CN115238901A - Capacitive Adjustable Coupling Unit - Google Patents
Capacitive Adjustable Coupling Unit Download PDFInfo
- Publication number
- CN115238901A CN115238901A CN202210717997.7A CN202210717997A CN115238901A CN 115238901 A CN115238901 A CN 115238901A CN 202210717997 A CN202210717997 A CN 202210717997A CN 115238901 A CN115238901 A CN 115238901A
- Authority
- CN
- China
- Prior art keywords
- qubit
- pole
- capacitor
- adjustable
- capacitively
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 105
- 238000010168 coupling process Methods 0.000 title claims abstract description 105
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 105
- 239000003990 capacitor Substances 0.000 claims abstract description 213
- 239000002096 quantum dot Substances 0.000 claims abstract description 144
- 239000000758 substrate Substances 0.000 claims description 11
- 238000007667 floating Methods 0.000 claims description 10
- 238000002955 isolation Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 241000238366 Cephalopoda Species 0.000 description 8
- 230000005641 tunneling Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/40—Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
技术领域technical field
本发明总体上涉及多量子比特芯片领域,尤其涉及一种电容可调耦合单元。The present invention generally relates to the field of multi-qubit chips, and in particular, to a capacitively adjustable coupling unit.
背景技术Background technique
电容可调耦合单元的构型设计在多比特量子芯片的大规模扩展中起到至关重要的作用,其可以实现量子比特间的耦合可调及关断,同时又可以减少比特纠缠门操作中的寄生耦合,从而提高纠缠门的保真度。电容可调耦合单元通常包括三部分,量子比特Q1,量子比特Q2和夹在两个量子比特之间的可调耦合器Qc。通过外加磁通偏置量子比特Q1和量子比特Q2之间的可调耦合器Qc从而调节量子比特Q1和量子比特Q2之间的耦合系数。可以连续地从正到负调节该耦合系数,以完全关断或任意调节量子比特间的耦合大小。The configuration design of the capacitively tunable coupling unit plays a crucial role in the large-scale expansion of multi-bit quantum chips, which can realize the tunable and turn-off coupling between qubits, and at the same time can reduce the operation of bit entanglement gates. parasitic coupling, thereby improving the fidelity of the entanglement gate. The capacitively tunable coupling unit usually consists of three parts, a qubit Q1, a qubit Q2 and a tunable coupler Qc sandwiched between the two qubits. The coupling coefficient between the qubit Q1 and the qubit Q2 is adjusted by biasing the adjustable coupler Qc between the qubit Q1 and the qubit Q2 by applying an external magnetic flux. This coupling coefficient can be adjusted continuously from positive to negative to completely turn off or arbitrarily adjust the coupling size between qubits.
已有的电容可调耦合单元包含以下两种设计:Existing capacitively adjustable coupling units include the following two designs:
(1)量子比特Q1、可调耦合器Qc和量子比特Q2都是接地型transmon形式(参见Y.Fei,et.al.2018PHYS.REV.APPLIED 10,054062)。接地型量子比特是由对地电容和约瑟夫森结形成的非线性电感并联构成。其在指定的电容值下体积更小,在二维芯片上可以节省面积进行大量扩展。但是该电容可调耦合单元不易应用于基于倒装焊技术的三维超导量子芯片的制备,因为很难留出空间进行穿行布线,排布谐振腔等。(1) Qubit Q1, tunable coupler Qc, and qubit Q2 are all grounded transmon forms (see Y. Fei, et. al. 2018 PHYS. REV. APPLIED 10, 054062). The grounded qubit is composed of a non-linear inductance formed by a ground capacitance and a Josephson junction in parallel. It has a smaller volume at a specified capacitance value, and can save a lot of area on a two-dimensional chip for extensive expansion. However, the capacitance-tunable coupling unit is not easy to be applied to the fabrication of three-dimensional superconducting quantum chips based on flip-chip technology, because it is difficult to leave space for wiring, arranging resonant cavities, and the like.
(2)引入浮地型transmon作为量子比特或者可调耦合器。这种构型在实现上述功能的同时,又可以通过浮地型量子比特的大尺寸实现大面积的布线(参见E.A.Sete,et.al.2021PHYSICAL REVIEW APPLIED 16,024050)。但是,浮地型量子比特尺寸的增加带来了退相干时间的减小,这将严重制约量子计算机的实现。(2) Introduce floating transmons as qubits or tunable couplers. This configuration not only realizes the above functions, but also realizes large-area wiring through the large size of floating qubits (see E.A.Sete, et.al. 2021 PHYSICAL REVIEW APPLIED 16, 024050). However, the increase in the size of floating qubits brings about a reduction in the decoherence time, which will severely restrict the realization of quantum computers.
发明内容SUMMARY OF THE INVENTION
基于现有技术的上述问题,本发明提供了一种电容可调耦合单元,其包括:第一量子比特、第二量子比特、可调耦合器以及第一旁路电容;Based on the above problems of the prior art, the present invention provides a capacitively adjustable coupling unit, which includes: a first quantum bit, a second quantum bit, an adjustable coupler and a first bypass capacitor;
其中,所述第一量子比特和所述可调耦合器均电容耦合至所述第一旁路电容的第一极,所述第一旁路电容的第二极接地,以及所述第二量子比特电容耦合至所述可调耦合器。The first qubit and the adjustable coupler are both capacitively coupled to the first pole of the first bypass capacitor, the second pole of the first bypass capacitor is grounded, and the second quantum A bit capacitively coupled to the tunable coupler.
在一个实施例中,所述电容可调耦合单元还包括第二旁路电容,其包括:In one embodiment, the capacitance-adjustable coupling unit further includes a second bypass capacitor, which includes:
第一极,其电容耦合至所述第二量子比特、所述可调耦合器和所述第一旁路电容的第一极;以及a first pole capacitively coupled to the second qubit, the tunable coupler and the first pole of the first bypass capacitor; and
第二极,其连接至地。The second pole, which is connected to ground.
在一个实施例中,所述电容可调耦合单元还包括第二旁路电容,其包括:In one embodiment, the capacitance-adjustable coupling unit further includes a second bypass capacitor, which includes:
第一极,其电容耦合至所述第二量子比特和所述第一旁路电容的第一极;以及a first pole capacitively coupled to the second qubit and the first pole of the first bypass capacitor; and
第二极,其连接至地。The second pole, which is connected to ground.
在一个实施例中,所述第二量子比特经由所述第二旁路电容和所述第一旁路电容电容耦合至所述可调耦合器。In one embodiment, the second qubit is capacitively coupled to the tunable coupler via the second bypass capacitor and the first bypass capacitor.
在一个实施例中,所述第二旁路电容的中间介质层为空气层。In one embodiment, the intermediate dielectric layer of the second bypass capacitor is an air layer.
在一个实施例中,所述第二量子比特电容耦合至所述第一旁路电容的第一极。In one embodiment, the second qubit is capacitively coupled to the first pole of the first bypass capacitor.
在一个实施例中,所述第一量子比特、所述第二量子比特以及所述可调耦合器不在同一衬底上。In one embodiment, the first qubit, the second qubit and the tunable coupler are not on the same substrate.
在一个实施例中,所述第一量子比特、所述第二量子比特,所述可调耦合器以及所述第一旁路电容之间进行有地隔离的电容耦合或者无地直接电容耦合。In one embodiment, capacitive coupling with ground isolation or direct capacitive coupling without ground is performed between the first qubit, the second qubit, the tunable coupler and the first bypass capacitor.
在一个实施例中,所述第一旁路电容的中间介质层为空气层。In one embodiment, the intermediate dielectric layer of the first bypass capacitor is an air layer.
在一个实施例中,所述第一量子比特、所述第二量子比特、所述可调耦合器采用接地型transmon形式或浮地型transmon形式。In one embodiment, the first qubit, the second qubit, and the tunable coupler are in the form of a grounded transmon or a floating transmon.
在本发明的电容可调耦合单元中,在量子比特与可调耦合器之间引入了旁路电容。旁路电容可以做到很长,这有助于大规模量子比特扩展中的布线、穿孔等。在本发明的电容可调耦合单元中,量子比特Q1、量子比特Q2和可调耦合器Qc即可以采用接地型transmon形式,也可以采用浮地型transmon形式。对于采用接地型transmon形式,量子比特的整体面积可以设计的更小,这可以增加量子比特的退相干时间,在倒装焊的设计中也可以减弱两片芯片相互倒扣时在量子比特电容上带来的额外电容增加,极大方便了基于倒装焊的大规模超导量子比特的扩展设计。In the capacitive tunable coupling unit of the present invention, a bypass capacitor is introduced between the qubit and the tunable coupler. Bypass capacitors can be made very long, which facilitates wiring, vias, etc. in large-scale qubit scaling. In the capacitive tunable coupling unit of the present invention, the qubit Q1, the qubit Q2 and the tunable coupler Qc can be either grounded transmon or floating transmon. For the grounded transmon form, the overall area of the qubit can be designed to be smaller, which can increase the decoherence time of the qubit, and in the design of flip-chip bonding, it can also weaken the qubit capacitor when the two chips are inverted. The resulting increase in additional capacitance greatly facilitates the extended design of large-scale superconducting qubits based on flip-chip bonding.
附图说明Description of drawings
图1A是现有技术的接地型transmon量子比特的电路结构示意图。FIG. 1A is a schematic diagram of a circuit structure of a grounded transmon qubit in the prior art.
图1B是图1A的量子比特的工艺结构的俯视图。FIG. 1B is a top view of the process structure of the qubit of FIG. 1A .
图1C是沿图1B中的虚线MM’的截面图。Fig. 1C is a cross-sectional view along the dashed line MM' in Fig. 1B.
图2A是现有技术的浮地型transmon量子比特的电路结构示意图。FIG. 2A is a schematic diagram of a circuit structure of a floating-type transmon qubit in the prior art.
图2B是图2A的量子比特的工艺结构的俯视图。FIG. 2B is a top view of the process structure of the qubit of FIG. 2A.
图2C是沿图2B中的虚线NN’的截面图。Fig. 2C is a cross-sectional view along the dashed line NN' in Fig. 2B.
图3A是根据本发明第一实施例的电容可调耦合单元的电路结构示意图。3A is a schematic diagram of a circuit structure of a capacitively adjustable coupling unit according to the first embodiment of the present invention.
图3B是图3A的电容可调耦合单元的工艺结构的俯视图。FIG. 3B is a top view of the process structure of the capacitively adjustable coupling unit of FIG. 3A .
图4A是根据本发明第二实施例的电容可调耦合单元的电路结构示意图。4A is a schematic diagram of a circuit structure of a capacitively adjustable coupling unit according to a second embodiment of the present invention.
图4B是图4A的电容可调耦合单元的工艺结构的俯视图。FIG. 4B is a top view of the process structure of the capacitively adjustable coupling unit of FIG. 4A .
图5A是根据本发明第三实施例的电容可调耦合单元的电路结构示意图。5A is a schematic diagram of a circuit structure of a capacitively adjustable coupling unit according to a third embodiment of the present invention.
图5B是图5A的电容可调耦合单元的工艺结构的俯视图。FIG. 5B is a top view of the process structure of the capacitively adjustable coupling unit of FIG. 5A .
图6A是根据本发明第四实施例的电容可调耦合单元的电路结构示意图。6A is a schematic diagram of a circuit structure of a capacitively adjustable coupling unit according to a fourth embodiment of the present invention.
图6B是图6A的电容可调耦合单元的工艺结构的俯视图。FIG. 6B is a top view of the process structure of the capacitively adjustable coupling unit of FIG. 6A .
具体实施方式Detailed ways
为了使本发明的目的、技术方案以及优点更加清楚明白,下面将结合附图通过具体实施例对本发明作进一步详细说明。应当注意,本发明给出的实施例仅用于说明,而不限制本发明的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below through specific embodiments in conjunction with the accompanying drawings. It should be noted that the embodiments of the present invention are given for illustration only and do not limit the scope of the present invention.
图1A是现有技术的接地型transmon量子比特的电路结构示意图。接地型transmon量子比特包括并联连接的电容101以及约瑟夫森结102。电容101包括第一极101a,其连接至约瑟夫森结102的第一极102a;以及第二极101b,其与约瑟夫森结102的第二极102b连接在一起并且接地(GND)。图1B是图1A的量子比特的工艺结构的俯视图,图1C是沿图1B中的虚线MM’的截面图。如图1B和1C所示,电容101的第一极101a与约瑟夫森结102的第一极102a连接,电容101的第二极101b为GND,电容101的介质层为空气层。约瑟夫森结102的第二极102b接地,约瑟夫森结102还包括绝缘层102c。FIG. 1A is a schematic diagram of a circuit structure of a grounded transmon qubit in the prior art. The grounded transmon qubit includes a capacitor 101 and a
应当注意,图1A-1C中的接地型transmon量子比特的电路结构仅仅是一种示例性的简化结构,实际应用中可根据需要采用其他形式的电路结构。例如图1A中的约瑟夫森结可以是Squid双结,或者电容101可以采用其他的电容形式(例如两个电容并联的形式)。接地型transmon量子比特应当满足其约瑟夫森结的隧穿能EJ与电容能EC的比值在10-103的范围内,其线性电感的电感能EL与约瑟夫森结的隧穿能EJ的比值为0,并且约瑟夫森结接地。实际应用中,可根据上述约束条件选择合适的接地型transmon量子比特的电路结构。It should be noted that the circuit structure of the grounded transmon qubits in FIGS. 1A-1C is only an exemplary simplified structure, and other forms of circuit structures may be adopted in practical applications as required. For example, the Josephson junction in FIG. 1A may be a Squid double junction, or the capacitor 101 may adopt other capacitor forms (eg, two capacitors in parallel). The grounded transmon qubit should satisfy the ratio of the tunneling energy E J of its Josephson junction to the capacitive energy E C in the range of 10-10 3 , the inductive energy E L of its linear inductance and the tunneling energy E of the Josephson junction The ratio of J is 0 and the Josephson junction is grounded. In practical applications, an appropriate circuit structure of grounded transmon qubits can be selected according to the above constraints.
图2A是现有技术的浮地型transmon量子比特的电路结构示意图。浮地型transmon量子比特包括电容201、202、204以及约瑟夫森结203。电容201包括第一极201a,其连接至约瑟夫森结203的第一极203a以及电容202的第一极202a;第二极201b,其连接至地。约瑟夫森结203的第二极203b以及电容202的第二极202b相连接且共同连接至电容204的第一极204a,电容204的第二极204b连接至地。在浮地型transmon量子比特中,约瑟夫森结203不接地。FIG. 2A is a schematic diagram of a circuit structure of a floating-type transmon qubit in the prior art. The floating type transmon qubit includes
图2B是图2A的量子比特的工艺结构的俯视图,图2C是沿图2B中的虚线NN’的截面图。如图2B和2C所示,电容201的第一极201a与约瑟夫森结203的第一极203a连接,电容201的第二极201b为GND,电容201的介质层为空气层。约瑟夫森结203的第二极203b与电容204的第一极204a连接,约瑟夫森结203还包括绝缘层203c。电容204的第二极204b为GND,电容201的第一极201a与电容204的第一极204a构成电容202,即电容201的第一极201a构成电容202的第一极202a,电容204的第一极204a构成电容202的第二极202b。FIG. 2B is a top view of the process structure of the qubit of FIG. 2A , and FIG. 2C is a cross-sectional view along the dotted line NN' in FIG. 2B . 2B and 2C, the
应当注意,图2A-2C中的浮地型transmon量子比特的电路结构仅仅是示例性的,实际应用中可根据需要采用其他形式的电路结构。例如图2A中的约瑟夫森结可以是Squid双结,或者电容201/204可以采用其他的电容形式(例如两个电容并联的形式)。浮地型transmon量子比特应当满足其约瑟夫森结的隧穿能EJ与电容能EC的比值在10-103的范围内,其线性电感的电感能EL与约瑟夫森结的隧穿能EJ的比值为0,并且约瑟夫森结不接地。实际应用中,可根据上述约束条件选择合适的浮地型transmon量子比特的电路结构。It should be noted that the circuit structures of the floating-type transmon qubits in FIGS. 2A-2C are merely exemplary, and other forms of circuit structures may be adopted in practical applications as required. For example, the Josephson junction in FIG. 2A may be a Squid double junction, or the
本发明的电容可调耦合单元中的量子比特Q1、可调耦合器Qc和量子比特Q2即可以是接地型transmon形式,也可以是浮地型transmon形式。以下以量子比特Q1、可调耦合器Qc和量子比特Q2均是接地型transmon形式为例进行说明。The qubit Q1, the tunable coupler Qc and the qubit Q2 in the capacitive tunable coupling unit of the present invention can be either grounded transmon or floating transmon. The following description will be given by taking the quantum bit Q1, the tunable coupler Qc and the quantum bit Q2 all in the form of grounded transmon as an example.
图3A是根据本发明第一实施例的电容可调耦合单元的电路结构示意图。电容可调耦合单元包括接地型transmon量子比特Q1、接地型transmon形式的可调耦合器Qc、接地型transmon量子比特Q2、旁路电容304和旁路电容310。接地型transmon量子比特的具体电路结构以及连接关系已在图1A-1C中详细介绍,在此不再赘述。在图3A中可调耦合器Qc以虚线示出,约瑟夫森结302,309和312是Squid双结。3A is a schematic diagram of a circuit structure of a capacitively adjustable coupling unit according to the first embodiment of the present invention. The capacitive tunable coupling unit includes a grounded transmon qubit Q1 , an adjustable coupler Qc in the form of a grounded transmon, a grounded transmon qubit Q2 , a
其中,旁路电容304包括第一极304a,其经由电容303耦合至量子比特Q1并经由电容305耦合至可调耦合器Qc;以及第二极304b,其连接至地。旁路电容310包括第一极310a,其经由电容311耦合至量子比特Q2并经由电容307耦合至可调耦合器Qc;以及第二极310b,其连接至地。旁路电容304经由电容306耦合至旁路电容310。The
图3B是图3A的电容可调耦合单元的工艺结构的俯视图。如图3B所示,旁路电容304的第一极304a电容耦合至量子比特Q1和可调耦合器Qc,旁路电容304的第二极304b为GND,旁路电容304的介质层为空气层。旁路电容310的第一极310a电容耦合至量子比特Q2和可调耦合器Qc,旁路电容310的第二极310b为GND,旁路电容310的介质层为空气层。FIG. 3B is a top view of the process structure of the capacitively adjustable coupling unit of FIG. 3A . As shown in FIG. 3B , the
旁路电容304的第一极304a以及电容301的第一极301a构成电容303,即电容301的第一极301a构成电容303的第一极303a,旁路电容304的第一极304a构成电容303的第二极303b。旁路电容304的第一极304a以及电容308的第一极308a构成电容305,即旁路电容304的第一极304a构成电容305的第一极305a,电容308的第一极308a构成电容305的第二极305b。旁路电容310的第一极310a以及电容313的第一极313a构成电容311,即旁路电容310的第一极310a构成电容311的第一极311a,电容313的第一极313a构成电容311的第二极311b。旁路电容310的第一极310a以及电容308的第一极308a构成电容307,即电容308的第一极308a构成电容307的第一极307a,旁路电容310的第一极310a构成电容307的第二极307b。旁路电容304的第一极304a以及旁路电容310的第一极310a构成电容306,即旁路电容304的第一极304a构成电容306的第一极306a,旁路电容310的第一极310a构成电容306的第二极306b。电容303,305,306,307,311是耦合电容,且其中间介质层均为空气层。The
在图3A-3B的实施例中,量子比特Q1和Q2之间的可调耦合及关断的条件需要由以下参数来决定:量子比特Q1、Q2以及可调耦合器Qc的各电容(即电容301,308和313)和约瑟夫森结(即约瑟夫森结302,309和312)参数;旁路电容304和310的电容;以及量子比特Q1、Q2,可调耦合器Qc和旁路电容304,310之间的耦合电容(即电容303,305,306,307,311)。通过改变可调耦合器Qc的偏置电流,可以改变第一量子比特Q1和第二量子比特Q2之间的耦合强度,因此可以完全关断或任意调节量子比特间的耦合大小。In the embodiment of FIGS. 3A-3B , the conditions for tunable coupling and turn-off between qubits Q1 and Q2 need to be determined by the following parameters: qubits Q1 , Q2 and the respective capacitances of the tunable coupler Qc (ie the
图4A是根据本发明第二实施例的电容可调耦合单元的电路结构示意图。电容可调耦合单元包括接地型transmon量子比特Q1、接地型transmon形式的可调耦合器Qc、接地型transmon量子比特Q2、旁路电容404和旁路电容410。接地型transmon量子比特的具体电路结构以及连接关系已在图1A-1C中详细介绍,在此不再赘述。在图4A中可调耦合器Qc以虚线示出,约瑟夫森结402,409和412是Squid双结。4A is a schematic diagram of a circuit structure of a capacitively adjustable coupling unit according to a second embodiment of the present invention. The capacitive tunable coupling unit includes a grounded transmon qubit Q1 , an adjustable coupler Qc in the form of a grounded transmon, a grounded transmon qubit Q2 , a
其中,旁路电容404包括第一极404a,其经由电容403耦合至量子比特Q1并经由电容405耦合至可调耦合器Qc;以及第二极404b,其连接至地。旁路电容410包括第一极410a,其经由电容411耦合至量子比特Q2;以及第二极410b,其连接至地。旁路电容404经由电容406耦合至旁路电容410。可调耦合器Qc不耦合至旁路电容410。The
图4B是图4A的电容可调耦合单元的工艺结构的俯视图。如图4B所示,旁路电容404的第一极404a电容耦合至量子比特Q1和可调耦合器Qc,第二极404b为GND,旁路电容404的介质层为空气层。旁路电容410的第一极410a电容耦合至量子比特Q2,第二极410b为GND,旁路电容410的介质层为空气层。FIG. 4B is a top view of the process structure of the capacitively adjustable coupling unit of FIG. 4A . As shown in FIG. 4B , the
旁路电容404的第一极404a以及电容401的第一极401a构成电容403。旁路电容404的第一极404a以及电容408的第一极408a构成电容405。旁路电容410的第一极410a以及电容413的第一极413a构成电容411。旁路电容404的第一极404a以及旁路电容410的第一极410a构成电容406。电容403,405,406,411是耦合电容,且其中间介质层均为空气层。The
在图4A-4B的实施例中,量子比特Q1和Q2之间的可调耦合及关断的条件需要由以下参数来决定:量子比特Q1、Q2以及可调耦合器Qc的各电容(即电容401,408和413)和约瑟夫森结(即约瑟夫森结402,409和412)参数;旁路电容404和410的电容;以及量子比特Q1、Q2,可调耦合器Qc和旁路电容404,410之间的耦合电容(即电容403,405,406,411)。通过改变可调耦合器Qc的偏置电流,可以改变第一量子比特Q1和第二量子比特Q2之间的耦合强度,因此可以完全关断或任意调节量子比特间的耦合大小。In the embodiment of FIGS. 4A-4B , the conditions for tunable coupling and turn-off between qubits Q1 and Q2 need to be determined by the following parameters: qubits Q1 , Q2 and the respective capacitances of the tunable coupler Qc (
图5A是根据本发明第三实施例的电容可调耦合单元的电路结构示意图。电容可调耦合单元包括接地型transmon量子比特Q1、接地型transmon形式的可调耦合器Qc、接地型transmon量子比特Q2和旁路电容504。接地型transmon量子比特的具体电路结构以及连接关系已在图1A-1C中详细介绍,在此不再赘述。在图5A中可调耦合器Qc以虚线示出,约瑟夫森结502,509和512是Squid双结。5A is a schematic diagram of a circuit structure of a capacitively adjustable coupling unit according to a third embodiment of the present invention. The capacitive tunable coupling unit includes a grounded transmon qubit Q1 , an adjustable coupler Qc in the form of a grounded transmon, a grounded transmon qubit Q2 and a
其中,旁路电容504包括第一极504a,其经由电容503耦合至量子比特Q1,经由电容505耦合至可调耦合器Qc并经由电容511耦合至量子比特Q2;以及第二极504b,其连接至地。The
图5B是图5A的电容可调耦合单元的工艺结构的俯视图。如图5B所示,旁路电容504的第一极504a电容耦合至量子比特Q1、量子比特Q2和可调耦合器Qc,旁路电容504的第二极504b为GND,旁路电容504的介质层为空气层。FIG. 5B is a top view of the process structure of the capacitively adjustable coupling unit of FIG. 5A . As shown in FIG. 5B , the
旁路电容504的第一极504a以及电容501的第一极501a构成电容503。旁路电容504的第一极504a以及电容508的第一极508a构成电容505。旁路电容504的第一极504a以及电容513的第一极513a构成电容511。电容503,505,511是耦合电容,且其中间介质层均为空气层。The
在图5A-5B的实施例中,量子比特Q1和Q2之间的可调耦合及关断的条件需要由以下参数来决定:量子比特Q1、Q2以及可调耦合器Qc的各电容(即电容501,508和513)和约瑟夫森结(即约瑟夫森结502,509和512)参数;旁路电容504的电容;以及量子比特Q1、Q2,可调耦合器Qc和旁路电容504之间的耦合电容(即电容503,505,511)。通过改变可调耦合器Qc的偏置电流,可以改变第一量子比特Q1和第二量子比特Q2之间的耦合强度,因此可以完全关断或任意调节量子比特间的耦合大小。In the embodiment of FIGS. 5A-5B , the conditions for tunable coupling and turn-off between qubits Q1 and Q2 need to be determined by the following parameters: qubits Q1 , Q2 and the respective capacitances of the tunable coupler Qc (that is, the
图6A是根据本发明第四实施例的电容可调耦合单元的电路结构示意图。电容可调耦合单元包括接地型transmon量子比特Q1、接地型transmon形式的可调耦合器Qc、接地型transmon量子比特Q2和旁路电容604。接地型transmon量子比特的具体电路结构以及连接关系已在图1A-1C中详细介绍,在此不再赘述。在图6A中可调耦合器Qc以虚线示出,约瑟夫森结602,609和612是Squid双结。6A is a schematic diagram of a circuit structure of a capacitively adjustable coupling unit according to a fourth embodiment of the present invention. The capacitive tunable coupling unit includes a grounded transmon qubit Q1 , an adjustable coupler Qc in the form of a grounded transmon, a grounded transmon qubit Q2 and a
其中,旁路电容604包括第一极604a,其经由电容603耦合至量子比特Q1并经由电容605耦合至可调耦合器Qc;以及第二极304b,其连接至地。可调耦合器Qc经由电容614耦合至量子比特Q2。The
图6B是图6A的电容可调耦合单元的工艺结构的俯视图。如图6B所示,旁路电容604的第一极604a电容耦合至量子比特Q1和可调耦合器Qc,旁路电容604的第二极604b为GND,旁路电容604的介质层为空气层。FIG. 6B is a top view of the process structure of the capacitively adjustable coupling unit of FIG. 6A . As shown in FIG. 6B , the
旁路电容604的第一极604a以及电容601的第一极601a构成电容603。旁路电容604的第一极604a以及电容608的第一极608a构成电容605。电容608的第一极608a以及电容613的第一极613a构成电容614。电容603,605,614是耦合电容,且其中间介质层均为空气层。The
在图6A-6B的实施例中,量子比特Q1和Q2之间的可调耦合及关断的条件需要由以下参数来决定:量子比特Q1、Q2以及可调耦合器Qc的各电容(即电容601,608和613)和约瑟夫森结(即约瑟夫森结602,609和612)参数;旁路电容604的电容;以及量子比特Q1、Q2,可调耦合器Qc和旁路电容604之间的耦合电容(即电容603,605,614)。通过改变可调耦合器Qc的偏置电流,可以改变第一量子比特Q1和第二量子比特Q2之间的耦合强度,因此可以完全关断或任意调节量子比特间的耦合大小。In the embodiment of FIGS. 6A-6B , the conditions for tunable coupling and turn-off between qubits Q1 and Q2 need to be determined by the following parameters: qubits Q1 , Q2 and the respective capacitances of the tunable coupler Qc (that is, the
在上述四个实施例中,电容可调耦合单元中引入了旁路电容。电容可调耦合单元可包括量子比特Q1、量子比特Q2、可调耦合器Qc以及第一旁路电容。其中,量子比特Q1和可调耦合器Qc均电容耦合至第一旁路电容,量子比特Q2电容耦合至可调耦合器Qc。在第一实施例中,电容可调耦合单元还包括第二旁路电容,量子比特Q2和可调耦合器Qc电容耦合至第二旁路电容,量子比特Q2经由第二旁路电容耦合至可调耦合器Qc。在第二实施例中,电容可调耦合单元还包括第二旁路电容,量子比特Q2电容耦合至第二旁路电容,第一旁路电容电容耦合至第二旁路电容,量子比特Q2经由第二旁路电容和第一旁路电容电容耦合至可调耦合器Qc。在第三实施例中,量子比特Q2电容耦合至第一旁路电容,其经由第一旁路电容耦合至可调耦合器Qc。在第四实施例中,量子比特Q2直接电容耦合至可调耦合器Qc。In the above four embodiments, a bypass capacitor is introduced into the adjustable capacitance coupling unit. The capacitively adjustable coupling unit may include a quantum bit Q1, a quantum bit Q2, an adjustable coupler Qc, and a first bypass capacitor. The quantum bit Q1 and the adjustable coupler Qc are both capacitively coupled to the first bypass capacitor, and the quantum bit Q2 is capacitively coupled to the adjustable coupler Qc. In the first embodiment, the capacitive adjustable coupling unit further includes a second bypass capacitor, the qubit Q2 and the adjustable coupler Qc are capacitively coupled to the second bypass capacitor, and the qubit Q2 is coupled to the adjustable coupler via the second bypass capacitor. Adjust the coupler Qc. In the second embodiment, the adjustable capacitance coupling unit further includes a second bypass capacitor, the qubit Q2 is capacitively coupled to the second bypass capacitor, the first bypass capacitor is capacitively coupled to the second bypass capacitor, and the qubit Q2 is capacitively coupled to the second bypass capacitor via The second bypass capacitor and the first bypass capacitor are capacitively coupled to the adjustable coupler Qc. In a third embodiment, the qubit Q2 is capacitively coupled to a first bypass capacitor, which is coupled to the tunable coupler Qc via the first bypass capacitor. In the fourth embodiment, the qubit Q2 is capacitively coupled directly to the tunable coupler Qc.
量子比特Q1、量子比特Q2、可调耦合器Qc、第一旁路电容、第二旁路电容之间的电容耦合,可以是有地进行隔离的电容耦合也可以无地直接电容耦合。The capacitive coupling between the quantum bit Q1, the quantum bit Q2, the adjustable coupler Qc, the first bypass capacitor, and the second bypass capacitor may be capacitive coupling with ground isolation or direct capacitive coupling without ground.
在上述四个实施例中,在引入旁路电容后,量子比特Q1和量子比特Q2之间的有效耦合系数g可表示为In the above four embodiments, after introducing the bypass capacitor, the effective coupling coefficient g between the qubit Q1 and the qubit Q2 can be expressed as
g=g12-geff (1)g=g 12 -g eff (1)
其中geff是源自可调耦合器引入的虚交换互作用项:where geff is the virtual exchange interaction term introduced by the tunable coupler:
其中,j=1,2;分别表示量子比特Q1、Q2;能级差wc和wj分别为可调耦合器Qc和量子比特Qj的基态和第一激发态的能级差;耦合系数g1c和g2c分别是量子比特Q1与可调耦合器Qc和量子比特Q2与可调耦合器Qc经过旁路电容折合后的等效耦合系数;g12是量子比特Q1与量子比特Q2的直接耦合系数。从有效耦合系数g的表达式中可以看出量子比特间的有效耦合由两部分组成,即源自可调耦合器引入的虚交换互作用项geff和量子比特Q1与量子比特Q2的直接耦合项g12。通过调节可调耦合器与量子比特的频率失谐实现geff与g12的竞争,从而达到量子比特Q1、Q2的有效耦合g的可调和关断。Among them, j=1, 2; represent qubits Q1, Q2 respectively; energy level difference w c and w j are the energy level difference between the ground state and the first excited state of tunable coupler Qc and qubit Q j , respectively; coupling coefficient g 1c and g 2c are the equivalent coupling coefficients of the qubit Q1 and the tunable coupler Qc and the qubit Q2 and the tunable coupler Qc after the bypass capacitors, respectively; g 12 is the direct coupling coefficient of the qubit Q1 and the qubit Q2 . From the expression of the effective coupling coefficient g, it can be seen that the effective coupling between qubits consists of two parts, namely the virtual exchange interaction term geff introduced by the tunable coupler and the direct coupling between qubit Q1 and qubit Q2 term g 12 . The competition between g eff and g 12 is realized by adjusting the frequency detuning between the tunable coupler and the qubit, so that the effective coupling g of the qubits Q1 and Q2 can be adjusted and turned off.
在本发明的一个实施例中,以图3A和图3B中的电容可调耦合单元为示例,超导量子比特Q1的电容301为75fF,约瑟夫森结302采用Squid双结的形式,每个结的结电阻为20000Ω。超导量子比特Q2的参数与量子比特Q1相同。可调耦合器Qc的电容308为44fF,约瑟夫森结309采用Squid双结的形式,每个结的结电阻为20000Ω。旁路电容304和310均为36fF。耦合电容303为15fF,耦合电容305为8fF,耦合电容307为8fF,耦合电容306为8fF,耦合电容311为15fF。通过改变可调耦合器Qc的偏置电流可使超导量子比特Q1与超导量子比特Q2之间的耦合系数在5MHz到-40Hz的范围内可调。In an embodiment of the present invention, taking the capacitance-tunable coupling unit in FIG. 3A and FIG. 3B as an example, the
根据本发明的一个实施例,量子比特Q1,Q2,可调耦合器Qc和旁路电容的形状可以为圆形,多边形等任意需要的形状。只需满足量子比特Q1和Q2间的耦合系数可调和关断即可。According to an embodiment of the present invention, the shapes of the qubits Q1, Q2, the tunable coupler Qc and the bypass capacitor can be any desired shapes such as circles and polygons. It only needs to satisfy that the coupling coefficient between qubits Q1 and Q2 can be adjusted and turned off.
本发明的电容可调耦合单元中,量子比特Q1,Q2,可调耦合器Qc以及旁路电容的排布包括但不限于图3A-6B的四种形式,只要能够同时引入旁路电容,量子比特Q1,Q2,和可调耦合器Qc并实现比特间可调耦合即可。In the capacitance adjustable coupling unit of the present invention, the arrangement of the qubits Q1, Q2, the adjustable coupler Qc and the bypass capacitor includes but is not limited to the four forms shown in Figs. 3A-6B. As long as the bypass capacitor can be introduced simultaneously, the quantum The bits Q1, Q2, and the adjustable coupler Qc can achieve adjustable coupling between bits.
本发明的电容可调耦合单元中,衬底可以是蓝宝石、硅等。可以在衬底上镀一层超导金属层,用作接地层,超导金属例如可以是Al、Nb、Ta等。制备电容和约瑟夫森结的材料包括Al、Nb、Ta等。In the capacitance-adjustable coupling unit of the present invention, the substrate may be sapphire, silicon, or the like. A superconducting metal layer may be plated on the substrate to serve as a grounding layer, and the superconducting metal may be, for example, Al, Nb, Ta, or the like. Materials for making capacitors and Josephson junctions include Al, Nb, Ta, and the like.
本发明的电容可调耦合单元中,第一量子比特Q1、第二量子比特Q2和可调耦合器Qc可以是共面的,即共同存在于一个衬底上;也可以是不共面的,即不在一个衬底上,例如第一量子比特Q1在衬底A上,第二量子比特Q2和可调耦合器Qc在另一个衬底B上,然后衬底A与B面对面靠近但不接触,使得第一量子比特Q1、第二量子比特Q2和可调耦合器Qc之间依然是电容耦合的。衬底A与B可以通过铟柱子进行金属连接,例如旁路电容一个极板可以同时分布在衬底A与B相对的两个面上,通过铟柱子进行连接。这样,可以更方便地分开制造第一量子比特Q1、第二量子比特Q2和可调耦合器Qc,增加成功率。In the capacitive tunable coupling unit of the present invention, the first qubit Q1, the second qubit Q2 and the tunable coupler Qc may be coplanar, that is, coexist on one substrate; or may not be coplanar, That is not on one substrate, for example, the first qubit Q1 is on substrate A, the second qubit Q2 and tunable coupler Qc are on another substrate B, and then substrates A and B are face-to-face close but not in contact, The first quantum bit Q1, the second quantum bit Q2 and the adjustable coupler Qc are still capacitively coupled. The substrates A and B can be metal-connected through indium pillars. For example, one plate of a bypass capacitor can be distributed on two opposite surfaces of substrates A and B at the same time, and connected through indium pillars. In this way, the first qubit Q1, the second qubit Q2 and the tunable coupler Qc can be separately fabricated more conveniently, thereby increasing the success rate.
在本发明的电容可调耦合单元中,在量子比特与可调耦合器之间引入了旁路电容,经过计算依然可以实现量子比特Q1与量子比特Q2之间的可调耦合和关断。在量子比特与可调耦合器间的旁路电容长度可以做到很长(只需符合集总电容的特性即可),这有助于大规模量子比特扩展中的布线、穿孔等。在本发明的电容可调耦合单元中,量子比特Q1、量子比特Q2和可调耦合器Qc即可以采用接地型transmon形式,也可以采用浮地型transmon形式。对于采用接地型transmon形式,整体面积可以设计的更小,这可以增加量子比特的退相干时间,在倒装焊的设计中也可以减弱两片芯片相互倒扣时在量子比特电容上带来的额外电容增加,极大方便了基于倒装焊的大规模超导量子比特的扩展设计。In the capacitance-adjustable coupling unit of the present invention, a bypass capacitor is introduced between the qubit and the adjustable coupler, and the adjustable coupling and turn-off between the qubit Q1 and the qubit Q2 can still be realized after calculation. The length of the bypass capacitor between the qubit and the tunable coupler can be very long (as long as it conforms to the characteristics of the lumped capacitor), which facilitates wiring, perforation, etc. in large-scale qubit expansion. In the capacitive tunable coupling unit of the present invention, the qubit Q1, the qubit Q2 and the tunable coupler Qc can be either grounded transmon or floating transmon. For the grounded transmon form, the overall area can be designed to be smaller, which can increase the decoherence time of the qubit, and in the design of flip-chip bonding, it can also reduce the effect on the qubit capacitor when the two chips are inverted to each other. The addition of additional capacitance greatly facilitates the extended design of large-scale superconducting qubits based on flip-chip bonding.
本发明的电容可调耦合单元中引入了单支或多支旁路电容,且可实现两个量子比特间的可调耦合。由于旁路电容的引入,极大增加量子比特间的距离,从而为大规模超导量子比特的扩展提供充足的布线空间。此外本发明的电容可调耦合单元,可以为量子芯片的模块化提供芯片间的可调耦合形式的连接,在单个量子芯片的大规模扩展和模块化形式的扩展中都可以发挥重要的作用。A single or multiple bypass capacitors are introduced into the capacitance adjustable coupling unit of the present invention, and the adjustable coupling between two qubits can be realized. Due to the introduction of bypass capacitors, the distance between qubits is greatly increased, thereby providing sufficient wiring space for the expansion of large-scale superconducting qubits. In addition, the capacitive adjustable coupling unit of the present invention can provide a connection in the form of adjustable coupling between chips for the modularization of the quantum chip, and can play an important role in the large-scale expansion of a single quantum chip and the expansion of the modular form.
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所作出的各种改变以及变化。Although the present invention has been described in terms of the preferred embodiments, the present invention is not limited to the embodiments described herein, and various changes and changes can be made without departing from the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210717997.7A CN115238901B (en) | 2022-06-23 | 2022-06-23 | Capacitance-adjustable coupling unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210717997.7A CN115238901B (en) | 2022-06-23 | 2022-06-23 | Capacitance-adjustable coupling unit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115238901A true CN115238901A (en) | 2022-10-25 |
CN115238901B CN115238901B (en) | 2024-07-09 |
Family
ID=83669767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210717997.7A Active CN115238901B (en) | 2022-06-23 | 2022-06-23 | Capacitance-adjustable coupling unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115238901B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1639582A (en) * | 2002-02-26 | 2005-07-13 | 心脏磁力成像公司 | Sub-picotesla magnetic field detector |
CN108475353A (en) * | 2015-12-31 | 2018-08-31 | 国际商业机器公司 | Using the muliti-qubit adjustable coupling structure of fixed frequency superconductive quantum bit |
CN109840596A (en) * | 2018-11-19 | 2019-06-04 | 中国科学技术大学 | Expansible superconductive quantum bit structure |
WO2021178562A1 (en) * | 2020-03-03 | 2021-09-10 | Rigetti & Co., Inc. | Controlling a tunable floating coupler device in a superconducting quantum processing unit |
CN214477843U (en) * | 2020-10-30 | 2021-10-22 | Iqm芬兰有限公司 | Tunable coupler and its quantum computing circuit |
CN113705820A (en) * | 2021-08-13 | 2021-11-26 | 中国科学院物理研究所 | Coupling strength adjustable quantum bit structure |
US20210406746A1 (en) * | 2020-06-24 | 2021-12-30 | International Business Machines Corporation | Tunable quantum coupler facilitating a quantum gate between qubits |
CN114528806A (en) * | 2022-02-17 | 2022-05-24 | 苏州浪潮智能科技有限公司 | Superconducting quantum circuit chip-level simulation method based on Comsol |
-
2022
- 2022-06-23 CN CN202210717997.7A patent/CN115238901B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1639582A (en) * | 2002-02-26 | 2005-07-13 | 心脏磁力成像公司 | Sub-picotesla magnetic field detector |
CN108475353A (en) * | 2015-12-31 | 2018-08-31 | 国际商业机器公司 | Using the muliti-qubit adjustable coupling structure of fixed frequency superconductive quantum bit |
CN109840596A (en) * | 2018-11-19 | 2019-06-04 | 中国科学技术大学 | Expansible superconductive quantum bit structure |
WO2021178562A1 (en) * | 2020-03-03 | 2021-09-10 | Rigetti & Co., Inc. | Controlling a tunable floating coupler device in a superconducting quantum processing unit |
US20210406746A1 (en) * | 2020-06-24 | 2021-12-30 | International Business Machines Corporation | Tunable quantum coupler facilitating a quantum gate between qubits |
CN214477843U (en) * | 2020-10-30 | 2021-10-22 | Iqm芬兰有限公司 | Tunable coupler and its quantum computing circuit |
CN113705820A (en) * | 2021-08-13 | 2021-11-26 | 中国科学院物理研究所 | Coupling strength adjustable quantum bit structure |
CN114528806A (en) * | 2022-02-17 | 2022-05-24 | 苏州浪潮智能科技有限公司 | Superconducting quantum circuit chip-level simulation method based on Comsol |
Non-Patent Citations (2)
Title |
---|
J. STEHLIK 等: "Tunable Coupling Architecture for Fixed-Frequency Transmon Superconducting Qubits", 《PHYSICAL REVIEW LETTERS》, 20 August 2021 (2021-08-20), pages 1 - 6 * |
唐宝权: "量子调控用多通道同步任意波形合成模块设计及实现", 《CNKI学位论文》, vol. 2020, no. 06, 15 June 2020 (2020-06-15) * |
Also Published As
Publication number | Publication date |
---|---|
CN115238901B (en) | 2024-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12217129B2 (en) | Integrating circuit elements in a stacked quantum computing device | |
US20190044668A1 (en) | Quantum circuit assemblies with on-chip demultiplexers | |
CN215729853U (en) | Quantum chip and quantum computer | |
US20250008845A1 (en) | Low footprint resonator in flip chip geometry | |
CN113705820B (en) | Qubit structure with adjustable coupling strength | |
CN214378496U (en) | Quantum chip | |
CN109840596B (en) | Scalable superconducting qubit structure | |
WO2022188604A1 (en) | Quantum chip and preparation method | |
US11699091B2 (en) | Qubit circuits with deep, in-substrate components | |
CN115329977B (en) | Coupling component applied to quantum chip, quantum chip and quantum computing device | |
CN216083732U (en) | Quantum chip and quantum computer | |
CN115438796A (en) | Quantum chip, preparation method thereof, and quantum computer | |
KR20230098205A (en) | Tunable coupler with coupling extension | |
CN115438795B (en) | Quantum chip and quantum computer | |
WO2023006041A1 (en) | Quantum circuit, quantum chip, and quantum computer | |
CN115238901A (en) | Capacitive Adjustable Coupling Unit | |
CA3197616A1 (en) | Systems, articles, and methods for a tunable capacitor | |
CN115630702B (en) | Multilayer superconducting quantum chip | |
CN217690117U (en) | Quantum chip and quantum computer | |
CN116151379B (en) | Quantum circuit, quantum computing method and quantum computer | |
JP2023148206A (en) | Superconducting quantum circuit device | |
CN117313875A (en) | Quantum chip, preparation method thereof and quantum computer | |
CN115438797B (en) | Reading structure, quantum circuit and quantum chip | |
JP4977328B2 (en) | Superconducting random access memory and manufacturing method thereof | |
CN115169564B (en) | Quantum bit system and quantum computing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |