CN115232862B - 一种金纳米颗粒-dna酶马达触发双色dna镊子荧光扩增检测双酚a的方法 - Google Patents

一种金纳米颗粒-dna酶马达触发双色dna镊子荧光扩增检测双酚a的方法 Download PDF

Info

Publication number
CN115232862B
CN115232862B CN202210839840.1A CN202210839840A CN115232862B CN 115232862 B CN115232862 B CN 115232862B CN 202210839840 A CN202210839840 A CN 202210839840A CN 115232862 B CN115232862 B CN 115232862B
Authority
CN
China
Prior art keywords
sequence
dna
modified
tweezer
bisphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210839840.1A
Other languages
English (en)
Other versions
CN115232862A (zh
Inventor
马钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West China Hospital of Sichuan University
Original Assignee
West China Hospital of Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West China Hospital of Sichuan University filed Critical West China Hospital of Sichuan University
Priority to CN202210839840.1A priority Critical patent/CN115232862B/zh
Publication of CN115232862A publication Critical patent/CN115232862A/zh
Application granted granted Critical
Publication of CN115232862B publication Critical patent/CN115232862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种金纳米颗粒DNA酶马达触发超灵敏双色DNA镊子用于荧光检测双酚A。双酚A可以与金纳米颗粒上的适配子结合,并重新激活Pb2+酶链(Pb2+‑E‑DNA)。因此,Pb2+酶链可以剪切金纳米颗粒上的底物链(Pb2+‑S‑DNA),并从金纳米颗粒释放DNA片段。释放的DNA片段可以与Y形DNA镊子的环结合形成Mg2+特异性DNA酶,随后的剪切导致另两个DNA片段的留下。然后,这两个DNA片段可以打开Y形DNA镊子的两端,导致荧光信号的恢复。本发明的方法在0.44~2.2×103pM范围内显示出良好的线性关系。它提供了超灵敏的DNA酶马达放大效应。重要的是,它还可以提供双色信号同时显著减少假阳性结果。此外,它在实际水样检测中也表现出令人满意的性能。

Description

一种金纳米颗粒-DNA酶马达触发双色DNA镊子荧光扩增检测 双酚A的方法
技术领域
本发明涉及一种双酚A的检测领域,特别是基于双色DNA镊子荧光检测双酚A的方法领域。
背景技术
双酚A是一种人工合成的雌激素单体,分子量为228.29g/摩尔。1891年,Dianin首次合成。自20世纪50年代起,双酚A作为环氧树脂和硬塑料材料的前体,通过聚合制备保护涂层。基于双酚A的产品具有钢一样的强机械性能和玻璃一样的良好透光性和耐腐蚀性,具有广阔的市场前景。因此,双酚A大量用于工业生产,年产量超过60亿英镑。一些研究人员发现,超过90%的受试婴儿和儿童体内可检测到双酚A。双酚A在人体内的累积与心血管疾病、心脏病和糖尿病的风险增加相关。因此,开发简便、灵敏的双酚A检测方法是非常必要的。
迄今为止,双酚A检测最常用的商业方法是基于色谱法的方法,包括HPLC、GC、LC-MS 和GC-MS等。尽管这些经典的分析方法准确、灵敏度高,但仪器成本高、预处理过程复杂以及对熟练程序的要求限制了其应用。
DNA马达是一种模拟蛋白质马达生物功能的纳米机器。它可以在设计的轨道上实现短距离步行。它们通常由杂交诱导的核酸构象变化驱动。基于DNA的马达可以沿着各种材料表面上的特定轨迹迁移,包括金膜或纳米材料、碳基纳米材料和硅衬底。近年来,DNA酶由于其循环反应的特点,被用于DNA马达。DNA酶基于DNA马达由酶链(E-DNA)和底物链(S-DNA)组成。E-DNA可以通过Watson-Crick碱基配对与S-DNA结合,S-DNA是轨道上的锚链。E-DNA剪切S-DNA后,游离E-DNA可以与表面附近的相邻S-DNA结合。因此,通过循环剪切和再结合反应,E-DNA在轨道上实现了显著的移动。迄今为止,基于DNA酶的 DNA马达已被用于生物组织中的信号放大、纳米颗粒运输、生物传感、定位和成像。
DNA镊子是一种由多个DNA序列组成的DNA纳米结构。它可以通过编程Watson-Crick 碱基配对实现结构变化。DNA镊子主要由DNA序列组成。因此,它可以很容易地以低成本进行商业合成,显示出良好的生物相容性、简单的功能修饰和优异的热稳定性。DNA镊子的结构可以通过靶向响应各种信号,包括金属离子、小分子、核酸、蛋白质或细胞。到目前为止,由于缺乏扩增方法,很少有DNA镊子对生物传感表现出超灵敏度。
发明内容
为解决现有技术的问题,我们开发了一种金纳米颗粒DNA酶马达触发的超灵敏双色 DNA镊子,用于荧光检测双酚A。核酸适配子可抑制金纳米颗粒上的Pb2+-E-DNA。在双酚A存在的情况下,适配子可以与双酚A结合并重新激活Pb2+-E-DNA。因此,Pb2+-S-DNA可以被释放的Pb2+-E-DNA循环剪切,并从金纳米颗粒释放DNA片段。释放的DNA片段可以与Y形 DNA镊子的环结合形成Mg2+特异性DNA酶,随后的剪切导致另两个DNA片段的留下。最后,这两个DNA片段可以打开Y形DNA镊子,从而恢复两种颜色的荧光信号。
具体来讲,本发明是一种金纳米颗粒-DNA酶马达触发双色DNA镊子荧光扩增检测双酚 A的方法的方法,包括如下步骤:
1)金纳米颗粒-DNA酶马达的合成:双酚A适配子和硫醇修饰的Pb2+-E-DNA杂交后,与硫醇修饰的Pb2+-S-DNA一起和金纳米颗粒孵育过夜,固定在金纳米颗粒表面;
其中,双酚A适配子序列为:
GAAGAGATGCCGGTGGGTGGTCAGGTGGGATAGCGTTCCGCGTATGGCCCAGCGCATCACGGGTTCGCACCA,硫醇修饰的Pb2+-E-DNA序列为HS-(T)30- ACCACCCACCGGCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT,硫醇修饰的 Pb2+-S-DNA序列为HS-(T)10- CACTCACTATrAGGAAGAGATGTCTCTTCAGCGATTAACCAGGTTACACCCATGTTAGT GA;
2)Y形DNA镊子的合成:序列H1、H2和H3在PBS缓冲液中培养形成Y形基础框架,然后,环状序列与Y形基础框架杂交形成的Y形框架在PBS缓冲液中与荧光猝灭剂DABCYL 修饰的镊子序列1、荧光基团FAM修饰的1'、荧光基团Cy5修饰的镊子序列2、荧光猝灭剂BHQ3修饰的镊子序列2’以及两个锁定序列孵育,形成Y形DNA镊子结构;
其中荧光猝灭剂DABCYL修饰的镊子序列1、荧光基团FAM修饰的1'、荧光基团Cy5修饰的镊子序列2、荧光猝灭剂BHQ3修饰的镊子序列2’四者浓度相同;
其中,H1序列为
AAACGCGGCACTACCGGTGGAGTGCACTGTTTTATGCCACCGGTAGTG;H2序列为 CACTACCGGTGGCATAAAACAGTGCCGCGTTTTATGTATTACT,H3序列为 GTGATTACATAAAACGCGGCACTCCACCGGTAGTGCCGCGTTT,环状序列为 AGTAATAGATAAAATCACTATrAGGAAGAGAAAAATCTAATCAC,荧光猝灭剂DABCYL 修饰的镊子序列1为DABCYL-ATAGATCACTACCGGTGG,荧光基团FAM修饰的镊子序列1’为CCACCGGTAGTGAATCAC-FAM,荧光基团Cy5修饰的镊子序列2为 Cy5-GAGAAAAAACGCGGCACT,荧光猝灭剂BHQ3修饰的镊子序列2’为 AGTGCCGCGTTTTCTAAT-BHQ3,两个锁定序列分别为:锁定序列 1--ATAGTGATTTTATCTATTACT和锁定序列2--ATAGTGATTTTATCTATTACT;
3)检测目标双酚A:被测溶液在含1mM Pb(NO3)2的PBS缓冲液中与步骤1)形成的金纳米颗粒-DNA酶马达反应1小时后,加入10mM NaCl,然后离心将上清液加入步骤2) 形成的Y形DNA镊子中,并在含10mM MgCl2的PBS缓冲液中培养;
4)检测荧光信号:分别检测步骤3)所得溶液的荧光基团Cy5和荧光基团FAM的荧光信号,并采用标准曲线法得出双酚A浓度。
优选的,步骤1)具体为:在含1mM NaCl的1mM的pH 7.5的PBS缓冲液中杂交100 nM双酚A适配子和100nM硫醇修饰的Pb2+-E-DNA,然后再以1:6的比例与硫醇修饰的 Pb2+-S-DNA一起与金纳米颗粒孵育过夜,固定在金纳米颗粒表面。
优选的,步骤2)具体为:序列H1、H2和H3在37℃下以相同的摩尔比在含1mM NaCl的10mM的pH 7.5的PBS缓冲液中培养1小时形成Y形基础框架,然后,环状序列与Y形基础框架杂交形成的Y形框架在含1mM NaCl的10mM的pH 7.5的PBS缓冲液中与荧光猝灭剂DABCYL修饰的镊子序列1、荧光基团FAM修饰的1'、荧光基团Cy5修饰的镊子序列2、荧光猝灭剂BHQ3修饰的镊子序列2’以及两个锁定序列孵育30min,形成Y形DNA 镊子结构。其中荧光猝灭剂DABCYL修饰的镊子序列1、荧光基团FAM修饰的1'、荧光基团Cy5修饰的镊子序列2、荧光猝灭剂BHQ3修饰的镊子序列2’四者浓度相同。
优选的,步骤3)具体为:被测溶液在含1mM Pb(NO3)2的1mM的pH 7.5的PBS 缓冲液中与步骤1)形成的金纳米颗粒-DNA酶马达反应1小时后,加入10mM NaCl,然后离心将上清液加入步骤2)形成的Y形DNA镊子中,并在含10mM MgCl2的1mM的pH 7.5 的PBS缓冲液中培养40min。
优选的,步骤4)具体为:分别检测步骤3)所得溶液的荧光基团Cy5和荧光基团FAM的荧光信号,并采用标准曲线法得出双酚A浓度,其中荧光基团FAM的激发波长设置为486nm,发射波长为500nm至600nm。荧光基团Cy5的激发波长设定为640nm,发射波长为 650nm至750nm。
本发明中,DNA酶马达触发超灵敏双色DNA镊子检测双酚A的检测原理Pb2+-E-DNA和Pb2+-S-DNA均固定在金纳米颗粒上形成金纳米颗粒DNA酶马达。双酚A适配子可抑制金纳米颗粒上的Pb2+-E-DNA。适配子可以与双酚A结合并重新激活Pb2+-E-DNA。因此,Pb2+-DNA 酶可以通过Pb2+-E-DNA与Pb2+-S-DNA结合形成。Pb2+和DNA片段的释放量可以触发Pb2+-DNA 酶的循环断裂。释放的DNA片段可以与Y形DNA镊子上的环部分结合,形成Mg2+特异性 DNA酶。环部分也可以被循环剪切并产生另外两个环片段。这两个环片段分别与Y形DNA 镊子的两个锁定序列互补。因此,它可以导致Y形DNA镊子打开,从而恢复荧光信号,并通过荧光强度计算双酚A的浓度。
附图说明
图1为本发明检测过程示意图,(A)金纳米颗粒-DNA酶马达的循环剪切,(B)Y形DNA镊子的打开。
图2为不同样品的荧光强度:(1)金纳米颗粒-DNA酶马达+Y形DNA镊子(空白样品),(2)金纳米颗粒-DNA酶马达(带变短的适配子)+Y形DNA镊子+双酚A,(3)金纳米颗粒 -DNA酶马达+Y形DNA镊子(带更换的环序列)+双酚A,(4)金纳米颗粒-DNA酶马达+Y 形DNA镊子(带更换的锁定序列1)+双酚A,(5)金纳米颗粒DNA酶马达+Y形DNA镊子 (带更换的锁定序列2)+双酚A,(6)金纳米颗粒DNA酶马达+Y形DNA镊子+双酚A(本发明的最佳实施方案)。
图3A和3B为在本发明的最佳条件下,FAM和Cy5荧光信号对不同双酚A浓度(A-g:0.44、44、440、1320、2200、3520、4400pM)的荧光光谱曲线。图3C为FAM(520nm) 的荧光强度与双酚A浓度的关系为0.44至4400pM。插图:双酚A浓度与荧光信号之间的校准曲线,范围为0.44至2200pM。图3D为Cy5(670nm)的荧光强度与双酚A浓度的关系为0.44至4400pM。插图:双酚A浓度与荧光信号之间的校准曲线,范围为0.44至2200 pM。
图4本发明的方法对其他类似类似物的抗干扰性和特异性。
具体实施方式
下面结合实施例对本发明作进一步详细的说明。
本发明检测方法和步骤如下:
1)在含1mM NaCl的1mM的pH 7.5的PBS缓冲液中杂交100nM双酚A适配子和100 nM硫醇修饰的Pb2+-E-DNA,然后再以1:6的比例与硫醇修饰的Pb2+-S-DNA一起与金纳米颗粒孵育过夜,固定在金纳米颗粒表面。
其中,双酚A适配子序列为:
GAAGAGATGCCGGTGGGTGGTCAGGTGGGATAGCGTTCCGCGTATGGCCCAGCGCATCACGGGTTCGCACCA,硫醇修饰的Pb2+-E-DNA序列为HS-(T)30- ACCACCCACCGGCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT,硫醇修饰的Pb2+-S-DNA序列为HS-(T)10- CACTCACTATrAGGAAGAGATGTCTCTTCAGCGATTAACCAGGTTACACCCATGTTAGT GA;
2)序列H1、H2和H3在37℃下以相同的摩尔比在含1mM NaCl的10mM的pH 7.5的 PBS缓冲液中培养1小时形成Y形基础框架,然后,环状序列与Y形基础框架杂交形成的Y 形框架在含1mM NaCl的10mM的pH 7.5的PBS缓冲液中与荧光猝灭剂DABCYL修饰的镊子序列1、荧光基团FAM修饰的1'、荧光基团Cy5修饰的镊子序列2、荧光猝灭剂BHQ3 修饰的镊子序列2’以及两个锁定序列孵育30min,形成Y形DNA镊子结构。其中荧光猝灭剂DABCYL修饰的镊子序列1、荧光基团FAM修饰的1'、荧光基团Cy5修饰的镊子序列2、荧光猝灭剂BHQ3修饰的镊子序列2’四者浓度相同。
其中,H1序列为
AAACGCGGCACTACCGGTGGAGTGCACTGTTTTATGCCACCGGTAGTG;H2序列为 CACTACCGGTGGCATAAAACAGTGCCGCGTTTTATGTATTACT;H3序列为 GTGATTACATAAAACGCGGCACTCCACCGGTAGTGCCGCGTTT;环状序列为 AGTAATAGATAAAATCACTATrAGGAAGAGAAAAATCTAATCAC;荧光猝灭剂DABCYL 修饰的镊子序列1为DABCYL-ATAGATCACTACCGGTGG;荧光基团FAM修饰的镊子序列1’为CCACCGGTAGTGAATCAC-FAM,荧光基团Cy5修饰的镊子序列2为 Cy5-GAGAAAAAACGCGGCACT,荧光猝灭剂BHQ3修饰的镊子序列2’为 AGTGCCGCGTTTTCTAAT-BHQ3,两个锁定序列分别为:锁定序列 1--ATAGTGATTTTATCTATTACT和锁定序列2--ATAGTGATTTTATCTATTACT;
3)被测溶液在含1mM Pb(NO3)2的1mM的pH 7.5的PBS缓冲液中与步骤1)形成的金纳米颗粒-DNA酶马达反应1小时后,加入10mM NaCl,然后离心将上清液加入步骤2) 形成的Y形DNA镊子中,并在含10mM MgCl2的1mM的pH 7.5的PBS缓冲液中培养40min。
4)检测步骤3)所得溶液的荧光基团Cy5和荧光基团FAM的荧光信号,并采用标准曲线法得出双酚A浓度,其中荧光基团FAM的激发波长设置为486nm,发射波长记录为500 nm至600nm。荧光基团Cy5的激发波长设定为640nm,发射波长记录为650nm至750nm。
以上方法为本发明的最佳实施方案。
设计了六组平行实验,证明本发明的方法的可行性和优越性。
六组平行实验的结果如图2所示,六组平行实验的区别如下:通过一些设计样本研究了本发明的检测机制(图2)。由于适配子对Pb2+-E-DNA的抑制,无靶双酚A的空白样品呈现微弱的背景信号。样本2中的适配子序列被一个短序列取代,这意味着适配子不能离开 Pb2 +-E-DNA,因此也会导致背景荧光强度。样品3中,环上Mg2+的S-DNA被随机序列改变,导致环上没有裂解,也显示出微弱的荧光强度。样本4和样本5中的锁定序列1和2序列分别6个碱基的改变,导致环片段无法打开其相应的DNA镊子,从而导致相应信号通道中的背景荧光强度较弱。典型完整条件下的样品6显示FAM和Cy5的强荧光信号。所有结果均符合检测原理,间接证明了本发明的可行性。
为评价双酚A的检测性能,在最佳条件下采用本发明的方法检测不同浓度的双酚A。FAM 和Cy5的荧光信号均随双酚A浓度的增加而增加(图3A和3B),呈现出从0.44到2.2×103pM的线性关系(FAM的R2=0.993,Cy5的R2=0.992)(图3C和3D)。根据空白样品标准偏差的三倍计算,FAM的LOD为0.07pM,Cy5的LOD为0.16pM。这种高灵敏度可归因于两个水平的循环裂解扩增反应。重要的是,双色荧光策略显著提高了准确率并减少了假阳性结果。
本发明的方法的选择性通过一些类似的类似物进行评估,包括双酚B(BPB)、双酚C(BPC)、双酚A乙氧基化物(BPE)和双酚F(BPF)。如图4所示,只有双酚A表现出较强的荧光强度。其他类似物的荧光强度与空白样品一样低。此外,混合样品显示出与双酚A样品相同的强信号强度。这些结果表明,适配子仅与双酚A有很高的亲和力,其他类似物的干扰可以忽略不计。这些结果表明,本发明的方法具有很强的选择性和抗干扰性。
真实的检测
为了证明该方法的实际应用,对一些食品和环境样品进行了检测。所有样品均需用0.45 μm滤膜过滤,测试前将样品pH值调节至7.5。用一定浓度的加标样品进行回收试验。如表1所示,加标样品的回收率从93.4%变为108.7%,所有样品的RSD从6.4%变为9.2%。实际样品的回收率和RSD结果满足实际应用的要求。
表1.实际样品的检测
Figure BDA0003750439990000051
综上所述,本发明提供了一种金纳米颗粒DNA酶马达触发的超灵敏双色DNA镊子,用于荧光检测双酚A。本发明的方法的敏感性通过DNA酶为基础的DNA马达和Y形DNA镊子环的循环剪切得到放大。双色荧光策略显著减少了假阳性结果。实际样品检测结果令人满意。

Claims (5)

1.一种金纳米颗粒-DNA酶马达触发双色DNA镊子荧光扩增检测双酚A的方法,包括如下步骤:
1)金纳米颗粒-DNA酶马达的合成:双酚A适配子和硫醇修饰的Pb2+-E-DNA杂交后,与硫醇修饰的Pb2+-S-DNA一起和金纳米颗粒孵育过夜,固定在金纳米颗粒表面;
其中,双酚A适配子序列为GAAGAGATGCCGGTGGGTGGTCAGGTGGGATAGCGTTCCGCGTATGGCCCAGCGCATCACGGGTTCGCACCA;
硫醇修饰的Pb2+-E-DNA序列为
HS-(T)30- ACCACCCACCGGCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT;
硫醇修饰的Pb2+-S-DNA序列为
HS-(T)10-CACTCACTATrAGGAAGAGATGTCTCTTCAGCGATTAACCAGGTTACACCCATGTTAGTGA;
2)Y形DNA镊子的合成:序列H1、H2和H3在 PBS缓冲液中培养形成Y形基础框架,然后,环状序列与Y形基础框架杂交形成的Y形框架在PBS缓冲液中与荧光猝灭剂DABCYL修饰的镊子序列1、荧光基团FAM修饰的镊子序列1’、荧光基团Cy5修饰的镊子序列2、荧光猝灭剂BHQ3修饰的镊子序列2’以及两个锁定序列孵育,形成Y形DNA镊子结构;
其中荧光猝灭剂DABCYL修饰的镊子序列1、荧光基团FAM修饰的镊子序列1’、荧光基团Cy5修饰的镊子序列2、荧光猝灭剂BHQ3修饰的镊子序列2’四者浓度相同;
其中,
H1序列为AAACGCGGCACTACCGGTGGAGTGCACTGTTTTATGCCACCGGTAGTG;
H2序列为CACTACCGGTGGCATAAAACAGTGCCGCGTTTTATGTATTACT;
H3序列为GTGATTACATAAAACGCGGCACTCCACCGGTAGTGCCGCGTTT;
环状序列为AGTAATAGATAAAATCACTATrAGGAAGAGAAAAATCTAATCAC;
荧光猝灭剂DABCYL修饰的镊子序列1为DABCYL-ATAGATCACTACCGGTGG;
荧光基团FAM修饰的镊子序列1’为CCACCGGTAGTGAATCAC-FAM;
荧光基团Cy5修饰的镊子序列2为Cy5-GAGAAAAAACGCGGCACT;
荧光猝灭剂BHQ3修饰的镊子序列2’为AGTGCCGCGTTTTCTAAT-BHQ3;
两个锁定序列分别为:
锁定序列1--ATAGTGATTTTATCTATTACT和锁定序列2--ATAGTGATTTTATCTATTACT;
3)检测目标双酚A:被测溶液在含1 mM Pb(NO32的PBS缓冲液中与步骤1)形成的金纳米颗粒-DNA酶马达反应1小时后,加入10 mM NaCl,然后离心将上清液加入步骤2)形成的Y形DNA镊子中,并在含10 mM MgCl2的PBS缓冲液中培养;
4)检测荧光信号:检测步骤3)所得溶液的荧光基团Cy5和荧光基团FAM的荧光信号,并采用标准曲线法得出双酚A浓度。
2.根据权利要求1所述方法,其特征在于,步骤1)具体为:在含1 mM NaCl的1 mM的pH7.5的 PBS缓冲液中杂交100 nM 双酚A适配子和100 nM硫醇修饰的Pb2+-E-DNA,然后再以1:6的比例与硫醇修饰的Pb2+-S-DNA一起与金纳米颗粒孵育过夜,固定在金纳米颗粒表面。
3.根据权利要求1或2所述方法,其特征在于,步骤2)具体为:序列H1、H2和H3在37℃下以相同的摩尔比在含1 mM NaCl的10 mM的pH 7.5的 PBS缓冲液中培养1小时形成Y形基础框架,然后,环状序列与Y形基础框架杂交形成的Y形框架在含1 mM NaCl的10 mM的pH 7.5的 PBS缓冲液中与荧光猝灭剂DABCYL修饰的镊子序列1、荧光基团FAM修饰的镊子序列1’、荧光基团Cy5修饰的镊子序列2、荧光猝灭剂BHQ3修饰的镊子序列2’以及两个锁定序列孵育30 min,形成Y形DNA镊子结构;其中荧光猝灭剂DABCYL修饰的镊子序列1、荧光基团FAM修饰的镊子序列1’、荧光基团Cy5修饰的镊子序列2、荧光猝灭剂BHQ3修饰的镊子序列2’四者浓度相同。
4.根据权利要求1或2所述方法,其特征在于,步骤3)具体为:被测溶液在含1 mM Pb(NO32的1 mM的pH 7.5的PBS缓冲液中与步骤1)形成的金纳米颗粒-DNA酶马达反应1小时后,加入10 mM NaCl,然后离心将上清液加入步骤2)形成的Y形DNA镊子中,并在含10 mMMgCl2的1 mM的pH 7.5的PBS缓冲液中培养40 min。
5.根据权利要求1或2所述方法,其特征在于,步骤4)具体为:检测步骤3)所得溶液的荧光基团Cy5和荧光基团FAM的荧光信号,并采用标准曲线法得出双酚A浓度,其中荧光基团FAM的激发波长设置为486 nm,发射波长为500 nm至600 nm;荧光基团Cy5的激发波长设定为640 nm,发射波长为650 nm至750 nm。
CN202210839840.1A 2022-07-18 2022-07-18 一种金纳米颗粒-dna酶马达触发双色dna镊子荧光扩增检测双酚a的方法 Active CN115232862B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210839840.1A CN115232862B (zh) 2022-07-18 2022-07-18 一种金纳米颗粒-dna酶马达触发双色dna镊子荧光扩增检测双酚a的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210839840.1A CN115232862B (zh) 2022-07-18 2022-07-18 一种金纳米颗粒-dna酶马达触发双色dna镊子荧光扩增检测双酚a的方法

Publications (2)

Publication Number Publication Date
CN115232862A CN115232862A (zh) 2022-10-25
CN115232862B true CN115232862B (zh) 2023-03-24

Family

ID=83673705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210839840.1A Active CN115232862B (zh) 2022-07-18 2022-07-18 一种金纳米颗粒-dna酶马达触发双色dna镊子荧光扩增检测双酚a的方法

Country Status (1)

Country Link
CN (1) CN115232862B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058506B (zh) * 2022-06-06 2023-04-07 绵阳市第三人民医院 一种基于靶控选择杂交链式反应的检测双真菌毒素的方法
CN116466090B (zh) * 2023-03-27 2024-05-31 江南大学 一种双功能dna镊子纳米生物传感器及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045570A2 (en) * 2009-10-14 2011-04-21 Le Centre National De La Recherche Scientifique Biosensor
CN104807791A (zh) * 2015-04-20 2015-07-29 南京农业大学 一种基于量子点-金纳米组装超结构对双酚a进行检测的方法
CN108051492A (zh) * 2017-12-21 2018-05-18 江南大学 一种基于可控自组装镊子结构电化学检测单链目标dna的方法
CN108152256A (zh) * 2017-12-11 2018-06-12 环境保护部华南环境科学研究所 一种灵敏高选择性好的检测水体中bpa的方法
CN110068561A (zh) * 2019-04-29 2019-07-30 河南中医药大学 一种基于原子转移自由基聚合反应和截短适配体的双酚a荧光检测方法
WO2021167976A1 (en) * 2020-02-17 2021-08-26 Arizona Board Of Regents On Behalf Of Arizona State University Transmembrane nanosensor arrays for rapid, ultra-sensitive and specific digital quantification of internal micro-rna content of intact exosomes
CN114507706A (zh) * 2022-01-14 2022-05-17 山东师范大学 基于酶dna修复级联驱动荧光团编码/去编码的生物传感器及其在端粒酶检测中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045570A2 (en) * 2009-10-14 2011-04-21 Le Centre National De La Recherche Scientifique Biosensor
CN104807791A (zh) * 2015-04-20 2015-07-29 南京农业大学 一种基于量子点-金纳米组装超结构对双酚a进行检测的方法
CN108152256A (zh) * 2017-12-11 2018-06-12 环境保护部华南环境科学研究所 一种灵敏高选择性好的检测水体中bpa的方法
CN108051492A (zh) * 2017-12-21 2018-05-18 江南大学 一种基于可控自组装镊子结构电化学检测单链目标dna的方法
CN110068561A (zh) * 2019-04-29 2019-07-30 河南中医药大学 一种基于原子转移自由基聚合反应和截短适配体的双酚a荧光检测方法
WO2021167976A1 (en) * 2020-02-17 2021-08-26 Arizona Board Of Regents On Behalf Of Arizona State University Transmembrane nanosensor arrays for rapid, ultra-sensitive and specific digital quantification of internal micro-rna content of intact exosomes
CN114507706A (zh) * 2022-01-14 2022-05-17 山东师范大学 基于酶dna修复级联驱动荧光团编码/去编码的生物传感器及其在端粒酶检测中的应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AuNPs-DNAzyme molecular motor biosensor mediated by neighborhood click chemistry reactions for the ultrasensitive detection of microRNA-155;Wanchong He等;《Sensors and Actuators B: Chemical》;第290卷;第503-511页 *
Proximity ligation assay induced and DNAzyme powered DNA motor for fluorescent detection of thrombin.;Wen等;《Spectrochim Acta A Mol Biomol Spectrosc》;第207卷;第39-45页 *
基于DNA纳米结构的分子间相互作用研究;李浩等;《高分子学报》;第51卷(第07期);第728-737页 *
基于新型功能纳米材料的光学传感器的构建及其在环境和生物检测中的应用;何雨声;《中国优秀硕士学位论文全文数据库 工程科技I辑》;B027-1034 *
基于核酸适配体的荧光传感器用于检测双酚A;何珊等;《赣南师范大学学报》;第40卷(第03期);第65-68页 *
基于目标物循环放大和DNA分子机器的电致化学发光microRNA传感器的研究;蒲楠平等;《化学传感器》;第36卷(第03期);第48-51页 *

Also Published As

Publication number Publication date
CN115232862A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN115232862B (zh) 一种金纳米颗粒-dna酶马达触发双色dna镊子荧光扩增检测双酚a的方法
Zhang et al. Luminescent switch sensors for the detection of biomolecules based on metal–organic frameworks
EP1972693B1 (en) Method and kit for detecting a target protein using a DNA aptamer
Yue et al. A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization
Qi et al. Amplified fluorescence detection of mercury (II) ions (Hg 2+) using target-induced DNAzyme cascade with catalytic and molecular beacons
Cao et al. Naked-eye sensitive detection of nuclease activity using positively-charged gold nanoparticles as colorimetric probes
CA2772123C (en) Binding-induced hairpin detection system
Li et al. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform
He et al. A highly selective sandwich-type FRET assay for ATP detection based on silica coated photon upconverting nanoparticles and split aptamer
WO2006049289A1 (ja) 標的物質の検出方法
Zhang et al. A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test
KR101535709B1 (ko) Pna 앱타머를 이용한 표적 분자의 검출방법
CN105132524A (zh) ExoIII辅助的循环和DNAzyme循环的双重放大反应用于Hg2+检测
Liu et al. A novel aptamer-mediated CuInS 2 quantum dots@ graphene oxide nanocomposites-based fluorescence “turn off–on” nanosensor for highly sensitive and selective detection of kanamycin
Hu et al. Electrochemical aptasensor for simultaneous detection of foodborne pathogens based on a double stirring bars-assisted signal amplification strategy
Crew et al. DNA assembly and enzymatic cutting in solutions: A gold nanoparticle based SERS detection strategy
Liu et al. G-triplex molecular beacon‒based fluorescence biosensor for sensitive detection of small molecule-protein interaction via exonuclease III‒assisted recycling amplification
Huang et al. Sensitive detection for coralyne and mercury ions based on homo-A/T DNA by exonuclease signal amplification
CN110607351B (zh) 一种检测尿嘧啶糖基化酶的化学发光生物传感器及其制备方法与应用
Xiao et al. Recent advances in fluorescence anisotropy/polarization signal amplification
Yang et al. A new label-free fluorescent sensor for human immunodeficiency virus detection based on exonuclease III-assisted quadratic recycling amplification and DNA-scaffolded silver nanoclusters
Zhou et al. Fluorescent detection of copper (II) based on DNA-templated click chemistry and graphene oxide
Liu et al. Recent advances of biosensors based on split aptamers in biological analysis: A review
Yu et al. Use of a small molecule as an initiator for interchain staudinger reaction: A new ATP sensing platform using product fluorescence
Li et al. Ultrasensitive detection of microRNAs based on click chemistry-terminal deoxynucleotidyl transferase combined with CRISPR/Cas12a

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant