CN115236702B - Covert directional deception method based on exponential deception signal model - Google Patents

Covert directional deception method based on exponential deception signal model Download PDF

Info

Publication number
CN115236702B
CN115236702B CN202210792200.XA CN202210792200A CN115236702B CN 115236702 B CN115236702 B CN 115236702B CN 202210792200 A CN202210792200 A CN 202210792200A CN 115236702 B CN115236702 B CN 115236702B
Authority
CN
China
Prior art keywords
deception
gnss
signal
directional
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210792200.XA
Other languages
Chinese (zh)
Other versions
CN115236702A (en
Inventor
郭妍
耿兴寿
唐康华
吴文启
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202210792200.XA priority Critical patent/CN115236702B/en
Publication of CN115236702A publication Critical patent/CN115236702A/en
Application granted granted Critical
Publication of CN115236702B publication Critical patent/CN115236702B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • G01S19/215Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service issues related to spoofing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

本申请涉及一种基于指数型欺骗信号模型的隐蔽性定向欺骗方法。所述方法包括:利用指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到不同时刻的组合导航输出结果与GNSS欺骗信号偏移量的目标函数关系式;对目标函数关系式进行递推,根据得到的最终函数关系式对欺骗信号系数进行调节,利用得到的位置欺骗信号对组合导航系统进行定向欺骗,根据得到的位置欺骗偏移量、速度误差和姿态误差构建定向欺骗的隐蔽性优化设计模型,通过遍历算法对欺骗信号系数进行寻优,得到最优GNSS欺骗信号模型;利用最优GNSS欺骗信号模型生成最优GNSS欺骗信号对目标无人系统进行隐蔽性定向欺骗。采用本方法能够提高欺骗成功率。

The present application relates to a covert directional deception method based on an exponential deception signal model. The method comprises: using an exponential deception signal model to generate an exponential deception signal to perform GNSS deception interference on a target unmanned system from the initial moment of deception, and obtaining an objective function relationship between the combined navigation output results at different moments and the GNSS deception signal offset; recursively deducing the objective function relationship, adjusting the deception signal coefficient according to the obtained final function relationship, using the obtained position deception signal to perform directionally deception on the combined navigation system, constructing a concealed optimization design model for directional deception according to the obtained position deception offset, velocity error and attitude error, optimizing the deception signal coefficient through a traversal algorithm, and obtaining an optimal GNSS deception signal model; using the optimal GNSS deception signal model to generate an optimal GNSS deception signal to perform covert directional deception on the target unmanned system. The use of this method can improve the success rate of deception.

Description

基于指数型欺骗信号模型的隐蔽性定向欺骗方法Covert directional deception method based on exponential deception signal model

技术领域Technical Field

本申请涉及无人系统导航技术领域,特别是涉及一种基于指数型欺骗信号模型的隐蔽性定向欺骗方法。The present application relates to the field of unmanned system navigation technology, and in particular to a covert directional deception method based on an exponential deception signal model.

背景技术Background Art

近年来,GNSS欺骗技术在要地安全防御、公共安全防护和重点设施保护等方面得到了广泛应用,如在机场、石油码头和加气站等重点设施周围安装GNSS欺骗干扰设备来实现要地安全防御和重点设施保护。In recent years, GNSS spoofing technology has been widely used in key security defense, public safety protection and key facility protection. For example, GNSS spoofing jammers are installed around key facilities such as airports, oil terminals and gas stations to achieve key security defense and key facility protection.

然而,目前无人系统大多采用的是以卫星导航系统作为一种辅助手段的组合导航模式,在很多欺骗目标的导航系统中都存在欺骗检测模块,常规的欺骗方法产生的欺骗信号很容易被欺骗检测模块检测到并被剔除,从而导致欺骗失败,欺骗成功率低。However, most of the current unmanned systems use a combined navigation mode that uses a satellite navigation system as an auxiliary means. There are deception detection modules in the navigation systems of many deception targets. The deception signals generated by conventional deception methods can be easily detected and eliminated by the deception detection module, resulting in deception failure and a low deception success rate.

发明内容Summary of the invention

基于此,有必要针对上述技术问题,提供一种能够提高欺骗成功率的基于指数型欺骗信号模型的隐蔽性定向欺骗方法。Based on this, it is necessary to provide a covert directional deception method based on an exponential deception signal model that can improve the success rate of deception in response to the above technical problems.

一种基于指数型欺骗信号模型的隐蔽性定向欺骗方法,所述方法包括:A covert directional deception method based on an exponential deception signal model, the method comprising:

获取INS数据、GNSS数据以及待欺骗的目标无人系统的INS/GNSS松组合导航系统模型;Obtain INS data, GNSS data and the INS/GNSS loose integrated navigation system model of the target unmanned system to be deceived;

对INS/GNSS松组合导航系统模型进行离散化,得到离散化的INS/GNSS松组合导航系统模型;Discretize the INS/GNSS loose integrated navigation system model to obtain a discretized INS/GNSS loose integrated navigation system model;

利用离散卡尔曼滤波器和离散化的INS/GNSS松组合导航系统模型对INS数据和GNSS数据进行融合,得到组合导航输出结果;组合导航输出结果包括组合导航位置输出、组合导航速度输出和组合导航姿态输出;The INS data and GNSS data are fused by using discrete Kalman filter and discretized INS/GNSS loose integrated navigation system model to obtain integrated navigation output results; the integrated navigation output results include integrated navigation position output, integrated navigation velocity output and integrated navigation attitude output;

利用指数型欺骗信号模型生成的指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航输出结果与GNSS欺骗信号偏移量的目标函数关系式;The exponential deception signal generated by the exponential deception signal model is used to perform GNSS deception interference on the target unmanned system from the initial deception moment, and the objective function relationship between the combined navigation output results and the GNSS deception signal offset at different moments when the target unmanned system is deceived is obtained;

对目标函数关系式进行递推,得到目标无人系统被欺骗的最终时刻的组合导航输出结果与GNSS欺骗信号偏移量的最终函数关系式;最终函数关系式包含欺骗信号系数;The objective function relation is recursively deduced to obtain a final function relation between the combined navigation output result at the final moment when the target unmanned system is deceived and the GNSS deception signal offset; the final function relation includes the deception signal coefficient;

根据最终函数关系式对欺骗信号系数进行调节,得到位置欺骗信号,利用位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗的位置偏移量以及定向欺骗对组合导航系统造成的速度误差和姿态误差;The deception signal coefficient is adjusted according to the final functional relationship to obtain a position deception signal, and the position deception signal is used to perform directional deception on the integrated navigation system to obtain the position offset of the directional deception and the speed error and attitude error caused by the directional deception to the integrated navigation system;

根据位置欺骗偏移量、速度误差和姿态误差构建定向欺骗的隐蔽性优化设计模型,通过遍历算法对隐蔽性优化设计模型的欺骗信号系数进行寻优,得到最优GNSS欺骗信号模型;According to the position deception offset, velocity error and attitude error, a concealment optimization design model of directional deception is constructed. The deception signal coefficient of the concealment optimization design model is optimized through the traversal algorithm to obtain the optimal GNSS deception signal model.

利用最优GNSS欺骗信号模型生成最优GNSS欺骗信号对目标无人系统进行隐蔽性定向欺骗。The optimal GNSS spoofing signal model is used to generate the optimal GNSS spoofing signal to perform covert and directional deception on the target unmanned system.

在其中一个实施例中,利用指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航输出结果与GNSS欺骗信号偏移量的目标函数关系式,包括:In one embodiment, an exponential spoofing signal model is used to generate an exponential spoofing signal to perform GNSS spoofing interference on a target unmanned system from the initial moment of spoofing, and an objective function relationship between the combined navigation output results and the GNSS spoofing signal offset at different moments when the target unmanned system is spoofed is obtained, including:

利用指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到不同时刻的组合导航位置输出与GNSS欺骗信号偏移量的目标函数关系式为The exponential deception signal model is used to generate an exponential deception signal to perform GNSS deception interference on the target unmanned system from the initial deception moment. The objective function relationship between the combined navigation position output at different moments and the GNSS deception signal offset is:

其中,表示组合导航纬度位置输出,表示组合导航经度位置输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的纬度和经度,为施加的GNSS北向速度欺骗信号偏移量,为施加的GNSS东向速度欺骗信号偏移量,为施加的GNSS纬度欺骗信号偏移量,为施加的GNSS经度欺骗信号偏移量,K(3,1)、K(3,2)、K(3,3)、K(3,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算纬度误差估计值时的增益系数,K(4,1)、K(4,2)、K(4,3)、K(4,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算经度误差估计值时的增益系数。in, Indicates the combined navigation latitude position output, Indicates the combined navigation longitude position output, They are the latitude and longitude output after correct combined navigation correction when the GNSS signal is not deceptively interfered with. is the applied GNSS north velocity spoofing signal offset, is the applied GNSS east velocity spoofing signal offset, is the applied GNSS latitude spoofing signal offset, is the imposed GNSS longitude spoofing signal offset, K (3,1), K (3,2), K (3,3), K (3,4) represent the gain coefficients when calculating the latitude error estimate using the north velocity, east velocity, latitude and longitude observations, respectively; K (4,1), K (4,2), K (4,3), K (4,4) represent the gain coefficients when calculating the longitude error estimate using the north velocity, east velocity, latitude and longitude observations, respectively.

在其中一个实施例中,利用指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航速度输出与GNSS欺骗信号偏移量的目标函数关系式为In one embodiment, an exponential spoofing signal model is used to generate an exponential spoofing signal to perform GNSS spoofing interference on the target unmanned system from the initial moment of spoofing, and the objective function relationship between the combined navigation speed output and the GNSS spoofing signal offset at different moments when the target unmanned system is spoofed is obtained as follows:

其中,表示组合导航北向速度输出,表示组合导航东向速度输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的北向速度和东向速度,K(1,1)、K(1,2)、K(1,3)、K(1,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算北向速度误差估计值时的增益系数,K(2,1)、K(2,2)、K(2,3)、K(2,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算东向速度误差估计值时的增益系数。in, Indicates the north speed output of the combined navigation. Indicates the east speed output of the combined navigation. are the north velocity and east velocity output after correct combined navigation correction when the GNSS signal is not deceiving or interfered with. K (1,1), K (1,2), K (1,3), and K (1,4) represent the gain coefficients when the north velocity, east velocity, latitude, and longitude observations are used to calculate the north velocity error estimate. K (2,1), K (2,2), K (2,3), and K (2 , 4) represent the gain coefficients when the north velocity, east velocity, latitude, and longitude observations are used to calculate the east velocity error estimate.

在其中一个实施例中,利用指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航姿态输出与GNSS欺骗信号偏移量的目标函数关系式为In one embodiment, an exponential spoofing signal model is used to generate an exponential spoofing signal to perform GNSS spoofing interference on the target unmanned system from the initial moment of spoofing, and the objective function relationship between the combined navigation attitude output and the GNSS spoofing signal offset at different moments when the target unmanned system is deceived is obtained as follows:

其中,分别为组合导航横滚角、俯仰角和方位角姿态输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的姿态结果,K∞(5,1)、K(5,2)、K(5,3)、K(5,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算横滚角误差估计值时的增益系数,K(6,1)、K(6,2)、K(6,3)、K(6,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算俯仰角误差估计值时的增益系数,K∞(7,1)、K∞(7,2)、K(7,3)、K(7,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算方位角误差估计值时的增益系数。in, They are the combined navigation roll angle, pitch angle and azimuth attitude outputs respectively. are the attitude results output after correct combined navigation correction when the GNSS signal is not deceiving or interfered with. K∞(5,1), K∞ (5,2), K∞ (5,3), and K∞ (5,4) represent the gain coefficients for calculating the roll angle error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively. K∞ (6,1), K∞ (6,2), K∞ (6,3), and K∞ (6,4) represent the gain coefficients for calculating the pitch angle error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively. K∞(7,1), K∞(7,2), K∞ (7,3), and K∞ (7,4) represent the gain coefficients for calculating the azimuth error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively.

在其中一个实施例中,利用位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗的位置偏移量以及定向欺骗对组合导航系统造成的速度误差和姿态误差,包括:In one embodiment, the integrated navigation system is directional-deceived using a position deceiving signal to obtain a position offset of the directional deceiving and a speed error and an attitude error caused by the directional deceiving to the integrated navigation system, including:

利用位置欺骗信号对组合导航系统进行定向欺骗,得到位置欺骗的偏移量量为The position spoofing signal is used to spoof the integrated navigation system, and the offset of the position spoofing is obtained as follows:

其中,k0表示欺骗初始时刻,k+n表示最终时刻,k表示欺骗初始时刻到最终时刻间的任意时刻,n表示欺骗的总时刻数。Among them, k 0 represents the initial moment of deception, k+n represents the final moment, k represents any moment between the initial moment of deception and the final moment, and n represents the total number of deception moments.

在其中一个实施例中,利用位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗对组合导航系统造成的速度误差为In one embodiment, the integrated navigation system is directional-deceived using the position deceiving signal, and the speed error caused by the directional deceiving to the integrated navigation system is obtained as follows:

在其中一个实施例中,利用位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗对组合导航系统造成的姿态误差为In one embodiment, the integrated navigation system is directional-deceived using the position deceiving signal, and the attitude error caused by the directional deceiving to the integrated navigation system is obtained as follows:

在其中一个实施例中,根据位置欺骗偏移量、速度误差和姿态误差构建定向欺骗的隐蔽性优化设计模型,通过遍历算法对隐蔽性优化设计模型的欺骗信号系数进行寻优,得到最优GNSS欺骗信号模型,包括:In one embodiment, a concealment optimization design model of directional deception is constructed according to the position deception offset, velocity error and attitude error, and the deception signal coefficient of the concealment optimization design model is optimized by a traversal algorithm to obtain an optimal GNSS deception signal model, including:

根据位置欺骗偏移量、速度误差和姿态误差构建定向欺骗的隐蔽性优化设计模型构建定向欺骗的隐蔽性优化设计模型为According to the position deception offset, velocity error and attitude error, the concealment optimization design model of directional deception is constructed.

其中,Kspeed为速度比例因子,为不同方向的姿态误差阈值,AL,Aλ,B为欺骗信号系数,为相同时间内的欺骗距离,为相同时间内欺骗距离的最大值,分别表示k+n时刻欺骗目标北向和东向的真实速度。Among them, K speed is the speed proportional factor, is the attitude error threshold in different directions, A L , A λ , B are the deception signal coefficients, is the deception distance in the same time, is the maximum value of the deception distance in the same time, They represent the true speed of the deceived target in the north and east directions at time k+n respectively.

在其中一个实施例中,根据欺骗目标和导航系统对欺骗信号检测的灵敏度设置速度比例因子和姿态误差阈值,通过遍历的方法确定满足隐蔽性优化设计模型的GNSS欺骗信号的3个欺骗信号系数的取值;In one of the embodiments, a velocity proportional factor and an attitude error threshold are set according to the spoofing target and the sensitivity of the navigation system to the spoofing signal detection, and the values of three spoofing signal coefficients of the GNSS spoofing signal that meet the concealment optimization design model are determined by a traversal method;

根据确定的欺骗信号系数值,得到最优GNSS欺骗信号模型。According to the determined spoofing signal coefficient value, an optimal GNSS spoofing signal model is obtained.

上述基于指数型欺骗信号模型的隐蔽性定向欺骗方法,本发明引入指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航输出结果与GNSS欺骗信号偏移量的目标函数关系式;然后对目标函数关系式进行递推,得到目标无人系统被欺骗的最终时刻的组合导航输出结果与GNSS欺骗信号偏移量的最终函数关系式,从最终函数关系式中可以分析得到GNSS欺骗信号对INS/GNSS组合导航输出的影响,然后根据最终函数关系式对欺骗信号系数进行调节,得到位置欺骗信号,利用位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗的位置欺骗偏移量、以及定向欺骗对组合导航系统造成的速度误差和姿态误差,研究通过GNSS欺骗信号造成的速度和姿态误差的约束条件来构建和确定满足隐蔽性定向欺骗的最优GNSS欺骗信号模型,利用最优GNSS欺骗信号模型实现对目标无人系统在INS/GNSS松组合导航模式下的隐蔽性定向欺骗,提高了对目标无人系统的欺骗成功率。The above-mentioned covert directional deception method based on the exponential deception signal model, the present invention introduces the exponential deception signal model to generate an exponential deception signal, and performs GNSS deception interference on the target unmanned system from the initial moment of deception, and obtains the target function relationship between the combined navigation output results at different moments when the target unmanned system is deceived and the GNSS deception signal offset; then the target function relationship is recursively deduced to obtain the final function relationship between the combined navigation output result at the final moment when the target unmanned system is deceived and the GNSS deception signal offset, from which the influence of the GNSS deception signal on the INS/GNSS combined navigation output can be analyzed, and then the deception signal coefficient is adjusted according to the final function relationship to obtain a position deception signal, and the position deception signal is used to perform direction deception on the combined navigation system to obtain the position deception offset of the directional deception, as well as the speed error and attitude error caused by the directional deception to the combined navigation system, and the optimal GNSS deception signal model that satisfies the covert directional deception is constructed and determined by studying the constraints of the speed and attitude errors caused by the GNSS deception signal, and the optimal GNSS deception signal model is used to realize the covert directional deception of the target unmanned system in the INS/GNSS loose combined navigation mode, thereby improving the success rate of deception of the target unmanned system.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为一个实施例中一种基于指数型欺骗信号模型的隐蔽性定向欺骗方法的流程示意图;FIG1 is a schematic flow chart of a covert directional deception method based on an exponential deception signal model in one embodiment;

图2为一个实施例中欺骗场景的示意图;FIG2 is a schematic diagram of a deception scenario in one embodiment;

具体实施方式DETAILED DESCRIPTION

为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application more clearly understood, the present application is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application and are not used to limit the present application.

在一个实施例中,如图1所示,提供了一种基于指数型欺骗信号模型的隐蔽性定向欺骗方法,包括以下步骤:In one embodiment, as shown in FIG1 , a covert directional deception method based on an exponential deception signal model is provided, comprising the following steps:

步骤102,获取INS数据、GNSS数据以及待欺骗的目标无人系统的INS/GNSS松组合导航系统模型,对INS/GNSS松组合导航系统模型进行离散化,得到离散化的INS/GNSS松组合导航系统模型。Step 102, obtaining INS data, GNSS data and an INS/GNSS loosely integrated navigation system model of the target unmanned system to be deceived, discretizing the INS/GNSS loosely integrated navigation system model to obtain a discretized INS/GNSS loosely integrated navigation system model.

分别利用INS系统(惯性导航系统)和GNSS系统(卫星导航系统)获取INS数据和GNSS数据,INS数据包括INS解算所得的北向和东向速度、纬度和经度、横滚角、俯仰角和方位角,GNSS数据包括GNSS提供的北向和东向速度、纬度和经度。待欺骗的目标无人系统的INS/GNSS松组合导航系统模型是一个现有的模型,在本专利中不做过多的阐述。INS data and GNSS data are obtained by using INS system (inertial navigation system) and GNSS system (satellite navigation system) respectively. INS data includes north and east speed, latitude and longitude, roll angle, pitch angle and azimuth obtained by INS solution, and GNSS data includes north and east speed, latitude and longitude provided by GNSS. The INS/GNSS loosely combined navigation system model of the target unmanned system to be deceived is an existing model, which will not be elaborated in this patent.

步骤104,利用离散卡尔曼滤波器和离散化的INS/GNSS松组合导航系统模型对INS数据和GNSS数据进行融合,得到组合导航输出结果;组合导航输出结果包括组合导航位置输出、组合导航速度输出和组合导航姿态输出。Step 104, using a discrete Kalman filter and a discretized INS/GNSS loose integrated navigation system model to fuse the INS data and the GNSS data to obtain an integrated navigation output result; the integrated navigation output result includes an integrated navigation position output, an integrated navigation velocity output and an integrated navigation attitude output.

步骤106,利用指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航输出结果与GNSS欺骗信号偏移量的目标函数关系式。Step 106, using an exponential deception signal model to generate an exponential deception signal to perform GNSS deception interference on the target unmanned system starting from the initial deception moment, and obtaining an objective function relationship between the combined navigation output results at different moments when the target unmanned system is deceived and the GNSS deception signal offset.

假设从欺骗初始时刻k0时刻开始对欺骗目标实施GNSS欺骗干扰,任意时刻k时刻目标接收机接收到的位置和速度信息为:Assuming that GNSS deception interference is implemented on the deception target from the initial deception time k 0 , the position and velocity information received by the target receiver at any time k is:

其中,为施加的GNSS速度和位置欺骗信号偏移量。本申请采用包含A和B两个系数的指数型欺骗信号偏移量模型为 in, is the applied GNSS velocity and position spoofing signal offset. This application adopts an exponential spoofing signal offset model including two coefficients A and B as

经过卡尔曼滤波融合和反馈校正后k时刻组合导航位置输出与GNSS欺骗信号偏移量的目标函数关系式为:The objective function relationship between the combined navigation position output at time k and the GNSS spoofing signal offset after Kalman filter fusion and feedback correction is:

其中,表示组合导航纬度位置输出,表示组合导航经度位置输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的纬度和经度,为施加的GNSS北向速度欺骗信号偏移量,为施加的GNSS东向速度欺骗信号偏移量,为施加的GNSS纬度欺骗信号偏移量,为施加的GNSS经度欺骗信号偏移量,K(3,1)、K(3,2)、K(3,3)、K(3,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算纬度误差估计值时的增益系数,K(4,1)、K(4,2)、K(4,3)、K(4,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算经度误差估计值时的增益系数。in, Indicates the combined navigation latitude position output, Indicates the combined navigation longitude position output, They are the latitude and longitude output after correct combined navigation correction when the GNSS signal is not deceptively interfered with. is the applied GNSS north velocity spoofing signal offset, is the applied GNSS east velocity spoofing signal offset, is the applied GNSS latitude spoofing signal offset, is the imposed GNSS longitude spoofing signal offset, K (3,1), K (3,2), K (3,3), K (3,4) represent the gain coefficients when calculating the latitude error estimate using the north velocity, east velocity, latitude and longitude observations, respectively; K (4,1), K (4,2), K (4,3), K (4,4) represent the gain coefficients when calculating the longitude error estimate using the north velocity, east velocity, latitude and longitude observations, respectively.

欺骗过程中的任意时刻k时刻的组合导航速度输出与GNSS欺骗信号偏移量的目标函数关系式为The objective function relationship between the combined navigation velocity output at any time k during the deception process and the GNSS deception signal offset is:

其中,表示组合导航北向速度输出,表示组合导航东向速度输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的北向速度和东向速度,K(1,1)、K(1,2)、K(1,3)、K(1,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算北向速度误差估计值时的增益系数,K(2,1)、K(2,2)、K(2,3)、K(2,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算东向速度误差估计值时的增益系数。in, Indicates the north speed output of the combined navigation. Indicates the east speed output of the combined navigation. are the north velocity and east velocity output after correct combined navigation correction when the GNSS signal is not deceiving or interfered with. K (1,1), K (1,2), K (1,3), and K (1,4) represent the gain coefficients when the north velocity, east velocity, latitude, and longitude observations are used to calculate the north velocity error estimate. K (2,1), K (2,2), K (2,3), and K (2,4) represent the gain coefficients when the north velocity, east velocity, latitude, and longitude observations are used to calculate the east velocity error estimate.

欺骗过程中的任意时刻k时刻的组合导航姿态输出与GNSS欺骗信号偏移量的目标函数关系式为The objective function relationship between the combined navigation attitude output at any time k in the deception process and the GNSS deception signal offset is:

其中,分别为组合导航横滚角、俯仰角和方位角姿态输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的姿态结果,K(5,1)、K(5,2)、K(5,3)、K(5,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算横滚角误差估计值时的增益系数,K(6,1)、K(6,2)、K(6,3)、K(6,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算俯仰角误差估计值时的增益系数,K(7,1)、K(7,2)、K(7,3)、K(7,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算方位角误差估计值时的增益系数。in, They are the combined navigation roll angle, pitch angle and azimuth attitude outputs respectively. are the attitude results output after correct combined navigation correction when the GNSS signal is not deceiving or interfered with. K (5,1), K (5,2), K (5,3), and K (5,4) represent the gain coefficients for calculating the roll angle error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively. K (6,1), K (6,2), K (6,3), and K (6,4) represent the gain coefficients for calculating the pitch angle error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively. K (7,1), K (7,2), K (7,3), and K (7,4) represent the gain coefficients for calculating the azimuth error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively.

由目标函数关系式可知,GNSS欺骗信号对INS/GNSS组合导航的位置输出、速度输出以及姿态输出的估计值是有影响的,而且这种影响的大小与欺骗信号是相关的。所以通过对GNSS欺骗干扰信号进行设计可以实现对组合导航系统输出位置偏移量、速度偏移量和姿态偏移量的控制。It can be seen from the objective function relationship that the GNSS spoofing signal has an impact on the estimated values of the position output, velocity output and attitude output of the INS/GNSS integrated navigation, and the magnitude of this impact is related to the spoofing signal. Therefore, by designing the GNSS spoofing interference signal, it is possible to control the position offset, velocity offset and attitude offset output by the integrated navigation system.

步骤108,对目标函数关系式进行递推,得到目标无人系统被欺骗的最终时刻的组合导航输出结果与GNSS欺骗信号偏移量的最终函数关系式;最终函数关系式包含欺骗信号系数。Step 108, recursively extrapolate the objective function relationship to obtain a final function relationship between the combined navigation output result at the final moment when the target unmanned system is deceived and the GNSS deception signal offset; the final function relationship includes the deception signal coefficient.

通过递推得出最终时刻k+n时刻反馈校正后组合导航输出结果与GNSS欺骗信号偏移量的函数关系,分析GNSS欺骗信号对组合导航输出结果的稳定性;The functional relationship between the integrated navigation output result after feedback correction at the final time k+n and the offset of the GNSS spoofing signal is obtained by recursion, and the stability of the integrated navigation output result by the GNSS spoofing signal is analyzed.

在GNSS欺骗干扰产生位置偏移后,虽然INS不会受到欺骗干扰,但是GNSS欺骗信号产生的位置和速度偏移量会如同惯性器件的常值漂移一样,会直接累计到下一时刻,假设从k0时刻开始对欺骗目标实施GNSS欺骗干扰,递推可得达到预期定向欺骗目标的最终时刻k+n时刻反馈校正后的位置输出结果,即组合导航位置输出与GNSS欺骗信号偏移量的最终函数关系式为:After the GNSS spoofing interference generates a position offset, although the INS will not be affected by the spoofing interference, the position and velocity offsets generated by the GNSS spoofing signal will be directly accumulated to the next moment, just like the constant drift of the inertial device. Assuming that the GNSS spoofing interference is implemented on the spoofing target from the moment k 0 , the position output result after feedback correction at the final moment k+n when the expected directional spoofing target is reached can be obtained recursively. That is, the final functional relationship between the combined navigation position output and the GNSS spoofing signal offset is:

同理,对组合导航速度输出与GNSS欺骗信号偏移量的目标函数关系式进行递推,得到最终时刻的组合导航速度输出与GNSS欺骗信号偏移量的最终函数关系式,即从k0时刻开始对欺骗目标实施GNSS欺骗干扰,递推可得最终时刻k+n时刻反馈校正后的组合导航速度输出为Similarly, the objective function relationship between the integrated navigation speed output and the GNSS spoofing signal offset is recursively deduced to obtain the final functional relationship between the integrated navigation speed output and the GNSS spoofing signal offset at the final moment. That is, GNSS spoofing interference is implemented on the spoofing target from the moment k 0. The recursive deduction shows that the integrated navigation speed output after feedback correction at the final moment k+n is:

对组合导航姿态输出与GNSS欺骗信号偏移量的目标函数关系式进行递推,得到最终时刻的组合导航姿态输出与GNSS欺骗信号偏移量的最终函数关系式,即从k0时刻开始对欺骗目标实施GNSS欺骗干扰,递推可得最终时刻k+n时刻反馈校正后的组合导航姿态输出为The objective function relationship between the integrated navigation attitude output and the GNSS spoofing signal offset is recursively deduced to obtain the final functional relationship between the integrated navigation attitude output and the GNSS spoofing signal offset at the final moment. That is, GNSS spoofing interference is implemented on the spoofing target from the moment k 0. The recursive deduction can obtain the integrated navigation attitude output after feedback correction at the final moment k+n:

通过分析组合导航位置输出与GNSS欺骗信号偏移量的最终函数关系式中系数函数的收敛性来验证GNSS欺骗干扰的稳定性,于是有:已知0<K(j,j)<1,0<1-K(j,j)<1,则:By analyzing the final functional relationship between the combined navigation position output and the GNSS spoofing signal offset, the coefficient function The convergence of is used to verify the stability of GNSS deception interference, so: Given 0<K (j,j)<1, 0<1-K (j,j)<1, then:

所以,欺骗系数函数收敛。欺骗式干扰引起的偏移信号融合到组合导航滤波器之后,产生的位置偏移是稳定的。以从k0时刻开始对欺骗目标实施GNSS欺骗干扰,递推可得k+n时刻反馈校正后的位置输出结果为例,由于K(3,3)≈K(4,4),当对经纬度施加的欺骗偏移量相同时,偏移量融合到组合导航滤波器后输出的经纬度偏移量是相同的。Therefore, the deception coefficient function converges. After the offset signal caused by deceptive interference is fused into the integrated navigation filter, the resulting position offset is stable. Taking the implementation of GNSS deceptive interference on the deceptive target from time k 0 , the position output result after feedback correction at time k+n can be obtained recursively as an example. Since K (3,3)≈K (4,4), when the deceptive offsets applied to the longitude and latitude are the same, the longitude and latitude offsets output after the offsets are fused into the integrated navigation filter are the same.

步骤110,根据最终函数关系式对欺骗信号系数进行调节,得到位置欺骗信号,利用位置欺骗信号对组合导航系统进行定向欺骗,得到位置欺骗偏移量以及定向欺骗造成的速度误差和姿态误差。Step 110, adjusting the deception signal coefficient according to the final functional relationship to obtain a position deception signal, using the position deception signal to perform directional deception on the integrated navigation system to obtain a position deception offset as well as a speed error and an attitude error caused by the directional deception.

最终函数关系式中包含欺骗信号系数AL、Aλ、BP,通过调节AL、Aλ、BP的值来控制位置欺骗信号,使得组合导航系统输出的经纬度方向上的欺骗偏移量之比为一个稳定的常值,从而实现对欺骗目标组合导航定向欺骗的目的。The final functional relationship includes the deception signal coefficients AL , , and BP . By adjusting the values of AL , , and BP to control the position deception signal, the ratio of the deception offset in the latitude and longitude directions output by the integrated navigation system is made a stable constant, thereby achieving the purpose of combined navigation directional deception of the deception target.

步骤112,根据位置欺骗偏移量、速度误差和姿态误差构建定向欺骗的隐蔽性优化设计模型,通过遍历算法对隐蔽性优化设计模型的欺骗信号系数进行寻优,得到最优GNSS欺骗信号模型;利用最优GNSS欺骗信号模型生成最优GNSS欺骗信号对目标无人系统进行隐蔽性定向欺骗。Step 112, construct a concealed optimization design model for directional deception based on the position deception offset, velocity error and attitude error, optimize the deception signal coefficient of the concealed optimization design model through a traversal algorithm to obtain the optimal GNSS deception signal model; use the optimal GNSS deception signal model to generate the optimal GNSS deception signal to perform concealed directional deception on the target unmanned system.

研究通过GNSS欺骗信号造成的速度和姿态误差的约束条件来构建满足隐蔽性定向欺骗的隐蔽性优化设计模型,通过遍历算法对隐蔽性优化设计模型的欺骗信号系数进行寻优,得到最优GNSS欺骗信号模型,利用最优GNSS欺骗信号模型生成最优GNSS欺骗信号实现对目标无人系统在INS/GNSS松组合导航模式下的隐蔽性定向欺骗,提高了对目标无人系统的欺骗成功率。The study constructs a covert optimization design model that satisfies the covert directional deception by using the constraints of speed and attitude errors caused by GNSS spoofing signals. The deception signal coefficients of the covert optimization design model are optimized through a traversal algorithm to obtain the optimal GNSS spoofing signal model. The optimal GNSS spoofing signal model is used to generate the optimal GNSS spoofing signal to achieve covert directional deception of the target unmanned system in the INS/GNSS loosely integrated navigation mode, thereby improving the success rate of deception of the target unmanned system.

在图2的欺骗场景中利用GNSS欺骗信号模型生成GNSS欺骗信号对目标无人系统进行隐蔽性定向欺骗。In the deception scenario of Figure 2, a GNSS deception signal model is used to generate a GNSS deception signal to perform covert and directional deception on the target unmanned system.

上述一种基于指数型欺骗信号模型的隐蔽性定向欺骗方法中,本发明引入指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航输出结果与GNSS欺骗信号偏移量的目标函数关系式;对目标函数关系式进行递推,得到目标无人系统被欺骗的最终时刻的组合导航输出结果与GNSS欺骗信号偏移量的最终函数关系式,从最终函数关系式中可以分析得到GNSS欺骗信号对INS/GNSS组合导航输出的影响,然后根据最终函数关系式对欺骗信号系数进行调节,得到位置欺骗信号,利用位置欺骗信号对组合导航系统进行定向欺骗,得到位置欺骗偏移量、定向欺骗造成的速度误差和姿态误差,研究通过GNSS欺骗信号造成的速度和姿态误差的约束条件来构建和确定满足隐蔽性定向欺骗的最优GNSS欺骗信号模型,利用最优GNSS欺骗信号模型实现对目标无人系统在INS/GNSS松组合导航模式下的隐蔽性定向欺骗,提高了对目标无人系统的欺骗成功率。In the above-mentioned covert directional deception method based on the exponential deception signal model, the present invention introduces an exponential deception signal model to generate an exponential deception signal to perform GNSS deception interference on the target unmanned system from the initial moment of deception, and obtains the target function relationship between the combined navigation output results at different moments when the target unmanned system is deceived and the GNSS deception signal offset; the target function relationship is recursively deduced to obtain the final function relationship between the combined navigation output result at the final moment when the target unmanned system is deceived and the GNSS deception signal offset, from which the influence of the GNSS deception signal on the INS/GNSS combined navigation output can be analyzed, and then the deception signal coefficient is adjusted according to the final function relationship to obtain a position deception signal, and the position deception signal is used to perform direction deception on the combined navigation system to obtain the position deception offset, the speed error and the attitude error caused by the direction deception, and the constraint conditions of the speed and attitude errors caused by the GNSS deception signal are studied to construct and determine the optimal GNSS deception signal model that satisfies the covert directional deception, and the optimal GNSS deception signal model is used to realize the covert directional deception of the target unmanned system in the INS/GNSS loose combined navigation mode, thereby improving the success rate of deception of the target unmanned system.

在其中一个实施例中,利用指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航输出结果与GNSS欺骗信号偏移量的目标函数关系式,包括:In one embodiment, an exponential spoofing signal model is used to generate an exponential spoofing signal to perform GNSS spoofing interference on a target unmanned system from the initial moment of spoofing, and an objective function relationship between the combined navigation output results and the GNSS spoofing signal offset at different moments when the target unmanned system is spoofed is obtained, including:

利用指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航位置输出与GNSS欺骗信号偏移量的目标函数关系式为The exponential deception signal model is used to generate an exponential deception signal to perform GNSS deception interference on the target unmanned system from the initial deception moment. The objective function relationship between the combined navigation position output of the target unmanned system at different moments of deception and the GNSS deception signal offset is obtained as follows:

其中,表示组合导航纬度位置输出,表示组合导航经度位置输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的纬度和经度,为施加的GNSS北向速度欺骗信号偏移量,为施加的GNSS东向速度欺骗信号偏移量,为施加的GNSS纬度欺骗信号偏移量,为施加的GNSS经度欺骗信号偏移量,K(3,1)、K(3,2)、K(3,3)、K(3,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算纬度误差估计值时的增益系数,K(4,1)、K(4,2)、K(4,3)、K(4,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算经度误差估计值时的增益系数。in, Indicates the combined navigation latitude position output, Indicates the combined navigation longitude position output, They are the latitude and longitude output after correct combined navigation correction when the GNSS signal is not deceptively interfered with. is the applied GNSS north velocity spoofing signal offset, is the applied GNSS east velocity spoofing signal offset, is the applied GNSS latitude spoofing signal offset, is the imposed GNSS longitude spoofing signal offset, K (3,1), K (3,2), K (3,3), K (3,4) represent the gain coefficients when calculating the latitude error estimate using the north velocity, east velocity, latitude and longitude observations, respectively; K (4,1), K (4,2), K (4,3), K (4,4) represent the gain coefficients when calculating the longitude error estimate using the north velocity, east velocity, latitude and longitude observations, respectively.

在其中一个实施例中,利用指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航速度输出与GNSS欺骗信号偏移量的目标函数关系式为In one embodiment, an exponential spoofing signal model is used to generate an exponential spoofing signal to perform GNSS spoofing interference on the target unmanned system from the initial moment of spoofing, and the objective function relationship between the combined navigation speed output and the GNSS spoofing signal offset at different moments when the target unmanned system is deceived is obtained as follows:

其中,表示组合导航北向速度输出,表示组合导航东向速度输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的北向速度和东向速度,K(1,1)、K(1,2)、K(1,3)、K(1,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算北向速度误差估计值时的增益系数,K(2,1)、K(2,2)、K(2,3)、K(2,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算东向速度误差估计值时的增益系数。in, Indicates the north speed output of the combined navigation. Indicates the east speed output of the combined navigation. are the north velocity and east velocity output after correct combined navigation correction when the GNSS signal is not deceiving or interfered with. K (1,1), K (1,2), K (1,3), and K (1,4) represent the gain coefficients when the north velocity, east velocity, latitude, and longitude observations are used to calculate the north velocity error estimate. K (2,1), K (2,2), K (2,3), and K (2,4) represent the gain coefficients when the north velocity, east velocity, latitude, and longitude observations are used to calculate the east velocity error estimate.

在其中一个实施例中,利用指数型欺骗信号模型生成指数型欺骗信号从欺骗初始时刻开始对目标无人系统进行GNSS欺骗干扰,得到目标无人系统被欺骗的不同时刻的组合导航姿态输出与GNSS欺骗信号偏移量的目标函数关系式为In one embodiment, an exponential deception signal model is used to generate an exponential deception signal to perform GNSS deception interference on the target unmanned system from the initial deception moment, and the objective function relationship between the combined navigation attitude output and the GNSS deception signal offset at different moments when the target unmanned system is deceived is obtained as follows:

其中,分别为组合导航横滚角、俯仰角和方位角姿态输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的姿态结果,K(5,1)、K(5,2)、K(5,3)、K(5,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算横滚角误差估计值时的增益系数,K(6,1)、K(6,2)、K(6,3)、K(6,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算俯仰角误差估计值时的增益系数,K(7,1)、K(7,2)、K(7,3)、K(7,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算方位角误差估计值时的增益系数。in, They are the combined navigation roll angle, pitch angle and azimuth attitude outputs respectively. are the attitude results output after correct combined navigation correction when the GNSS signal is not deceiving or interfered with. K (5,1), K (5,2), K (5,3), and K (5,4) represent the gain coefficients for calculating the roll angle error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively. K (6,1), K (6,2), K (6,3), and K (6,4) represent the gain coefficients for calculating the pitch angle error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively. K (7,1), K (7,2), K (7,3), and K (7,4) represent the gain coefficients for calculating the azimuth error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively.

在其中一个实施例中,利用位置欺骗信号对组合导航系统进行定向欺骗,得到位置欺骗偏移量以及定向欺骗造成的速度误差和姿态误差,包括:In one embodiment, the integrated navigation system is directional-deceived using a position deceiving signal to obtain a position deceiving offset and a speed error and an attitude error caused by the directional deceiving, including:

利用位置欺骗信号对组合导航系统进行定向欺骗,得到位置欺骗偏移量为The position spoofing signal is used to spoof the integrated navigation system, and the position spoofing offset is obtained as follows:

其中,k0表示欺骗初始时刻,k+n表示最终时刻,k表示欺骗初始时刻到最终时刻间的任意时刻,n表示欺骗的总时刻数。Among them, k 0 represents the initial moment of deception, k+n represents the final moment, k represents any moment between the initial moment of deception and the final moment, and n represents the total number of deception moments.

在其中一个实施例中,利用位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗造成的速度误差为In one embodiment, the position spoofing signal is used to spoof the integrated navigation system, and the speed error caused by the spoofing is:

在其中一个实施例中,利用位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗造成的姿态误差为In one embodiment, the position spoofing signal is used to perform orientation spoofing on the integrated navigation system, and the attitude error caused by the orientation spoofing is obtained as follows:

在具体实施例中,欺骗过程中组合导航系统的位置欺骗偏移量为:In a specific embodiment, the position spoofing offset of the integrated navigation system during the spoofing process is:

其中,AL,Aλ和B为非零GNSS欺骗信号系数,当经纬度方向上的欺骗偏移量都不为0时,定向欺骗的方位角为:Among them, A L , A λ and B are non-zero GNSS spoofing signal coefficients. When the spoofing offsets in the longitude and latitude directions are not 0, the azimuth of the directional spoofing is:

所以可以通过对欺骗信号系数AL,Aλ的设计来改变KS的值,即可以达到不同的定向欺骗效果。当经度方向的欺骗偏移量为0,通过对纬度方向的欺骗信号的正负进行调节可得定向欺骗的方位角为:ψ2=±90°;当纬度方向的欺骗偏移量为0,通过对经度方向的欺骗信号的正负进行调节可得定向欺骗的方位角为:ψ3=±180°。Therefore, the value of K S can be changed by designing the deception signal coefficients A L , A λ , that is, different directional deception effects can be achieved. When the deception offset in the longitude direction is 0, the azimuth of the directional deception can be obtained by adjusting the positive and negative of the deception signal in the latitude direction: ψ 2 = ±90°; when the deception offset in the latitude direction is 0, the azimuth of the directional deception can be obtained by adjusting the positive and negative of the deception signal in the longitude direction: ψ 3 = ±180°.

综上,定向欺骗的方位角为:In summary, the azimuth of directional deception is:

k+n时刻反馈校正后GNSS位置欺骗信号造成的速度误差为:The velocity error caused by the GNSS position spoofing signal after feedback correction at time k+n is:

由K值的关系可知,K(1,1)≈K(2,2);K(1,3)>K(2,4);K(3,3)≈K(4,4),则[1-K(1,1)-K(3,3)]≈[1-K(2,2)-K(4,4)],故即使在经纬度上施加的位置欺骗偏移量相同,GNSS位置欺骗信号对北向速度产生的影响总是大于对东向速度产生的影响。本申请在进行隐蔽性优化设计模型设计时,通过对欺骗信号进行设计,从而减小欺骗信号对速度输出造成的影响,避免欺骗造成的速度误差被欺骗检测算法所检测到,从而提高欺骗算法的隐蔽性。From the relationship of K∞ value, we can know that K∞ (1,1) ≈K∞ (2,2); K∞ (1,3)> K∞ (2,4); K∞ (3,3) ≈K∞ (4,4), then [1- K∞ (1,1) -K∞ (3,3)]≈[1- K∞ (2,2) -K∞ (4,4)], so even if the position deception offset applied on the longitude and latitude is the same, the impact of the GNSS position deception signal on the northbound speed is always greater than the impact on the eastbound speed. When designing the concealment optimization design model, the present application designs the deception signal to reduce the impact of the deception signal on the speed output, avoids the speed error caused by the deception from being detected by the deception detection algorithm, and thus improves the concealment of the deception algorithm.

k+n时刻反馈校正后GNSS位置欺骗信号造成的的姿态误差为:The attitude error caused by the GNSS position spoofing signal after feedback correction at time k+n is:

其中,分别为GNSS信号未被欺骗时经过正确校正后的姿态结果。in, They are the attitude results after correct correction when the GNSS signal is not spoofed.

由于K(3,3)≈K(4,4),K(6,3)>K(5,4),K(7,3)>K(6,3),可知GNSS欺骗干扰会对组合导航输出的姿态造成影响,尤其是对方位角的影响尤其严重。而且这种影响与欺骗干扰信号有关。本申请通过对欺骗信号进行设计,从而减小欺骗信号对姿态输出造成的影响,进而使目标无人系统的欺骗检测器失效,从而达到隐蔽性欺骗的目的。Since K∞ ( 3,3)≈K∞(4,4),K∞(6,3)>K∞ ( 5,4 ), K∞ (7,3)> K∞ (6,3), it can be seen that GNSS deception interference will affect the attitude of the integrated navigation output, especially the azimuth. And this influence is related to the deception interference signal. The present application designs the deception signal to reduce the influence of the deception signal on the attitude output, thereby making the deception detector of the target unmanned system invalid, thereby achieving the purpose of covert deception.

在其中一个实施例中,根据位置欺骗偏移量、速度误差和姿态误差构建定向欺骗的隐蔽性优化设计模型,通过遍历算法对隐蔽性优化设计模型的欺骗信号系数进行寻优,得到最优GNSS欺骗信号模型,包括:In one embodiment, a concealment optimization design model of directional deception is constructed according to the position deception offset, velocity error and attitude error, and the deception signal coefficient of the concealment optimization design model is optimized by a traversal algorithm to obtain an optimal GNSS deception signal model, including:

根据位置欺骗偏移量、速度误差和姿态误差构建定向欺骗的隐蔽性优化设计模型为The concealment optimization design model of directional deception is constructed based on the position deception offset, velocity error and attitude error:

其中,Kspeed为速度比例因子,为不同方向的姿态误差阈值,AL,Aλ,B为欺骗信号系数,为相同时间内的欺骗距离,为相同时间内欺骗距离的最大值,分别表示k+n时刻欺骗目标北向和东向的真实速度。Among them, K speed is the speed proportional factor, is the attitude error threshold in different directions, A L , A λ , B are the deception signal coefficients, is the deception distance in the same time, is the maximum value of the deception distance in the same time, They represent the true speed of the deceived target in the north and east directions at time k+n respectively.

在其中一个实施例中,根据欺骗目标和导航系统对欺骗信号检测的灵敏度设置速度比例因子和姿态误差阈值,通过遍历的方法确定满足隐蔽性优化设计模型中的约束条件的GNSS欺骗信号的3个欺骗信号系数的取值;In one of the embodiments, a velocity proportional factor and an attitude error threshold are set according to the spoofing target and the sensitivity of the navigation system to the spoofing signal detection, and the values of three spoofing signal coefficients of the GNSS spoofing signal that meet the constraint conditions in the concealment optimization design model are determined by a traversal method;

根据确定的欺骗信号系数值,得到最优GNSS欺骗信号模型。According to the determined spoofing signal coefficient value, an optimal GNSS spoofing signal model is obtained.

在具体实施例中,为了优化对目标无人系统的隐蔽性定向欺骗,需要在保证定向欺骗隐蔽性的前提下,使固定时间段内的欺骗距离最大,即目标无人系统被欺骗的距离最远。由GNSS位置欺骗信号对INS/GNSS组合导航姿态和速度估计值的影响可知,为了实现隐蔽性定向欺骗,需要减小GNSS位置欺骗信号对姿态和速度的影响,重点是要降低GNSS位置欺骗信号对北向速度和航向角的影响,进而避免GNSS欺骗信号被目标无人平台的欺骗检测算法所检测到。通过对位置欺骗偏移量、定向欺骗造成的速度误差和姿态误差的分析结果,设定了合理的约束条件来增强定向欺骗的隐蔽性,并将定向欺骗的隐蔽性优化设计转化为如下模型:In a specific embodiment, in order to optimize the covert directional deception of the target unmanned system, it is necessary to maximize the deception distance within a fixed time period while ensuring the concealment of the directional deception, that is, the target unmanned system is deceived at the farthest distance. From the influence of the GNSS position deception signal on the INS/GNSS combined navigation attitude and velocity estimation values, it can be seen that in order to achieve covert directional deception, it is necessary to reduce the influence of the GNSS position deception signal on the attitude and velocity. The key point is to reduce the influence of the GNSS position deception signal on the north velocity and heading angle, thereby avoiding the GNSS deception signal from being detected by the deception detection algorithm of the target unmanned platform. Through the analysis results of the position deception offset, the velocity error and the attitude error caused by the directional deception, reasonable constraints are set to enhance the concealment of the directional deception, and the concealment optimization design of the directional deception is converted into the following model:

其中,为相同时间内的欺骗距离,为相同时间内欺骗距离的最大值;分别表示k+n时刻欺骗目标北向和东向的真实速度,若欺骗器与欺骗目标位于同一运载体上,则为运载体的速度;若欺骗器与欺骗目标不在同一运载体上,则代表欺骗器的运载体与欺骗目标速度近似相等时,欺骗器运载体北向和东向的速度,Kspeed为速度比例因子;分别为姿态误差阈值。in, is the deception distance in the same time, is the maximum value of the deception distance in the same time; They represent the true speed of the deceptive target in the north and east directions at time k+n respectively. If the deceptive device and the deceptive target are located on the same carrier, then is the speed of the vehicle; if the spoofer and the target are not on the same vehicle, it means that the north and east speeds of the spoofer vehicle are approximately equal when the speeds of the spoofer and the target are approximately equal, and K speed is the speed proportional factor; are the attitude error thresholds respectively.

通过遍历的方法确定满足条件的GNSS欺骗信号的3个系数AL,Aλ,B的取值,通过AL,Aλ,B值即可得到所需的最优GNSS欺骗信号模型,进而实现对目标无人系统在INS/GNSS松组合导航模式下的隐蔽性定向欺骗。The values of the three coefficients AL , , and B of the GNSS spoofing signal that meet the conditions are determined by the traversal method. The required optimal GNSS spoofing signal model can be obtained through the values of AL , , and B, thereby realizing the covert directional spoofing of the target unmanned system in the INS/GNSS loosely integrated navigation mode.

当设定了速度比例因子Kspeed和姿态误差阈值之后,通过遍历的方法即可确定满足条件的GNSS欺骗信号的3个系数AL,Aλ,B的取值,通过AL,Aλ,B值即可得到所需的GNSS欺骗信号模型。其中,可以根据欺骗目标和导航系统对欺骗信号检测的灵敏度设置为不同的值。When the speed proportional factor K speed and attitude error threshold are set Afterwards, the values of the three coefficients AL , , and B of the GNSS spoofing signal that meets the conditions can be determined by the traversal method, and the required GNSS spoofing signal model can be obtained through the values of AL , , and B. Among them, It can be set to different values according to the spoofing target and the sensitivity of the navigation system to spoofing signal detection.

应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that, although the various steps in the flowchart of FIG. 1 are shown in sequence according to the indication of the arrows, these steps are not necessarily executed in sequence according to the order indicated by the arrows. Unless there is a clear explanation in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least a portion of the steps in FIG. 1 may include a plurality of sub-steps or a plurality of stages, and these sub-steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these sub-steps or stages is not necessarily to be carried out in sequence, but can be executed in turn or alternately with other steps or at least a portion of the sub-steps or stages of other steps.

以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation methods of the present application, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the invention patent. It should be pointed out that, for a person of ordinary skill in the art, several variations and improvements can be made without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the protection scope of the patent of the present application shall be subject to the attached claims.

Claims (9)

1.一种基于指数型欺骗信号模型的隐蔽性定向欺骗方法,其特征在于,所述方法包括:1. A covert directional deception method based on an exponential deception signal model, characterized in that the method comprises: 获取INS数据、GNSS数据以及待欺骗的目标无人系统的INS/GNSS松组合导航系统模型;Obtain INS data, GNSS data and the INS/GNSS loose integrated navigation system model of the target unmanned system to be deceived; 对所述INS/GNSS松组合导航系统模型进行离散化,得到离散化的INS/GNSS松组合导航系统模型;Discretizing the INS/GNSS loosely integrated navigation system model to obtain a discretized INS/GNSS loosely integrated navigation system model; 利用离散卡尔曼滤波器和离散化的INS/GNSS松组合导航系统模型对所述INS数据和GNSS数据进行融合,得到组合导航输出结果;所述组合导航输出结果包括组合导航位置输出、组合导航速度输出和组合导航姿态输出;The INS data and the GNSS data are fused by using a discrete Kalman filter and a discretized INS/GNSS loose integrated navigation system model to obtain an integrated navigation output result; the integrated navigation output result includes an integrated navigation position output, an integrated navigation speed output and an integrated navigation attitude output; 利用指数型欺骗信号模型生成的指数型欺骗信号从欺骗初始时刻开始对所述目标无人系统进行GNSS欺骗干扰,得到所述目标无人系统被欺骗的不同时刻的组合导航输出结果与GNSS欺骗信号偏移量的目标函数关系式;Using an exponential spoofing signal generated by an exponential spoofing signal model to perform GNSS spoofing interference on the target unmanned system from the initial moment of spoofing, and obtaining an objective function relationship between the combined navigation output results and the GNSS spoofing signal offset at different moments when the target unmanned system is deceived; 对所述目标函数关系式进行递推,得到所述目标无人系统被欺骗的最终时刻的组合导航输出结果与GNSS欺骗信号偏移量的最终函数关系式;所述最终函数关系式包含欺骗信号系数;Recursively deducing the objective function relational expression, obtaining a final function relational expression of the combined navigation output result at the final moment when the target unmanned system is deceived and the GNSS deception signal offset; the final function relational expression includes a deception signal coefficient; 根据所述最终函数关系式对所述欺骗信号系数进行调节,得到位置欺骗信号,利用所述位置欺骗信号对组合导航系统进行定向欺骗,得到位置欺骗偏移量、以及定向欺骗对组合导航系统造成的速度误差和姿态误差;The deception signal coefficient is adjusted according to the final functional relationship to obtain a position deception signal, and the position deception signal is used to perform directional deception on the integrated navigation system to obtain a position deception offset, and a speed error and an attitude error caused by the directional deception to the integrated navigation system; 根据所述位置欺骗偏移量、速度误差和姿态误差构建定向欺骗的隐蔽性优化设计模型,通过遍历算法对所述隐蔽性优化设计模型的欺骗信号系数进行寻优,得到最优GNSS欺骗信号模型;A concealment optimization design model of directional deception is constructed according to the position deception offset, velocity error and attitude error, and a deception signal coefficient of the concealment optimization design model is optimized by a traversal algorithm to obtain an optimal GNSS deception signal model; 利用所述最优GNSS欺骗信号模型生成最优GNSS欺骗信号对所述目标无人系统进行隐蔽性定向欺骗。The optimal GNSS spoofing signal model is used to generate an optimal GNSS spoofing signal to perform covert directional spoofing on the target unmanned system. 2.根据权利要求1所述的方法,其特征在于,利用指数型欺骗信号模型生成的指数型欺骗信号从欺骗初始时刻开始对所述目标无人系统进行GNSS欺骗干扰,得到所述目标无人系统被欺骗的不同时刻的组合导航输出结果与GNSS欺骗信号偏移量的目标函数关系式,包括:2. The method according to claim 1 is characterized in that the exponential deception signal generated by the exponential deception signal model is used to perform GNSS deception interference on the target unmanned system from the initial deception moment, and the objective function relationship between the combined navigation output result and the GNSS deception signal offset at different moments when the target unmanned system is deceived is obtained, comprising: 利用指数型欺骗信号模型生成的指数型欺骗信号从欺骗初始时刻开始对所述目标无人系统进行GNSS欺骗干扰,得到所述目标无人系统被欺骗的不同时刻的组合导航位置输出与GNSS欺骗信号偏移量的目标函数关系式为The exponential deception signal generated by the exponential deception signal model is used to perform GNSS deception interference on the target unmanned system from the initial deception moment, and the objective function relationship between the combined navigation position output of the target unmanned system at different moments of being deceived and the GNSS deception signal offset is obtained as follows: 其中,表示组合导航纬度位置输出,表示组合导航经度位置输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的纬度和经度,为施加的GNSS北向速度欺骗信号偏移量,为施加的GNSS东向速度欺骗信号偏移量,为施加的GNSS纬度欺骗信号偏移量,为施加的GNSS经度欺骗信号偏移量,K(3,1)、K(3,2)、K(3,3)、K(3,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算纬度误差估计值时的增益系数,K(4,1)、K(4,2)、K(4,3)、K(4,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算经度误差估计值时的增益系数。in, Indicates the combined navigation latitude position output, Indicates the combined navigation longitude position output, They are the latitude and longitude output after correct combined navigation correction when the GNSS signal is not deceptively interfered with. is the applied GNSS north velocity spoofing signal offset, is the applied GNSS east velocity spoofing signal offset, is the applied GNSS latitude spoofing signal offset, is the imposed GNSS longitude spoofing signal offset, K (3,1), K (3,2), K (3,3), K (3,4) represent the gain coefficients when calculating the latitude error estimate using the north velocity, east velocity, latitude and longitude observations, respectively; K (4,1), K (4,2), K (4,3), K (4,4) represent the gain coefficients when calculating the longitude error estimate using the north velocity, east velocity, latitude and longitude observations, respectively. 3.根据权利要求2所述的方法,其特征在于,所述方法还包括:3. The method according to claim 2, characterized in that the method further comprises: 利用指数型欺骗信号模型生成的指数型欺骗信号从欺骗初始时刻开始对所述目标无人系统进行GNSS欺骗干扰,得到所述目标无人系统被欺骗的不同时刻的组合导航速度输出与GNSS欺骗信号偏移量的目标函数关系式为The exponential deception signal generated by the exponential deception signal model is used to perform GNSS deception interference on the target unmanned system from the initial deception moment, and the objective function relationship between the combined navigation speed output and the GNSS deception signal offset at different moments when the target unmanned system is deceived is obtained as follows: 其中,表示组合导航北向速度输出,表示组合导航东向速度输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的北向速度和东向速度,K(1,1)、K(1,2)、K(1,3)、K(1,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算北向速度误差估计值时的增益系数,K(2,1)、K(2,2)、K(2,3)、K(2,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算东向速度误差估计值时的增益系数。in, Indicates the north speed output of the combined navigation. Indicates the east speed output of the combined navigation. are the north velocity and east velocity output after correct combined navigation correction when the GNSS signal is not deceiving or interfered with. K (1,1), K (1,2), K (1,3), and K (1,4) represent the gain coefficients when the north velocity, east velocity, latitude, and longitude observations are used to calculate the north velocity error estimate. K (2,1), K (2,2), K (2,3), and K (2,4) represent the gain coefficients when the north velocity, east velocity, latitude, and longitude observations are used to calculate the east velocity error estimate. 4.根据权利要求3所述的方法,其特征在于,所述方法还包括:4. The method according to claim 3, characterized in that the method further comprises: 利用指数型欺骗信号模型生成的指数型欺骗信号从欺骗初始时刻开始对所述目标无人系统进行GNSS欺骗干扰,得到所述目标无人系统被欺骗的不同时刻的组合导航姿态输出与GNSS欺骗信号偏移量的目标函数关系式为The exponential deception signal generated by the exponential deception signal model is used to perform GNSS deception interference on the target unmanned system from the initial deception moment, and the objective function relationship between the combined navigation attitude output and the GNSS deception signal offset of the target unmanned system at different moments of being deceived is obtained as follows: 其中,分别为组合导航横滚角、俯仰角和方位角姿态输出,分别为GNSS信号未被欺骗干扰情况下经过正确组合导航修正后输出的姿态结果,K(5,1)、K(5,2)、K(5,3)、K(5,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算横滚角误差估计值时的增益系数,K(6,1)、K(6,2)、K(6,3)、K(6,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算俯仰角误差估计值时的增益系数,K(7,1)、K(7,2)、K(7,3)、K(7,4)分别表示利用北向速度、东向速度、纬度和经度观测量计算方位角误差估计值时的增益系数。in, They are the combined navigation roll angle, pitch angle and azimuth attitude outputs respectively. are the attitude results output after correct combined navigation correction when the GNSS signal is not deceiving or interfered with. K (5,1), K (5,2), K (5,3), and K (5,4) represent the gain coefficients for calculating the roll angle error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively. K (6,1), K (6,2), K (6,3), and K (6,4) represent the gain coefficients for calculating the pitch angle error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively. K (7,1), K (7,2), K (7,3), and K (7,4) represent the gain coefficients for calculating the azimuth error estimate using the north velocity, east velocity, latitude, and longitude observations, respectively. 5.根据权利要求4所述的方法,其特征在于,利用所述位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗的位置偏移量以及定向欺骗对组合导航系统造成的速度误差和姿态误差,包括:5. The method according to claim 4 is characterized in that the integrated navigation system is directional-deceived by using the position deceiving signal to obtain the position offset of the directional deceiving and the speed error and attitude error caused by the directional deceiving to the integrated navigation system, comprising: 利用所述位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗的位置偏移量为The position deception signal is used to perform directional deception on the integrated navigation system, and the position offset of the directional deception is obtained as follows: 其中,k0表示欺骗初始时刻,k+n表示最终时刻,k表示欺骗初始时刻到最终时刻间的任意时刻,n表示欺骗的总时刻数。Among them, k 0 represents the initial moment of deception, k+n represents the final moment, k represents any moment between the initial moment of deception and the final moment, and n represents the total number of deception moments. 6.根据权利要求5所述的方法,其特征在于,所述方法还包括:6. The method according to claim 5, characterized in that the method further comprises: 利用所述位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗对组合导航系统造成的速度误差为The position deception signal is used to perform directional deception on the integrated navigation system, and the speed error caused by the directional deception on the integrated navigation system is obtained as follows: 7.根据权利要求6所述的方法,其特征在于,所述方法还包括:7. The method according to claim 6, characterized in that the method further comprises: 利用所述位置欺骗信号对组合导航系统进行定向欺骗,得到定向欺骗对组合导航系统造成的姿态误差为The position deception signal is used to perform directional deception on the integrated navigation system, and the attitude error caused by the directional deception on the integrated navigation system is obtained as follows: 8.根据权利要求7所述的方法,其特征在于,根据所述位置欺骗偏移量、速度误差和姿态误差构建定向欺骗的隐蔽性优化设计模型,通过遍历算法对所述隐蔽性优化设计模型的欺骗信号系数进行寻优,得到最优GNSS欺骗信号模型,包括:8. The method according to claim 7 is characterized in that a concealment optimization design model of directional deception is constructed according to the position deception offset, velocity error and attitude error, and the deception signal coefficient of the concealment optimization design model is optimized by a traversal algorithm to obtain an optimal GNSS deception signal model, comprising: 根据所述位置欺骗偏移量、速度误差和姿态误差构建定向欺骗的隐蔽性优化设计模型为According to the position deception offset, speed error and attitude error, the concealment optimization design model of directional deception is constructed as follows: 其中,Kspeed为速度比例因子,为不同方向的姿态误差阈值,AL,Aλ,B为欺骗信号系数,为相同时间内的欺骗距离,为相同时间内欺骗距离的最大值,分别表示k+n时刻欺骗目标北向和东向的真实速度。Among them, K speed is the speed proportional factor, is the attitude error threshold in different directions, A L , A λ , B are the deception signal coefficients, is the deception distance in the same time, is the maximum value of the deception distance in the same time, They represent the true speed of the deceived target in the north and east directions at time k+n respectively. 9.根据权利要求8所述的方法,其特征在于,所述方法还包括:9. The method according to claim 8, characterized in that the method further comprises: 根据欺骗目标和导航系统对欺骗信号检测的灵敏度设置速度比例因子和姿态误差阈值,通过遍历的方法确定满足隐蔽性优化设计模型的GNSS欺骗信号的3个欺骗信号系数的取值;The velocity scale factor and attitude error threshold are set according to the spoofing target and the sensitivity of the navigation system to the spoofing signal detection, and the values of the three spoofing signal coefficients of the GNSS spoofing signal that meet the concealment optimization design model are determined by the traversal method; 根据确定的欺骗信号系数值,得到最优GNSS欺骗信号模型。According to the determined spoofing signal coefficient value, an optimal GNSS spoofing signal model is obtained.
CN202210792200.XA 2022-07-07 2022-07-07 Covert directional deception method based on exponential deception signal model Active CN115236702B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210792200.XA CN115236702B (en) 2022-07-07 2022-07-07 Covert directional deception method based on exponential deception signal model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210792200.XA CN115236702B (en) 2022-07-07 2022-07-07 Covert directional deception method based on exponential deception signal model

Publications (2)

Publication Number Publication Date
CN115236702A CN115236702A (en) 2022-10-25
CN115236702B true CN115236702B (en) 2024-04-19

Family

ID=83670882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210792200.XA Active CN115236702B (en) 2022-07-07 2022-07-07 Covert directional deception method based on exponential deception signal model

Country Status (1)

Country Link
CN (1) CN115236702B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562560A1 (en) * 2011-08-24 2013-02-27 Thales Method and system for detecting fraudulent positioning information from a mobile device
CN110646814A (en) * 2019-09-16 2020-01-03 中国人民解放军国防科技大学 Unmanned aerial vehicle deception method under combined navigation mode
CN110988926A (en) * 2019-12-20 2020-04-10 福建海峡北斗导航科技研究院有限公司 Method for realizing position accurate fixed point deception migration in loose GNSS/INS combined navigation mode
CN113625324A (en) * 2021-07-30 2021-11-09 中国人民解放军国防科技大学 Deception method for realizing precise fixed point offset of unmanned aerial vehicle in integrated navigation mode
KR102386778B1 (en) * 2021-12-22 2022-04-14 한화시스템(주) System and method for generating spoofing of unmanned aerial vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562560A1 (en) * 2011-08-24 2013-02-27 Thales Method and system for detecting fraudulent positioning information from a mobile device
CN110646814A (en) * 2019-09-16 2020-01-03 中国人民解放军国防科技大学 Unmanned aerial vehicle deception method under combined navigation mode
CN110988926A (en) * 2019-12-20 2020-04-10 福建海峡北斗导航科技研究院有限公司 Method for realizing position accurate fixed point deception migration in loose GNSS/INS combined navigation mode
CN113625324A (en) * 2021-07-30 2021-11-09 中国人民解放军国防科技大学 Deception method for realizing precise fixed point offset of unmanned aerial vehicle in integrated navigation mode
KR102386778B1 (en) * 2021-12-22 2022-04-14 한화시스템(주) System and method for generating spoofing of unmanned aerial vehicle

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Covert Spoofing Algorithm of UAV Based on GPS/INS-Integrated Navigation;Yan Guo; Meiping Wu; Kanghua Tang; Junbo Tie; Xian Li;IEEE Transactions on Vehicular Technology;20190302;第68卷(第7期);全文 *
INS/GNSS 组合导航模式下无人机隐蔽性欺 骗方法研究;郭妍;中国优秀博士电子期刊网;20220115(第1期);全文 *
MEDLL辅助的GNSS/INS系统欺骗信号辨识方法;许睿;丁梦羽;孟骞;刘建业;;中国惯性技术学报;20180415(第02期);全文 *
基于轨迹欺骗的无人机GPS/INS复合导航系统干扰技术;李畅;王旭东;;南京航空航天大学学报;20170615(第03期);全文 *

Also Published As

Publication number Publication date
CN115236702A (en) 2022-10-25

Similar Documents

Publication Publication Date Title
US20220404152A1 (en) Motion constraint-aided underwater integrated navigation method employing improved sage-husa adaptive filtering
CN111780755A (en) A Multi-source Fusion Navigation Method Based on Factor Graph and Observability Analysis
US20090018772A1 (en) Position Sensing Device And Method
US20220236425A1 (en) Detection of spoofing attacks on satellite navigation systems
CN106979781B (en) High-precision transfer alignment method based on distributed inertial network
CN108983271A (en) Based on RTK-GPS/INS train combined positioning method
Dasgupta et al. Prediction-based GNSS spoofing attack detection for autonomous vehicles
CN110646783A (en) An underwater beacon positioning method for an underwater vehicle
Kamal et al. GPS location spoofing attack detection for enhancing the security of autonomous vehicles
KR20180000522A (en) Apparatus and method for determining position and attitude of a vehicle
CN109444922A (en) Towards independent navigation unmanned plane GPS fraud detection and defence method
Kujur et al. Detecting GNSS spoofing of ADS-B equipped aircraft using INS
CN111443363A (en) Satellite navigation deception identification method and device
Wang et al. Attitude determination method by fusing single antenna GPS and low cost MEMS sensors using intelligent Kalman filter algorithm
Ke et al. Tightly coupled GNSS/INS integration spoofing detection algorithm based on innovation rate optimization and robust estimation
Chang et al. An anti-spoofing model based on mvm and mccm for a loosely-coupled gnss/ins/lidar kalman filter
CN115236702B (en) Covert directional deception method based on exponential deception signal model
Bhatti et al. Integrity of an integrated GPS/INS system in the presence of slowly growing errors. Part II: analysis
CN115201856A (en) Global positioning system deception detection and positioning recovery method based on pseudo-range residual error
US11585950B2 (en) Method for identifying a static phase of a vehicle
Liu et al. Probabilistic detection of GNSS spoofing using opportunistic information
JP5996467B2 (en) Mobile body position information fraud detection apparatus, mobile body position information correction processing apparatus, and fraud detection program
CN113819911B (en) Navigation method based on self-adaptive fault-tolerant filtering under GNSS unlocking
Kanhere et al. Factor graph-based spoofing mitigation using the chimera signal enhancement
US20240053486A1 (en) Navigation during a deception operation of a satellite signal receiver

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant