGGAGTCTGCTTCTGACATCCCTCATGGCTATATCTGGAGCCCTAACCTTGTCCCTAAGCCAAAAGATTGGGGATCTAAGGTTGATGTGGTTGGATTTTGCTTTCTTGACCTCGCATCGAACTATGAACCTCCAGAATCACTCGTGAAATGGATTGAAGCAGGAGAGAAGCCTATATATATAGGATTTGGTAGCCTTCCTGTTCAAGAACCAGAAAAAATGACACAAATTATTGTTGAGGTACTGGAAATCACTGGGCAGCGAGGTATCATTAACAAGGGATGGGGTGGCCTTGGGAACTTGGCTGAACCGAAGGAGTTTGTATATCTATTGGATAATGTTCCCCATGACTGGCTATTCTTGCAGTGCAAGGCAGTGGTACATCATGGTGGTGCTGGAACAACATCTGCGGGCCTTAAAGCTGCATGTCCAACTACTATCGTACCTTTCTTTGGAGATCAACTATTTTGGGGTGAGCGAGTTCATGCTAGAGGGGTTGGCCCCCCTCCTATTCCTATTGATGAGTTCAACCTGCAAAGACTTGTGGATGCAATAAAGTTCATGCTGGATCCGAAGGTAAAGGAGAATGCAGTGGAGCTGGCAGAGGCCATAGAGTCAGAGGATGGAGTGACCGGAGCAGTGAAAGCCTTCTTTAAACATCTCCCTCCCAAGGGGCAGGAGGACACACCGGGCCCTCCATCGACTGCCTTGGATTCATGGTTCTATCCCGTACGGAGATGCTTTGGTTGTTCGTGA(SEQ ID NO:1)。
PpUGT80A33蛋白的氨基酸序列:
MENSNPSAMKEANTKGSASSPSVVGDRKLPRANSMPEEVNNSEKPETSTSSFQLERSKTEKRRQNNIRADHATQLFDDKISIKKKLNMLNQIATMNDDGTVAVEVPSNVESASIDPGSQDVGNEALDDEPIDLADIQYIPPIQIVILIVGTRGDVQPFVSIGKRLQDFGHRVRLATHANFKEFVLTAGLEFYPLGGDPKVLAEFMVKNKGFLPSSPSEIAIQRKQMKEIIFSLLPACKDPDPDSGIPFKADAIIANPPAYGHTHVAEALKVPIHIFFTMPWTPTSEFPHPLSRVKQPAGYRLSYQIVDSLIWLGIRDMINDFRKRKLRLRPVTYLSGAQESASDIPHGYIWSPNLVPKPKDWGSKVDVVGFCFLDLASNYEPPESLVKWIEAGEKPIYIGFGSLPVQEPEKMTQIIVEVLEITGQRGIINKGWGGLGNLAEPKEFVYLLDNVPHDWLFLQCKAVVHHGGAGTTSAGLKAACPTTIVPFFGDQLFWGERVHARGVGPPPIPIDEFNLQRLVDAIKFMLDPKVKENAVELAEAIESEDGVTGAVKAFFKHLPPKGQEDTPGPPSTALDSWFYPVRRCFGCS(SEQ ID NO:2)。
PpUGT80A34基因的开放阅读框:
ATGGCGGAGAGCGGCAGTGGAGCAGCGGGAAACAATGGCAAATCACCCTCGGCAATCAGTCACAATAATCTACCTAGGGCTATTAGTATGCCTGGACGTACAAAAGATACTAAAAGCTCAGAGGCATCTACGAGTCACCCAAAATTGGAGAAGTCAAAAACTGAGAAACAAAGGCAAATTAATCTACGTGCTGATCCAACATCTCAATTATTTGATGATAATGTTTCTATTAAAAAGAAGCTTAAGATGATAAATCGGATAGCTACGCTGAAAAACGATGGAACTGTGGTTGTCGAGATTCCAAGCAGCGTTGAACCAGCATCACTTAATCTTGGGCCAGAGGATGTTTATGAAGCAGTTGATGATCAAGTGGCAGACATAGCTGACCCTCAGTATATACCTCCTCTGCAAATAGTTATTCTAATTGTTGGTACTCGAGGGGATGTGCAGCCATTTATACCTATTGGCAAACGTTTTCAGGACTATGGACATCGTGTCAGACTAGCAACTCATGCGAACTTCAAAGAGTTCGTATTGACTGCTGGATTGGAGTTCTACCCTTTGGGAGGAGACCCAAAAGTTCTTGCTGAATACATGGTCAAGAATAAAGGGTTCTTACCTTCATCACCGTCAGAGATACCTATTCAGCGTAAACAACTTAAGGAAATTATATTTTCTTTGCTCTCAGCCTGCAAGGACCCAGATCTTGATTCTGGCATTCCTTTCAAAGCAGATGCCATAATAGCTAATCCCCCAGCATATGGACATACTCATGTGGCTGAGGCGCTAAAAATACCGATTCACATTATTTTCACAATGCCATGGACCCCAACTAGTGAATTTCCACATCCTCTTTCTCGGGTCAAGCAACATGCTGGATATAGACTTTCATATCAAATTGTCGACTCTATGATTTGGCTTGGAATTCGGGACATGATTAATGATTTCAGGAAAAGGAAGCTGAAGTTGAGGCCTGTCACATATCTTAGTGGCTCCCAAGGGTCTGTTTCCGATATACCTCACGCGTATATTTGGAGCCCTCATTTGGTCCCTAAACCGAAAGATTGGGGACCAAAAATTGATGTGGTTGGGTTTTGCTTCCTTGACCTTGCATCAAACTATGAGCCTCCAGAATCACTTGTGAAATGGCTTCAAGATGGTGAAAAGCCTGTTTATATTGGATTTGGAAGTCTTCCTGTTCAAGGACCAGAAAAAATGACGAACATTATTGTCGAGGCACTGGAAATTACCGGGCAGAGAGGCATCATTAACAAGGGATGGGGTGGCCTAGGGACTTTGGCAGAACCCAAAGATTCTGTATATGTACTGGACAATGTTCCCCATGACTGGTTATTCTTGCAGTGCAAGGCAGTGGTGCATCATGGGGGTGCTGGAACAACCTCTGCTGGTCTTAGAGCCGCGTGTCCAACTGCTATCGTGCCATTCTTTGGTGACCAGCAATTTTGGGGAGAACGGGTATACGCTAGAGGTTTGGGTCCCGCTCCTATACCTGTTGAGGAATTCTCACTACCTAAGCTTGTTGATGCAATGAAATTCCTGTTAGATCCTAAGGTGAAGGAGAGAACGGTGGAAGTGGCCAAGGCCATGGAATTAGAGGATGGGGTGAATGGAGCAGTGAAAGCGTTCCTAAAGCATCTCCCTAGAAAGTCGCCATCTCAGTCTCCGCCATCTCAGTCTCCATCGCCAGAGGAGCAATCTAGCTGCTTCGAGCCCTTCCTTGCCCCTGTAAAGAAGTACATGGGCTGCTCCTGA(SEQ ID NO:3)。
PpUGT80A34蛋白的氨基酸序列:
MAESGSGAAGNNGKSPSAISHNNLPRAISMPGRTKDTKSSEASTSHPKLEKSKTEKQRQINLRADPTSQLFDDNVSIKKKLKMINRIATLKNDGTVVVEIPSSVEPASLNLGPEDVYEAVDDQVADIADPQYIPPLQIVILIVGTRGDVQPFIPIGKRFQDYGHRVRLATHANFKEFVLTAGLEFYPLGGDPKVLAEYMVKNKGFLPSSPSEIPIQRKQLKEIIFSLLSACKDPDLDSGIPFKADAIIANPPAYGHTHVAEALKIPIHIIFTMPWTPTSEFPHPLSRVKQHAGYRLSYQIVDSMIWLGIRDMINDFRKRKLKLRPVTYLSGSQGSVSDIPHAYIWSPHLVPKPKDWGPKIDVVGFCFLDLASNYEPPESLVKWLQDGEKPVYIGFGSLPVQGPEKMTNIIVEALEITGQRGIINKGWGGLGTLAEPKDSVYVLDNVPHDWLFLQCKAVVHHGGAGTTSAGLRAACPTAIVPFFGDQQFWGERVYARGLGPAPIPVEEFSLPKLVDAMKFLLDPKVKERTVEVAKAMELEDGVNGAVKAFLKHLPRKSPSQSPPSQSPSPEEQSSCFEPFLAPVKKYMGCS(SEQ ID NO:4)。
8.质粒提取
使用E.Z.N.A.Plasmid Mini KitⅠ试剂盒(omega,货号:D6942-02)提取序列正确的阳性克隆的质粒。步骤如下:
(1)取5mL 37℃过夜培养的菌液(12-16h),10,000g离心1min,弃去上清;
(2)向离心管中加入250μL SolutionⅠ(已加入RNase A),吹打混匀;
(3)加入250μL SolutionⅡ,上下颠倒4-6次混匀,静置2min使菌体充分裂解(总时间少于5min);
(4)加入350μL SolutionⅢ,立即上下颠倒6-8次,让溶液彻底混匀,此时出现大量白色絮状沉淀。13,000g离心10min;
(5)将吸附柱置于收集管内,吸取离心后的上清加入吸附柱中,10,000g离心1min,弃滤液;
(6)向吸附柱中加入700μL的DNA Wash Buffer,10,000g离心1min,弃滤液。重复一次;
(7)将空吸附柱放回收集管中,13,000g离心2min,将吸附柱转移至新的1.5mL离心管中,打开管盖干燥吸附柱1min,挥干吸附柱中残留的漂洗液;
(8)向吸附柱的膜中央加入50μL预热至55℃的无菌水,静置2min,13,000g离心1min。弃去吸附柱,得到质粒pClone007-PpUGT80A33和pClone007-PpUGT80A34,保存于-20℃待用。
9.原核表达载体构建
以质粒pClone007-PpUGT80A33为模板,使用重组引物UGT80A33-pGEX-F(SEQ IDNO:9)和UGT80A33-pGEX-R(SEQ ID NO:10)进行PCR扩增。以质粒pClone007-PpUGT80A34为模板,使用重组引物UGT80A34-pGEX-F(SEQ ID NO:11)和UGT80A34-pGEX-R(SEQ ID NO:12)进行PCR扩增。反应体系和反应条件同上述基因扩增。
将原核表达载体pGEX-6p-1用EcoRⅠ(Thermo,货号:FD0274)和SalⅠ(Thermo,货号:FD0644)快速内切酶线性化。酶切体系如下:
酶切条件:37℃反应1h后终止。
将PCR扩增产物和线性化的pGEX-6p-1载体进行琼脂糖凝胶电泳检测,然后使用Gel Extraction Kit(Omega,货号:D2500-02)试剂盒分别回收。
使用ClonExpressⅡOne Step Cloning Kit(vazyme,货号:C112-02)按照试剂盒说明书对回收的基因片段和线性化pGEX-6p-1载体进行同源重组反应。反应体系如下:
反应条件:37℃反应30min,降至4℃或置于冰上冷却。
采用热激法将重组反应产物转化大肠杆菌DH5α。过夜培养后,挑取单菌落,加入含有100mg/L Amp的500μL LB液体培养基中,37℃180rpm培养4h。以菌液为模板,使用引物pGEX-F(SEQ ID NO:15)和pGEX-R(SEQ ID NO:16)进行PCR鉴定,反应体系和反应条件同上述基因扩增。将PCR鉴定的阳性克隆送睿博兴科生物技术有限公司测序,得到序列正确的阳性克隆,保菌并提取质粒pGEX-PpUGT80A33和pGEX-PpUGT80A34,质粒提取方法同上。
采用热激法将质粒pGEX-PpUGT80A33和pGEX-PpUGT80A34分别转化大肠杆菌Rosetta(DE3)表达感受态细胞(上海唯地生物,CAT#:EC1010)。同时设置空载对照:使用pGEX-6p-1空载体转化大肠杆菌Rosetta(DE3)表达感受态细胞。
10.蛋白诱导表达
按1:100的体积比将pGEX-PpUGT80A33-Rosetta(DE3)菌液、pGEX-PpUGT80A34-Rosetta(DE3)菌液、pGEX-6p-1-Rosetta(DE3)菌液分别接种于1L含有100mg/L Amp的LB液体培养基中,37℃,200rpm摇床培养至OD600=0.6,加入IPTG至终浓度为0.2mM,然后16℃,160rpm摇床培养过夜,诱导蛋白表达。于4℃,4,000rpm离心收集菌体,加入10mL 4℃预冷的PBS磷酸缓冲液(0.01M,pH 7.4)重悬菌体,冰上超声破碎至溶液呈半透明状。将超声破碎物于4℃,12,000rpm离心15min,分别收集上清和沉淀。SDS-PAGE电泳检测。
11.蛋白纯化
配制平衡液/洗杂液和洗脱液,并在使用前加入DTT至终浓度为1mM。
平衡液/洗杂液(1L):140mM NaCl,2.7mM KCl,10mM Na2HPO4,1.8mM KH2PO4,pH7.4。
洗脱液(1L):50mM Tris-HCl,150mM NaCl,10mM还原型谷胱甘肽,pH 8.0。
(1)将Glutathione Beads(常州天地人和生物科技有限公司,货号:SA008010)装入合适的层析柱,用5倍柱体积的平衡液进行平衡,使填料处于与目的蛋白相同的缓冲体系下,起到保护蛋白的作用;
(2)将样品加到平衡好的Glutathione Beads中,保证目的蛋白与GlutathioneBeads充分接触,提高目的蛋白的回收率,收集流出液;
(3)用10倍柱体积的洗杂液进行清洗,去除非特异性吸附的杂蛋白,收集洗杂液;
(4)使用5倍柱体积的洗脱液进行洗脱,收集洗脱液,即目的蛋白组分;
(5)依次使用3倍柱体积的平衡液和5倍柱体积的去离子水平衡填料;
(6)将纯化后的蛋白液加入millipore 15mL超滤管(10KD)中,于4℃,4,000rpm离心浓缩样品至500μL,加入15mL PBS磷酸缓冲液(0.01M,pH 7.4),继续浓缩至500μL。重复一次;
(7)吸取纯化的蛋白,稀释后加入终浓度10%(v/v)的甘油,-80℃保存。
pGEX-PpUGT80A33-Rosetta(DE3)的SDS-PAGE检测结果如图2所示,泳道1为未经诱导的pGEX-PpUGT80A33-Rosetta(DE3)全菌蛋白,2为IPTG诱导后的pGEX-PpUGT80A33-Rosetta(DE3)菌体上清蛋白,3为IPTG诱导后的pGEX-PpUGT80A33-Rosetta(DE3)菌体沉淀,4为纯化的带GST标签的PpUGT80A33蛋白。PpUGT80A33蛋白包含589个氨基酸,与GST标签融合后的分子量为92.2KDa。
pGEX-PpUGT80A34-Rosetta(DE3)的SDS-PAGE检测结果如图3所示,泳道1为未经诱导的pGEX-PpUGT80A34-Rosetta(DE3)全菌蛋白,2为IPTG诱导后的pGEX-PpUGT80A34-Rosetta(DE3)上清蛋白,3为IPTG诱导后的pGEX-PpUGT80A34-Rosetta(DE3)菌体沉淀,4为纯化的带GST标签的PpUGT80A34蛋白。PpUGT80A34蛋白包含590个氨基酸,与GST标签融合后的分子量为92.0KDa。
实施例2.PpUGT80A33和PpUGT80A34蛋白的功能鉴定
1.酶促反应
准确称取0.15nmol糖受体(薯蓣皂苷元、偏诺皂苷元、鲁斯可皂苷元、胆固醇、豆甾醇、β-谷甾醇、澳州茄胺、藜芦胺、环巴胺),0.75nmol UDP-葡萄糖,50μg纯化的目的蛋白(PpUGT80A33/PpUGT80A34),溶于PBS磷酸缓冲液(0.01M,pH 8.0),使终体积达到300μL。37℃反应2h后,加入等体积甲醇终止酶活,产物用真空浓缩仪减压旋干后,溶于100μL色谱甲醇,经0.22μm滤膜过滤后用于HPLC检测和质谱检测。
空载对照:用pGEX-6p-1空载体的原核表达产物(即pGEX-6p-1-Rosetta(DE3)经蛋白诱导表达和蛋白纯化后得到的产物)代替目的蛋白进行上述酶促反应。
2.HPLC及LC-Q-TOF鉴定酶产物
标准品溶液配制:称取标准品(薯蓣皂苷元、偏诺皂苷元、鲁斯可皂苷元、胆固醇、豆甾醇、β-谷甾醇、澳州茄胺、藜芦胺、环巴胺、延龄草苷),加入色谱甲醇中,配制成1mmol/L的标准品溶液。
(1)液相色谱
本实验使用Thermo Hypersil GOLD C18液相色谱柱(250mm×4.6mm,5μm),搭配Thermo UltiMate 3000高效液相色谱仪进行HPLC检测。
对于甾体皂苷元类化合物(薯蓣皂苷元、偏诺皂苷元和鲁斯可皂苷元),使用的流动相为水(A)和乙腈(B)。洗脱梯度:0~6min,60%B;6~9min,60%~100%B;15~16min,100%B;16~18min,100%~60%B;18~20min,60%B。流速1mL/min,柱温30℃,进样量10μL,检测波长:203nm。
对于甾醇类化合物(胆固醇、豆甾醇和β-谷甾醇),使用的流动相为水(A)和甲醇(B)。洗脱梯度:0~20min,95%B。流速1mL/min,柱温30℃,进样量10μL,检测波长:205nm。
对于甾体生物碱类化合物(澳州茄胺、藜芦胺和环巴胺),使用的流动相为0.1%甲酸-水(A)和0.1%甲酸-乙腈(B)。洗脱梯度:0~4min,15%B;4~6min,15%~30%B;6~12min,30%~60%B;12~13min,60%~80%B;13~14min,80%B。14~15min,80%~15%B;15~20min,15%B。流速1mL/min,柱温30℃,进样量10μL,检测波长:210nm。
(2)质谱检测
使用AB SCIEX TripleTOF 6600超高分辨质谱仪正离子数据采集模式进行质谱检测。条件为:毛细管电压3.6kV,锥孔电压35kV,离子源温度105℃,脱溶剂气温度340℃,反向锥孔气流55L/h,脱溶剂气650L/h,萃取锥孔4V。质荷比数据扫描范围:50-1500m/z。
以薯蓣皂苷元为糖基化受体的酶产物检测结果如图4所示。与空载对照的产物相比,PpUGT80A33与薯蓣皂苷元的产物以及PpUGT80A34与薯蓣皂苷元的产物均在11.3min出现了新峰(图4A箭头所示),与延龄草苷(trillin)标准品的出峰时间相同。经TOF正离子扫描模式检测,确定产物的分子量大小为577.37[M+H]+(图4B),与延龄草苷的分子量(576.3)一致,表明薯蓣皂苷元经过PpUGT80A33或PpUGT80A34催化后生成了延龄草苷。
此外,PpUGT80A33和PpUGT80A34也能催化其他甾体皂苷元(偏诺皂苷元和鲁斯可皂苷元)、甾醇(胆固醇、豆甾醇和β-谷甾醇)以及甾体生物碱(澳州茄胺、藜芦胺和环巴胺)产生相应的糖基化产物(图5)。各糖基化产物在大量富集纯化后经过核磁共振波谱分析(Nuclear magnetic resonance spectroscopy,NMR)鉴定了结构。产物5因无法富集到足够的产量,没有进行NMR分析。糖基化产物的核磁分析结果如下:
偏诺皂苷元-3-O-糖苷(产物2):白色粉末;1H-NMR(800MHz,CD3OD)δH 0.81(3H,d,J=6.4Hz,H-27),0.85(3H,s,H-18),0.90(3H,d,J=7.2Hz,H-21),1.06(3H,s,H-19),3.16(1H,t,J=8.0Hz,H-2′),3.27(1H,m,H-3),3.66(1H,dd,J=11.2Hz,5.6Hz,H-6′a),3.86(1H,brd,J=11.2Hz,5.6Hz,H-6′b),4.02(1H,t,J=6.4Hz,H-16),4.39(1H,d,J=8.0Hz,H-1′),5.40(1H,m,H-6);13C-NMR(200MHz,CD3OD)δC 38.5(C-1),33.3(C-2),77.9(C-3),39.7(C-4),142.0(C-5),122.5(C-6),32.1(C-7),32.9(C-8),51.5(C-9),38.0(C-10),21.7(C-11),32.5(C-12),45.9(C-13),53.9(C-14),31.3(C-15),90.6(C-16),91.3(C-17),17.49(C-18),19.8(C-19),45.5(C-20),9.1(C-21),111.0(C-22),32.1(C-23),29.4(C-24),30.7(C-25),67.7(C-26),17.52(C-27),102.5(C-1′),75.1(C-2′),79.8(C-3′),71.7(C-4′),78.1(C-5′),62.8(C-6′).
鲁斯可皂苷元-3-O-糖苷(产物3):白色粉末;1H NMR(800MHz,in methanol-d4H3.66(1H,dd,J=12.2,4.5Hz,H-1),3.87(1H,d,J=11.9Hz,H-3),1.70(1H,m,H-4a),1.21(1H,m,H-4b),5.59(1H,d,J=5.6Hz,H-6),1.97(1H,m,H-7a),1.29(1H,m,H-7b),1.60(1H,m,H-8),1.29(1H,m,H-9),2.28(1H,m,H-11a),1.55(1H,m,H-11b),2.39(1H,d,J=15.0Hz,H-12),2.24(1H,m,H-12),1.97(1H,m,H-15a),1.30(1H,m,H-15b),1.74(1H,t,J=7.2Hz,H-17),0.83(3H,s,H-18),1.06(3H,s,H-19),1.93(1H,m,H-20),0.97(3H,d,J=6.9Hz,H-21),1.56(1H,m,H-25),3.44(1H,dd,J=9.6,3.0Hz,H-26a),3.32(1H,t,J=9.6Hz,H-26b),0.80(3H,d,J=5.8Hz,H-27),4.32(1H,d,J=7.8Hz,H-1′),3.16(1H,t,7.8Hz,H-2′),3.34(1H,m,H-3′),3.27(1H,m,H-4′),3.25(1H,m,H-5′),3.85(1H,dd,J=2.4,12.0Hz,H-6′a),3.65(1H,dd,J=5.4,12.0Hz,H-6′a);13C NMR(200MHz,in methanol-d4C 76.1(C-1),40.7(C-2),75.1(C-3),41.3(C-4),139.6(C-5),126.1(C-6),32.9(C-7),33.0(C-8),51.7(C-9),44.3(C-10),24.8(C-11),39.3(C-12),41.1(C-13),57.6(C-14),32.4(C-15),82.2(C-16),64.0(C-17),16.9(C-18),13.8(C-19),42.9(C-20),14.9(C-21),110.6(C-22),33.9(C-23),29.9(C-24),31.4(C-25),67.8(C-26),17.5(C-27),102.5(C-1′),cannot beobserved(C-2′),79.0(C-3′),71.7(C-4′),78.1(C-5′),62.8(C-6′).
胆固醇糖苷(产物4):白色粉末;1H NMR(800MHz,in methanol-d4H 5.35(1H,m,H-6),0.72(3H,s,H-18),1.03(3H,s,H-19),0.94(3H,d,J=6.2Hz,H-21),5.37(1H,s,H-1′),4.38(1H,d,J=8.0Hz,H-2′);13C NMR(200MHz,in methanol-d4C 38.6(C-1),29.3(C-2),79.8(C-3),39.7(C-4),141.9(C-5),122.8(C-6),33.3(C-7),33.1(C-8),51.7(C-9),37.4(C-10),22.2(C-11),40.7(C-12),43.5(C-13),57.6(C-14),25.9(C-15),25.3(C-16),58.2(C-17),12.3(C-18),19.8(C-19),37.1(C-20),19.2(C-21),37.9(C-22),24.9(C-23),41.2(C-24),30.7(C-25),23.2(C-26),22.9(C-27),102.5(C-1′),75.1(C-2′),77.9(C-3′),71.7(C-4′),78.1(C-5′),62.8(C-6′).
胡萝卜苷(产物6):白色粉末;1H NMR(800MHz,in pyridine-d5H 3.99(1H,m,H-3),5.37(1H,m,H-6),2.47(1H,m,H-17),0.68(3H,s,H-18),0.96(3H,s,H-19),0.92(3H,d,J=7.4Hz,H-21),1.01(3H,d,J=6.6Hz,H-26),0.88(3H,d,J=6.8Hz,H-27),0.90(3H,t,J=6.7Hz,H-29),5.09(1H,d,J=7.7Hz,H-1′),4.09(1H,t,J=8.2Hz,H-2′),3.99(1H,m,H-5′),4.60(1H,dd,J=11.8,2.6Hz,H-6′),4.45(1H,dd,J=11.9,5.3Hz,H-6′);13C NMR(200MHz,in pyridine-d5C 37.9(C-1),30.7(C-2),79.1(C-3),40.4(C-4),141.3(C-5),122.4(C-6),32.5(C-7),32.6(C-8),50.4(C-9),37.4(C-10),21.7(C-11),39.8(C-12),42.9(C-13),57.2(C-14),24.9(C-15),29.0(C-16),56.7(C-17),12.4(C-18),19.6(C-19),36.8(C-20),19.4(C-21),34.6(C-22),26.8(C-23),46.5(C-24),29.9(C-25),19.8(C-26),20.4(C-27),23.8(C-28),12.6(C-29),103.5(C-1′),76.2(C-2′),78.9(C-3′),72.5(C-4′),78.5(C-5′),62.3(C-6′).
γ-澳洲茄边碱(产物7):白色粉末;1H NMR(800MHz,in methanol-d4H 5.39(1H,dt,J=5.0,2.1Hz,H-6),0.87(3H,s,H-18),1.07(3H,s,H-19),0.97(3H,d,J=6.6Hz,H-21),4.39(1H,d,J=7.8Hz,H-1′);13C NMR(200MHz,in methanol-d4C 38.5(C-1),30.7(C-2),79.7(C-3),40.5(C-4),142.0(C-5),122.4(C-6),32.6(C-7),32.8(C-8),51.6(C-9),38.0(C-10),21.9(C-11),39.7(C-12),42.0(C-13),57.7(C-14),33.0(C-15),83.7(C-16),63.3(C-17),16.6(C-18),19.8(C-19),42.8(C-20),14.9(C-21),100.1(C-22),33.1(C-23),29.4(C-24),30.1(C-25),47.1(C-26),18.9(C-27),102.5(C-1′),25.1(C-2′),78.1(C-3′),71.7(C-4′),72.9(C-5′),62.8(C-6′).
藜芦托素(产物8):白色粉末;1H NMR(800MHz,in methanol-d4H 5.54(1H,d,J=5.0Hz,H-6),7.01(1H,d,J=7.8Hz,H-15),7.07(1H,m,H-16),2.33(3H,d,J=2.7Hz,H-18),1.17(3H,s,H-19),1.40(3H,dd,J=7.2,2.7Hz,H-21),0.91(3H,m,H-27);13C NMR(200MHz,in methanol-d4C 39.4(C-1),30.5(C-2),80.0(C-3),39.3(C-4),143.9(C-5),123.1(C-6),31.5(C-7),42.6(C-8),58.8(C-9),38.3(C-10),31.4(C-11),139.7(C-12),133.9(C-13),145.8(C-14),121.3(C-15),126.4(C-16),144.6(C-17),16.0(C-18),19.6(C-19),36.5(C-20),21.1(C-21),67.7(C-22),70.1(C-23),43.9(C-24),31.5(C-25),53.4(C-26),18.8(C-27),102.5(C-1′),75.1(C-2′),78.2(C-3′),71.7(C-4′),77.9(C-5′),62.8(C-6′).
环巴胺糖苷(产物9):白色粉末;1H NMR(800MHz,in methanol-d4H 5.54(1H,d,J=5.0Hz,H-6),7.01(1H,d,J=7.8Hz,H-15),7.07(1H,m,H-16),2.33(3H,d,J=2.7Hz,H-18),1.17(3H,s,H-19),1.40(3H,dd,J=7.2,2.7Hz,H-21),0.91(3H,m,H-27);13C NMR(200MHz,in methanol-d4C 37.9(C-1),29.8(C-2),79.9(C-3),39.5(C-4),145.3(C-5),123.0(C-6),39.3(C-7),39.6(C-8),53.4(C-9),32.5(C-10),30.0(C-11),142.8(C-12),43.5(C-13),32.0(C-14),79.85(C-15),38.5(C-16),126.6(C-17),13.2(C-18),19.0(C-19),25.5(C-20),10.9(C-21),65.20(C-22),87.7(C-23),30.5(C-24),30.8(C-25),53.42(C-26),18.5(C-27),102.5(C-1′),75.1(C-2′),78.2(C-3′),71.7(C-4′),77.9(C-5′),62.8(C-6′).
综上,PpUGT80A33和PpUGT80A34能够识别多种类固醇作为糖基化受体,具有良好的底物杂泛性。PpUGT80A33和PpUGT80A34蛋白催化类固醇糖基化的过程见图6。
参考文献:
Andreux,P.A.,Mouchiroud,L.,Wang,X.,Jovaisaite,V.,Mottis,A.,Bichet,S.,…&Auwerxa,J.(2014).A method to identify and validate mitochondrialmodulators using mammalian cells and the worm C.elegans.Scientific Reports,4,5285.
Bowles,D.,Isayenkova,J.,Lim,E.K.,&Poppenberge,B.(2005).Glycosyltransferases:managers of small molecules.Current Opinion in PlantBiology,8,254-263.
Dowd,P.F.,Berhow,M.A.,&Johnson,E.T.(2011).Differential activity ofmultiple saponins against omnivorous insects with varying feedingpreferences.Journal of Chemical Ecology,37(5),443-449.
Itkin,M.,Heinig,U.,Tzfadia,O.,Bhide,A.J.,Shinde,B.,Cardenas,P.D.,…&Aharoni,A.(2013).Biosynthesis of antinutritional alkaloids in solanaceouscrops is mediated by clustered genes.Science,341,175-9.
Kreis,W.,Müller-Uri,F.(2010).Biochemistry of sterols,cardiacglycosides,brassinosteroids,phytoecdysteroids and steroid saponins.Annu.PlantRev.,40,304-363.
Lin,X.,Ma,L.,Racette,S.B.,Spearie,C.L.,&Ostlund,R.B.(2009).Phytosterol glycosides reduce cholesterol absorption in humans.AmericanJournal of Physiology:Gastrointestinal Liver Physiology,59(4),G931-G935.
Moreau,R.A.,L.,Whitaker,J.K.,Baer,D.J.,Gebauer,S.K.,&Hicks,K.B.(2018).Phytosterols and their derivatives:Structural diversity,distribution,metabolism,analysis,and health-promoting uses.Progress in LipidResearch,70,35-61.
Souza,K.F.,Moraes,B.P.,I.C.,Burth,P.,Silva,A.R.,&Gonalves-De-Albuquerque,C.F.(2021).Na+/K+-ATPase as a target of cardiac glycosides for thetreatment of SARS-CoV-2 infection.Frontiers in Pharmacology,12,624704.
Teng,J.F.,Qin,D.L.,Mei,Q.B.,Qiu,W.Q.,Pan,R.,Xiong,R.,…&Wu.,A.G.(2019).Polyphyllin VI,a saponin from Trillium tschonoskii Maxim.inducesapoptotic and autophagic cell death via the ROS triggered mTOR signalingpathway in non-small cell lung cancer.Pharmacological Research,147,104396.
Thakur,M.,Melzig,M.F.,Fuchs,H.,&Weng,A.(2011).Chemistry andpharmacology of saponins:special focus on cytotoxic properties.Botanics:Targets and Therapy,1,19-29.
Vincken J.P.,Heng,L.,Groot,A.D.,&Gruppen,H.(2007).Saponins,classification and occurrence in the plant kingdom.Phytochemistry,68,275-297.
Xue,Z.Y.,Tan,Z.W.,Huang,A.C.,Zhou,Y.,Sun,J.C.,Wang,X.N.,…&Qi,X.Q.(2018).Identification of key amino acid residues determining productspecificity of 2,3-oxidosqualene cyclase in Oryza species.New Phytologist,218(3),1076-1088.
SEQUENCE LISTING
<110> 东北林业大学
<120> 重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用
<130> P220222-BLY
<160> 16
<170> PatentIn version 3.5
<210> 1
<211> 1770
<212> DNA
<213> Artificial Sequence
<220>
<223> PpUGT80A33基因编码区的核苷酸序列
<400> 1
atggagaact cgaatccttc ggccatgaag gaagcgaata cgaagggctc cgcctcttcg 60
ccatcagtgg ttggtgacag gaaactacct agggcaaatt ctatgcctga agaggtgaat 120
aattctgaaa agccagagac atccacaagt agttttcaat tggaaaggtc aaaaactgag 180
aaacgaagac agaataatat acgcgctgat catgccacac aattatttga tgataagatc 240
tcaattaaga agaagcttaa tatgctaaac caaatagcta ctatgaatga cgacggaact 300
gtagctgttg aagttccgag taatgttgaa tctgcatcaa ttgaccctgg gtctcaagat 360
gttggtaatg aagctcttga tgatgaacca atagatttag ctgacattca gtatatacct 420
cctatacaaa tagttattct tattgttggt acacgtggag atgttcaacc ttttgtttct 480
attggtaaac gtttacagga tttcgggcat cgtgttagac tagcaactca tgcaaatttc 540
aaagaatttg tattgactgc tggactggaa ttttacccct taggaggaga cccaaaagtt 600
ctggctgaat tcatggtcaa gaataaaggg ttcttacctt cttcaccttc agaaattgct 660
attcaacgaa agcaaatgaa ggaaatcata ttttctttgc tcccagcttg caaggaccca 720
gatcctgatt ctggtatccc ttttaaagca gatgccatta ttgcgaatcc cccggcttat 780
gggcatacac atgtggcaga ggcgctaaag gttccgatac acatattctt cacaatgcca 840
tggacaccaa ctagtgaatt tccacatcct ctctctcgtg tcaagcagcc agctggatat 900
agactttctt accaaattgt tgactctttg atctggcttg ggatacgaga catgattaat 960
gattttagga aaagaaagct gaggctgcga cctgtcactt atctgagtgg tgcccaggag 1020
tctgcttctg acatccctca tggctatatc tggagcccta accttgtccc taagccaaaa 1080
gattggggat ctaaggttga tgtggttgga ttttgctttc ttgacctcgc atcgaactat 1140
gaacctccag aatcactcgt gaaatggatt gaagcaggag agaagcctat atatatagga 1200
tttggtagcc ttcctgttca agaaccagaa aaaatgacac aaattattgt tgaggtactg 1260
gaaatcactg ggcagcgagg tatcattaac aagggatggg gtggccttgg gaacttggct 1320
gaaccgaagg agtttgtata tctattggat aatgttcccc atgactggct attcttgcag 1380
tgcaaggcag tggtacatca tggtggtgct ggaacaacat ctgcgggcct taaagctgca 1440
tgtccaacta ctatcgtacc tttctttgga gatcaactat tttggggtga gcgagttcat 1500
gctagagggg ttggcccccc tcctattcct attgatgagt tcaacctgca aagacttgtg 1560
gatgcaataa agttcatgct ggatccgaag gtaaaggaga atgcagtgga gctggcagag 1620
gccatagagt cagaggatgg agtgaccgga gcagtgaaag ccttctttaa acatctccct 1680
cccaaggggc aggaggacac accgggccct ccatcgactg ccttggattc atggttctat 1740
cccgtacgga gatgctttgg ttgttcgtga 1770
<210> 2
<211> 589
<212> PRT
<213> Artificial Sequence
<220>
<223> PpUGT80A33糖基转移酶的氨基酸序列
<400> 2
Met Glu Asn Ser Asn Pro Ser Ala Met Lys Glu Ala Asn Thr Lys Gly
1 5 10 15
Ser Ala Ser Ser Pro Ser Val Val Gly Asp Arg Lys Leu Pro Arg Ala
20 25 30
Asn Ser Met Pro Glu Glu Val Asn Asn Ser Glu Lys Pro Glu Thr Ser
35 40 45
Thr Ser Ser Phe Gln Leu Glu Arg Ser Lys Thr Glu Lys Arg Arg Gln
50 55 60
Asn Asn Ile Arg Ala Asp His Ala Thr Gln Leu Phe Asp Asp Lys Ile
65 70 75 80
Ser Ile Lys Lys Lys Leu Asn Met Leu Asn Gln Ile Ala Thr Met Asn
85 90 95
Asp Asp Gly Thr Val Ala Val Glu Val Pro Ser Asn Val Glu Ser Ala
100 105 110
Ser Ile Asp Pro Gly Ser Gln Asp Val Gly Asn Glu Ala Leu Asp Asp
115 120 125
Glu Pro Ile Asp Leu Ala Asp Ile Gln Tyr Ile Pro Pro Ile Gln Ile
130 135 140
Val Ile Leu Ile Val Gly Thr Arg Gly Asp Val Gln Pro Phe Val Ser
145 150 155 160
Ile Gly Lys Arg Leu Gln Asp Phe Gly His Arg Val Arg Leu Ala Thr
165 170 175
His Ala Asn Phe Lys Glu Phe Val Leu Thr Ala Gly Leu Glu Phe Tyr
180 185 190
Pro Leu Gly Gly Asp Pro Lys Val Leu Ala Glu Phe Met Val Lys Asn
195 200 205
Lys Gly Phe Leu Pro Ser Ser Pro Ser Glu Ile Ala Ile Gln Arg Lys
210 215 220
Gln Met Lys Glu Ile Ile Phe Ser Leu Leu Pro Ala Cys Lys Asp Pro
225 230 235 240
Asp Pro Asp Ser Gly Ile Pro Phe Lys Ala Asp Ala Ile Ile Ala Asn
245 250 255
Pro Pro Ala Tyr Gly His Thr His Val Ala Glu Ala Leu Lys Val Pro
260 265 270
Ile His Ile Phe Phe Thr Met Pro Trp Thr Pro Thr Ser Glu Phe Pro
275 280 285
His Pro Leu Ser Arg Val Lys Gln Pro Ala Gly Tyr Arg Leu Ser Tyr
290 295 300
Gln Ile Val Asp Ser Leu Ile Trp Leu Gly Ile Arg Asp Met Ile Asn
305 310 315 320
Asp Phe Arg Lys Arg Lys Leu Arg Leu Arg Pro Val Thr Tyr Leu Ser
325 330 335
Gly Ala Gln Glu Ser Ala Ser Asp Ile Pro His Gly Tyr Ile Trp Ser
340 345 350
Pro Asn Leu Val Pro Lys Pro Lys Asp Trp Gly Ser Lys Val Asp Val
355 360 365
Val Gly Phe Cys Phe Leu Asp Leu Ala Ser Asn Tyr Glu Pro Pro Glu
370 375 380
Ser Leu Val Lys Trp Ile Glu Ala Gly Glu Lys Pro Ile Tyr Ile Gly
385 390 395 400
Phe Gly Ser Leu Pro Val Gln Glu Pro Glu Lys Met Thr Gln Ile Ile
405 410 415
Val Glu Val Leu Glu Ile Thr Gly Gln Arg Gly Ile Ile Asn Lys Gly
420 425 430
Trp Gly Gly Leu Gly Asn Leu Ala Glu Pro Lys Glu Phe Val Tyr Leu
435 440 445
Leu Asp Asn Val Pro His Asp Trp Leu Phe Leu Gln Cys Lys Ala Val
450 455 460
Val His His Gly Gly Ala Gly Thr Thr Ser Ala Gly Leu Lys Ala Ala
465 470 475 480
Cys Pro Thr Thr Ile Val Pro Phe Phe Gly Asp Gln Leu Phe Trp Gly
485 490 495
Glu Arg Val His Ala Arg Gly Val Gly Pro Pro Pro Ile Pro Ile Asp
500 505 510
Glu Phe Asn Leu Gln Arg Leu Val Asp Ala Ile Lys Phe Met Leu Asp
515 520 525
Pro Lys Val Lys Glu Asn Ala Val Glu Leu Ala Glu Ala Ile Glu Ser
530 535 540
Glu Asp Gly Val Thr Gly Ala Val Lys Ala Phe Phe Lys His Leu Pro
545 550 555 560
Pro Lys Gly Gln Glu Asp Thr Pro Gly Pro Pro Ser Thr Ala Leu Asp
565 570 575
Ser Trp Phe Tyr Pro Val Arg Arg Cys Phe Gly Cys Ser
580 585
<210> 3
<211> 1773
<212> DNA
<213> Artificial Sequence
<220>
<223> PpUGT80A34基因编码区的核苷酸序列
<400> 3
atggcggaga gcggcagtgg agcagcggga aacaatggca aatcaccctc ggcaatcagt 60
cacaataatc tacctagggc tattagtatg cctggacgta caaaagatac taaaagctca 120
gaggcatcta cgagtcaccc aaaattggag aagtcaaaaa ctgagaaaca aaggcaaatt 180
aatctacgtg ctgatccaac atctcaatta tttgatgata atgtttctat taaaaagaag 240
cttaagatga taaatcggat agctacgctg aaaaacgatg gaactgtggt tgtcgagatt 300
ccaagcagcg ttgaaccagc atcacttaat cttgggccag aggatgttta tgaagcagtt 360
gatgatcaag tggcagacat agctgaccct cagtatatac ctcctctgca aatagttatt 420
ctaattgttg gtactcgagg ggatgtgcag ccatttatac ctattggcaa acgttttcag 480
gactatggac atcgtgtcag actagcaact catgcgaact tcaaagagtt cgtattgact 540
gctggattgg agttctaccc tttgggagga gacccaaaag ttcttgctga atacatggtc 600
aagaataaag ggttcttacc ttcatcaccg tcagagatac ctattcagcg taaacaactt 660
aaggaaatta tattttcttt gctctcagcc tgcaaggacc cagatcttga ttctggcatt 720
cctttcaaag cagatgccat aatagctaat cccccagcat atggacatac tcatgtggct 780
gaggcgctaa aaataccgat tcacattatt ttcacaatgc catggacccc aactagtgaa 840
tttccacatc ctctttctcg ggtcaagcaa catgctggat atagactttc atatcaaatt 900
gtcgactcta tgatttggct tggaattcgg gacatgatta atgatttcag gaaaaggaag 960
ctgaagttga ggcctgtcac atatcttagt ggctcccaag ggtctgtttc cgatatacct 1020
cacgcgtata tttggagccc tcatttggtc cctaaaccga aagattgggg accaaaaatt 1080
gatgtggttg ggttttgctt ccttgacctt gcatcaaact atgagcctcc agaatcactt 1140
gtgaaatggc ttcaagatgg tgaaaagcct gtttatattg gatttggaag tcttcctgtt 1200
caaggaccag aaaaaatgac gaacattatt gtcgaggcac tggaaattac cgggcagaga 1260
ggcatcatta acaagggatg gggtggccta gggactttgg cagaacccaa agattctgta 1320
tatgtactgg acaatgttcc ccatgactgg ttattcttgc agtgcaaggc agtggtgcat 1380
catgggggtg ctggaacaac ctctgctggt cttagagccg cgtgtccaac tgctatcgtg 1440
ccattctttg gtgaccagca attttgggga gaacgggtat acgctagagg tttgggtccc 1500
gctcctatac ctgttgagga attctcacta cctaagcttg ttgatgcaat gaaattcctg 1560
ttagatccta aggtgaagga gagaacggtg gaagtggcca aggccatgga attagaggat 1620
ggggtgaatg gagcagtgaa agcgttccta aagcatctcc ctagaaagtc gccatctcag 1680
tctccgccat ctcagtctcc atcgccagag gagcaatcta gctgcttcga gcccttcctt 1740
gcccctgtaa agaagtacat gggctgctcc tga 1773
<210> 4
<211> 590
<212> PRT
<213> Artificial Sequence
<220>
<223> PpUGT80A34糖基转移酶的氨基酸序列
<400> 4
Met Ala Glu Ser Gly Ser Gly Ala Ala Gly Asn Asn Gly Lys Ser Pro
1 5 10 15
Ser Ala Ile Ser His Asn Asn Leu Pro Arg Ala Ile Ser Met Pro Gly
20 25 30
Arg Thr Lys Asp Thr Lys Ser Ser Glu Ala Ser Thr Ser His Pro Lys
35 40 45
Leu Glu Lys Ser Lys Thr Glu Lys Gln Arg Gln Ile Asn Leu Arg Ala
50 55 60
Asp Pro Thr Ser Gln Leu Phe Asp Asp Asn Val Ser Ile Lys Lys Lys
65 70 75 80
Leu Lys Met Ile Asn Arg Ile Ala Thr Leu Lys Asn Asp Gly Thr Val
85 90 95
Val Val Glu Ile Pro Ser Ser Val Glu Pro Ala Ser Leu Asn Leu Gly
100 105 110
Pro Glu Asp Val Tyr Glu Ala Val Asp Asp Gln Val Ala Asp Ile Ala
115 120 125
Asp Pro Gln Tyr Ile Pro Pro Leu Gln Ile Val Ile Leu Ile Val Gly
130 135 140
Thr Arg Gly Asp Val Gln Pro Phe Ile Pro Ile Gly Lys Arg Phe Gln
145 150 155 160
Asp Tyr Gly His Arg Val Arg Leu Ala Thr His Ala Asn Phe Lys Glu
165 170 175
Phe Val Leu Thr Ala Gly Leu Glu Phe Tyr Pro Leu Gly Gly Asp Pro
180 185 190
Lys Val Leu Ala Glu Tyr Met Val Lys Asn Lys Gly Phe Leu Pro Ser
195 200 205
Ser Pro Ser Glu Ile Pro Ile Gln Arg Lys Gln Leu Lys Glu Ile Ile
210 215 220
Phe Ser Leu Leu Ser Ala Cys Lys Asp Pro Asp Leu Asp Ser Gly Ile
225 230 235 240
Pro Phe Lys Ala Asp Ala Ile Ile Ala Asn Pro Pro Ala Tyr Gly His
245 250 255
Thr His Val Ala Glu Ala Leu Lys Ile Pro Ile His Ile Ile Phe Thr
260 265 270
Met Pro Trp Thr Pro Thr Ser Glu Phe Pro His Pro Leu Ser Arg Val
275 280 285
Lys Gln His Ala Gly Tyr Arg Leu Ser Tyr Gln Ile Val Asp Ser Met
290 295 300
Ile Trp Leu Gly Ile Arg Asp Met Ile Asn Asp Phe Arg Lys Arg Lys
305 310 315 320
Leu Lys Leu Arg Pro Val Thr Tyr Leu Ser Gly Ser Gln Gly Ser Val
325 330 335
Ser Asp Ile Pro His Ala Tyr Ile Trp Ser Pro His Leu Val Pro Lys
340 345 350
Pro Lys Asp Trp Gly Pro Lys Ile Asp Val Val Gly Phe Cys Phe Leu
355 360 365
Asp Leu Ala Ser Asn Tyr Glu Pro Pro Glu Ser Leu Val Lys Trp Leu
370 375 380
Gln Asp Gly Glu Lys Pro Val Tyr Ile Gly Phe Gly Ser Leu Pro Val
385 390 395 400
Gln Gly Pro Glu Lys Met Thr Asn Ile Ile Val Glu Ala Leu Glu Ile
405 410 415
Thr Gly Gln Arg Gly Ile Ile Asn Lys Gly Trp Gly Gly Leu Gly Thr
420 425 430
Leu Ala Glu Pro Lys Asp Ser Val Tyr Val Leu Asp Asn Val Pro His
435 440 445
Asp Trp Leu Phe Leu Gln Cys Lys Ala Val Val His His Gly Gly Ala
450 455 460
Gly Thr Thr Ser Ala Gly Leu Arg Ala Ala Cys Pro Thr Ala Ile Val
465 470 475 480
Pro Phe Phe Gly Asp Gln Gln Phe Trp Gly Glu Arg Val Tyr Ala Arg
485 490 495
Gly Leu Gly Pro Ala Pro Ile Pro Val Glu Glu Phe Ser Leu Pro Lys
500 505 510
Leu Val Asp Ala Met Lys Phe Leu Leu Asp Pro Lys Val Lys Glu Arg
515 520 525
Thr Val Glu Val Ala Lys Ala Met Glu Leu Glu Asp Gly Val Asn Gly
530 535 540
Ala Val Lys Ala Phe Leu Lys His Leu Pro Arg Lys Ser Pro Ser Gln
545 550 555 560
Ser Pro Pro Ser Gln Ser Pro Ser Pro Glu Glu Gln Ser Ser Cys Phe
565 570 575
Glu Pro Phe Leu Ala Pro Val Lys Lys Tyr Met Gly Cys Ser
580 585 590
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> UGT80A33-ORF-F
<400> 5
atggagaact cgaatccttc 20
<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> UGT80A33-ORF-R
<400> 6
tcacgaacaa ccaaagcatc t 21
<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> UGT80A34-ORF-F
<400> 7
atggcggaga gcggcagt 18
<210> 8
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> UGT80A34-ORF-R
<400> 8
tcaggagcag cccatgtac 19
<210> 9
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> UGT80A33-pGEX-F
<400> 9
gcccctggga tccccggaat tcatggagaa ctcgaatcct tc 42
<210> 10
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> UGT80A33-pGEX-R
<400> 10
cgatgcggcc gctcgagtcg actcacgaac aaccaaagca tct 43
<210> 11
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> UGT80A34-pGEX-F
<400> 11
gcccctggga tccccggaat tcatggcgga gagcggcagt 40
<210> 12
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> UGT80A34-pGEX-R
<400> 12
cgatgcggcc gctcgagtcg actcaggagc agcccatgta c 41
<210> 13
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> M13-F
<400> 13
tgtaaaacga cggccagt 18
<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> M13-R
<400> 14
caggaaacag ctatgacc 18
<210> 15
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> pGEX-F
<400> 15
cagcaagtat atagcatggc c 21
<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> pGEX-R
<400> 16
ggagctgcat gtgtcagagg 20

Claims (10)

1.一种糖基转移酶,其氨基酸序列如SEQ ID NO:2或SEQ ID NO:4所示。
2.编码权利要求1所述的糖基转移酶的基因。
3.根据权利要求2所述的基因,其特征在于:所述基因的核苷酸序列如SEQ ID NO:1或SEQ ID NO:3所示。
4.含有权利要求2或3所述的基因的表达盒、载体或宿主菌。
5.权利要求1所述的糖基转移酶的制备方法,包括如下步骤:将权利要求2或3所述的基因导入表达载体,获得重组载体;将重组载体导入表达宿主菌中,获得重组菌;培养重组菌并诱导蛋白表达,获得所述糖基转移酶。
6.根据权利要求5所述的制备方法,其特征在于:从滇重楼植物材料中克隆得到权利要求2或3所述的基因。
7.根据权利要求6所述的制备方法,其特征在于:用于从滇重楼植物材料中克隆所述基因的引物对如SEQ ID NO:5和6或SEQ ID NO:7和8所示。
8.权利要求1所述的糖基转移酶在糖基转移反应中的用途。
9.根据权利要求8所述的用途,其特征在于:所述糖基转移反应的糖基化受体为薯蓣皂苷元、偏诺皂苷元、鲁斯可皂苷元、胆固醇、豆甾醇、β-谷甾醇、澳州茄胺、藜芦胺或环巴胺。
10.权利要求1所述的糖基转移酶在合成类固醇糖苷中的用途。
CN202210240632.XA 2022-03-10 2022-03-10 重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用 Active CN115247159B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210240632.XA CN115247159B (zh) 2022-03-10 2022-03-10 重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210240632.XA CN115247159B (zh) 2022-03-10 2022-03-10 重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用

Publications (2)

Publication Number Publication Date
CN115247159A CN115247159A (zh) 2022-10-28
CN115247159B true CN115247159B (zh) 2023-07-25

Family

ID=83698427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210240632.XA Active CN115247159B (zh) 2022-03-10 2022-03-10 重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用

Country Status (1)

Country Link
CN (1) CN115247159B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117587045B (zh) * 2024-01-16 2024-04-16 云南农业大学 一种藜芦胆固醇22(R)-羟化酶VnCYP90B27基因及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1903053A1 (en) * 2006-09-22 2008-03-26 Rohto Pharmaceutical Co., Ltd. Elastin production-enhancing agents
CN111763663A (zh) * 2020-07-09 2020-10-13 昆明理工大学 一种天麻葡糖基转移酶基因及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1903053A1 (en) * 2006-09-22 2008-03-26 Rohto Pharmaceutical Co., Ltd. Elastin production-enhancing agents
CN111763663A (zh) * 2020-07-09 2020-10-13 昆明理工大学 一种天麻葡糖基转移酶基因及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Assessment of the inhibition risk of paris saponins, bioactive compounds from Paris polyphylla, on CYP and UGT enzymes via cocktail inhibition assays;Han Luo;Regul Toxicol Pharmacol;第113卷;全文 *
Effective prediction of biosynthetic pathway genes involved in bioactive polyphyllins in Paris polyphylla;Xin Hua;Commun Biology;第5卷(第1期);全文 *
滇重楼糖基转移酶基因的克隆和原核表达;郭思远;中国实验方剂学杂志;第27卷(第8期);全文 *
甾体皂苷生物合成相关酶及基因研究进展;尹艳;关红雨;张夏楠;;天然产物研究与开发(第08期);全文 *
荧光定量RT-PCR检测重楼功能基因表达的差异;刘军;刘学端;江雪梅;廖立琴;;中国现代医学杂志(第22期);全文 *

Also Published As

Publication number Publication date
CN115247159A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
Gao et al. Bufadienolides and their antitumor activity
Rashan et al. Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum
Pauli et al. Occurrence of progesterone and related animal steroids in two higher plants
EP2900812B1 (en) Novel udp-glycosyltransferase derived from ginseng and use thereof
KR20140041261A (ko) 인삼 유래의 신규한 udp-당전이효소 및 이의 용도
Meng et al. Steroidal saponins from Anemarrhena asphodeloides and their effects on superoxide generation
CN115247159B (zh) 重楼糖基转移酶PpUGT80A33和PpUGT80A34及其应用
EP3990643A1 (en) Transferase enzymes
CN112969785A (zh) 纤维素合酶样酶及其用途
Wang et al. Hypoglycemic triterpenes from Gynostemma pentaphyllum
Xia et al. Withapubesides A–D: natural inducible nitric oxide synthase (iNOS) inhibitors from Physalis pubescens
Zhang et al. Rearranged oleanane type saponins, astraisoolesaponins A1–A3 and B, from the stems of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao
WO2013185635A1 (zh) 一类多氧孕甾烷化合物及用途
He et al. Artemeriopolides A–D, two types of sesquiterpenoid dimers with rare carbon skeletons from Artemisia eriopoda and their antihepatoma cytotoxicity
CN106176782B (zh) 墨旱莲化学成分作为植物雌激素的用途
Yin et al. Deciphering the network of cholesterol biosynthesis in Paris polyphylla laid a base for efficient diosgenin production in plant chassis
CN114807075B (zh) 糖基转移酶PpUGT73E5及其在重楼皂苷合成中的应用
CN114480322B (zh) 燕麦糖基转移酶AsUGT73E5及其在甾体皂苷合成中的应用
CN114480323B (zh) 燕麦糖基转移酶AsUGT73E1及其在甾体皂苷合成中的应用
CN112194702B (zh) 一种达玛烷型三萜类化合物及其在制备治疗心血管疾病药物上的用途
CN110507662B (zh) 一种黄精甾体皂苷元及其制备方法与应用
CN105859822B (zh) 2位和/或27位取代的桦木酸衍生物及其制备方法和用途
Mehta et al. A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes
Kang et al. Cytotoxic and apoptotic effects of saponins from Akebia quinata on HepG2 hepatocarcinoma cells
KR101704706B1 (ko) 스테롤 당전이 효소를 이용한 스테롤 글루코사이드의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant