CN115231525B - 电子级三氟化氯的智能分离纯化系统 - Google Patents

电子级三氟化氯的智能分离纯化系统 Download PDF

Info

Publication number
CN115231525B
CN115231525B CN202210905265.0A CN202210905265A CN115231525B CN 115231525 B CN115231525 B CN 115231525B CN 202210905265 A CN202210905265 A CN 202210905265A CN 115231525 B CN115231525 B CN 115231525B
Authority
CN
China
Prior art keywords
temperature control
temperature
vector
chlorine trifluoride
feature map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210905265.0A
Other languages
English (en)
Other versions
CN115231525A (zh
Inventor
李嘉磊
陈施华
华辉
肖珏英
陈碧灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Deer Technology Corp
Original Assignee
Fujian Deer Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Deer Technology Corp filed Critical Fujian Deer Technology Corp
Priority to CN202210905265.0A priority Critical patent/CN115231525B/zh
Priority to PCT/CN2022/119303 priority patent/WO2024021254A1/zh
Publication of CN115231525A publication Critical patent/CN115231525A/zh
Application granted granted Critical
Publication of CN115231525B publication Critical patent/CN115231525B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/24Inter-halogen compounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/80Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
    • G06V10/806Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请涉及智慧产线领域,其具体地公开了一种电子级三氟化氯的智能分离纯化系统,所述电子级三氟化氯的智能分离纯化系统采用基于人工智能控制技术,通过经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度作为输入数据,使用深度神经网络模型作为特征提取器,来综合对于电子级三氟化氯的纯化装置进行智能控制和判断。这样,可以使得纯化分离的效果能够实时精准地调控以进行纯度优化,进而提高所述电子级三氟化氯的纯化效果。

Description

电子级三氟化氯的智能分离纯化系统
技术领域
本发明涉及智慧产线领域,且更为具体地,涉及一种电子级三氟化氯的智能分离纯化系统。
背景技术
三氟化氯是一种氧化性极强的芯片刻蚀清洗剂。目前国际上能制备电子级三氟化氯的厂商极少,国内仅有申请人具有制备电子级三氟化氯的能力。这是由于三氟化氯极易与氟化氢缔合形成具有特殊分子间力的多聚合物,传统的分离方法无法彻底解决多聚合物的分离问题,这就是制备电子级三氟化氯的关键性技术难题。
因此,研发一种电子级三氟化氯的智能分离纯化方案至关重要。
发明内容
为了解决上述技术问题,提出了本申请。本申请的实施例提供了一种电子级三氟化氯的智能分离纯化系统,其采用基于人工智能控制技术,通过经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度作为输入数据,使用深度神经网络模型作为特征提取器,来综合对于电子级三氟化氯的纯化装置进行智能控制。这样,可以使得纯化分离的效果能够实时精准地调控以进行纯度优化,进而提高所述电子级三氟化氯的纯化效果。
根据本申请的一个方面,提供了一种电子级三氟化氯的智能分离纯化系统,其包括:数据采集模块,用于获取预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度;温度数据结构化模块,用于将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照时间维度和样本维度排列为温度控制矩阵;温度数据局部关联编码模块,用于将所述温度控制矩阵通过作为特征提取器的第一卷积神经网络以得到温度控制局部关联特征图;温度数据全局关联编码模块,用于将所述温度控制局部关联特征图通过非局部神经网络以得到温度控制全局关联特征图;融合模块,用于融合所述温度控制局部关联特征图和所述温度控制全局关联特征图以得到温度控制特征图;降维模块,用于对所述温度控制特征图的各个特征矩阵进行全局均值池化以得到温度控制特征向量;校正模块,用于对所述温度控制特征向量进行校正以得到校正后温度控制特征向量;产物纯度数据编码模块,用于将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值通过包含一维卷积层的时序编码器以得到产物纯度特征向量;响应性估计模块,用于计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的控制转移矩阵;以及控制结果生成模块,用于将所述控制转移矩阵通过分类器以得到分类结果,所述分类结果用于表示预定时间段内3级金属吸附剂层床的温度控制组合是否满足预定要求。
在上述电子级三氟化氯的智能分离纯化系统中,所述温度数据结构化模块,包括:行向量构造单元,用于将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照所述时间维度分别排列为行向量以得到多个行向量;矩阵构造单元,用于将所述多个行向量按照所述样本维度排列为所述温度控制矩阵。
在上述电子级三氟化氯的智能分离纯化系统中,所述温度数据局部关联编码模块,进一步用于:使用所述作为特征提取器的第一卷积神经网络的各层在层的正向传递中对输入数据分别进行:对输入数据进行卷积处理以得到卷积特征图;对所述卷积特征图进行均值池化处理以得到池化特征图;以及,对所述池化特征图进行非线性激活以得到激活特征图;其中,所述作为特征提取器的第一卷积神经网络的最后一层的输出为所述温度控制局部关联特征图,所述作为特征提取器的第一卷积神经网络的第一层的输入为所述温度控制矩阵。
在上述电子级三氟化氯的智能分离纯化系统中,所述温度数据全局关联编码模块,包括:点卷积单元,用于将所述温度控制局部关联特征图分别输入所述非局部神经网络的第一点卷积层、第二点卷积层和第三点卷积层以得到第一特征图、第二特征图和第三特征图;第一融合单元,用于计算所述第一特征图和所述第二特征图的按位置加权和以得到中间融合特征图;归一化单元,用于将所述中间融合特征图输入Softmax函数以对所述中间融合特征图中各个位置的特征值进行归一化以得到归一化中间融合特征图;第二融合单元,用于计算所述归一化中间融合特征图和所述第三特征图的按位置加权和以得到再融合特征图;全局感知单元,用于将所述再融合特征图通过嵌入高斯相似性函数以计算所述再融合特征图中各个位置的特征值间的相似性以得到全局感知特征图;通道数调整单元,用于将所述全局感知特征图通过所述非局部神经网络的第四点卷积层以得到通道调整全局感知特征图;以及,第三融合单元,用于计算所述通道调整全局感知特征图和所述温度控制局部关联特征图的按位置加权和以得到所述温度控制全局关联特征图。
在上述电子级三氟化氯的智能分离纯化系统中,所述融合模块,进一步用于:以如下公式融合所述温度控制局部关联特征图和所述温度控制全局关联特征图以得到所述温度控制特征图;其中,所述公式为:
Figure 109760DEST_PATH_IMAGE001
其中,
Figure 237686DEST_PATH_IMAGE002
为所述温度控制特征图,
Figure 705839DEST_PATH_IMAGE003
为所述温度控制局部关联特征图,
Figure 632206DEST_PATH_IMAGE004
为所述温度控制全局关联特征图,“
Figure 600906DEST_PATH_IMAGE005
”表示所述温度控制局部关联特征图和所述温度控制全局关联特征图相对应位置处的元素相加,
Figure 813581DEST_PATH_IMAGE006
为用于控制所述温度控制特征图中所述温度控制局部关联特征图和所述温度控制全局关联特征图之间的平衡的加权参数。
在上述电子级三氟化氯的智能分离纯化系统中,所述校正模块,进一步用于:以如下公式对所述温度控制特征向量进行校正以得到所述校正后温度控制特征向量;
其中,所述公式为:
Figure 503451DEST_PATH_IMAGE007
其中
Figure 826985DEST_PATH_IMAGE008
表示所述温度控制特征向量,
Figure 328154DEST_PATH_IMAGE009
是所述温度控制特征向量的自协方差矩阵,
Figure 508469DEST_PATH_IMAGE010
Figure 29842DEST_PATH_IMAGE011
分别是所述温度控制特征向量的全局均值和方差,
Figure 891488DEST_PATH_IMAGE012
表示向量的指数运算,以向量为幂的指数运算表示以向量的每个位置的值作为幂的自然指数函数值,
Figure 38042DEST_PATH_IMAGE013
Figure 858099DEST_PATH_IMAGE014
分别表示特征向量的按位置减法和加法,
Figure 725823DEST_PATH_IMAGE015
表示矩阵相乘,
Figure 797685DEST_PATH_IMAGE016
表示特征向量的二范数。
在上述电子级三氟化氯的智能分离纯化系统中,所述产物纯度数据编码模块,进一步用于:将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值按照时间维度排列为一维的输入向量;使用所述时序编码器的全连接层以如下公式对所述输入向量进行全连接编码以提取出所述输入向量中各个位置的特征值的高维隐含特征,其中,所述公式为:
Figure 96948DEST_PATH_IMAGE017
,其中
Figure 541703DEST_PATH_IMAGE018
是所述输入向量,
Figure 129679DEST_PATH_IMAGE019
是输出向量,
Figure 365751DEST_PATH_IMAGE020
是权重矩阵,
Figure 722783DEST_PATH_IMAGE021
是偏置向量,
Figure 648757DEST_PATH_IMAGE022
表示矩阵乘;使用所述时序编码器的一维卷积层以如下公式对所述输入向量进行一维卷积编码以提取出所述输入向量中各个位置的特征值间的高维隐含关联特征,其中,所述公式为:
Figure 396133DEST_PATH_IMAGE023
其中,a为卷积核在x方向上的宽度、F为卷积核参数向量、G为与卷积核函数运算的局部向量矩阵,w为卷积核的尺寸,
Figure 435895DEST_PATH_IMAGE024
表示所述输入向量。
在上述电子级三氟化氯的智能分离纯化系统中,所述响应性估计模块,进一步用于:以如下公式计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的所述控制转移矩阵;其中,所述公式为:S=T*F
其中F表示所述校正后温度控制特征向量,T表示所述控制转移矩阵,S表示所述产物纯度特征向量。
在上述电子级三氟化氯的智能分离纯化系统中,所述控制结果生成模块,进一步用于:所述分类器以如下公式对所述控制转移矩阵进行处理以生成分类结果,其中,所述公式为:
Figure 647434DEST_PATH_IMAGE025
,其中
Figure 855561DEST_PATH_IMAGE026
表示将所述控制转移矩阵投影为向量,
Figure 516000DEST_PATH_IMAGE027
Figure 733354DEST_PATH_IMAGE028
为各层全连接层的权重矩阵,
Figure 363181DEST_PATH_IMAGE029
Figure 7789DEST_PATH_IMAGE030
表示各层全连接层的偏置矩阵。
与现有技术相比,本申请提供的电子级三氟化氯的智能分离纯化系统,其采用基于人工智能控制技术,通过经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度作为输入数据,使用深度神经网络模型作为特征提取器,来综合对于电子级三氟化氯的纯化装置进行智能控制。这样,可以使得纯化分离的效果能够实时精准地调控以进行纯度优化,进而提高所述电子级三氟化氯的纯化效果。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1为本申请实施例的电子级三氟化氯的智能分离纯化系统的应用场景图。
图2为本申请实施例的电子级三氟化氯的智能分离纯化系统的框图。
图3为本申请实施例的电子级三氟化氯的智能分离纯化系统中温度数据全局关联编码模块的框图。
图4为本申请实施例的电子级三氟化氯的智能分离纯化方法的流程图。
图5为本申请实施例的电子级三氟化氯的智能分离纯化方法的架构示意图。
具体实施方式
下面,将参考附图详细地描述本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
场景概述
如前所述,三氟化氯是一种氧化性极强的芯片刻蚀清洗剂。目前国际上能制备电子级三氟化氯的厂商极少,国内仅有申请人具有制备电子级三氟化氯的能力。这是由于三氟化氯极易与氟化氢缔合形成具有特殊分子间力的多聚合物,传统的分离方法无法彻底解决多聚合物的分离问题,这就是制备电子级三氟化氯的关键性技术难题。因此,研发一种电子级三氟化氯的智能分离纯化方案至关重要。
目前,如专利CN114538381A提供的方案的技术原理和步骤如下:
S1:通过加热3级金属吸附剂层床中的碱金属吸附剂,使所述碱金属吸附剂与氟化氢分子间缔合形成更加牢固的氢键而分离,实现一级纯化;
S2:通过2级低温精馏装置进一步离散氟化氢和三氟化氯缔合分子,实现二级纯化。
其中,所述3级金属吸附剂层床包括顺次连通的第一碱金属吸附剂层床、第二碱金属吸附剂层床、第三碱金属吸附剂层床,所述3级金属吸附剂层床用于吸附游离氟化氢。每一层碱金属吸附剂层床包括Al2O3+LiF的混合物。所述3级金属吸附剂层床的反应温度为150℃至200℃。每一碱金属吸附剂层床的高度为1.8~2.5米。
其中,所述2级低温精馏装置包括顺次连通的低沸塔以及高沸塔,所述第三碱金属吸附剂层床与所述低沸塔连通,所述2级低温精馏装置包括有萃取剂,用于进一步离散氟化氢和三氟化氯缔合分子。所述低沸塔从下到上依次包括第一再沸器、第一低沸塔填料段、第二低沸塔填料段以及第一冷凝器。所述高沸塔从下到上依次包括第二再沸器、第一高沸塔填料段、第二高沸塔填料段、第三高沸塔填料段以及第二冷凝器。每一填料段内设置有萃取剂,用于进一步离散氟化氢和三氟化氯缔合分子。所述第一再沸器上端第二层塔板的温度为10℃-12℃,所述第一冷凝器下端第二层塔板的温度为-22.5℃-24℃;控制所述第二再沸器上端的温度为11℃-12℃,所述第二冷凝器下端的温度为-6℃--4℃。
相应地,本申请发明人发现在现有的电子级三氟化氯的纯化分离装置中,各个反应设备的条件控制是随机的或者以预定条件进行控制,这一方面会使得纯化分离效果无法精准调控以进行纯度优化。也就是,在现有的电子级三氟化氯的纯化分离装置的纯化精度控制存在一定的随机性。另一方面,由于电子级三氟化氯的纯化分离装置所需要控制的参数众多,且各个参数之间存在复杂的线性和/或非线性的关联,因此,对于电子级三氟化氯的纯化装置的控制存在较高的技术难度。
近年来,深度学习以及神经网络已经广泛应用于计算机视觉、自然语言处理、语音信号处理等领域。此外,深度学习以及神经网络在图像分类、物体检测、语义分割、文本翻译等领域,也展现出了接近甚至超越人类的水平。
深度学习以及神经网络的发展为电子级三氟化氯的纯化装置的控制提供了新的解决思路和方案。
具体地,在本申请的技术方案中,首先,通过各个传感器获取预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度。然后,考虑到所述第一碱金属吸附剂层床的第一温度、所述第二碱金属吸附剂层床的第二温度和所述第三碱金属吸附剂层床的第三温度之间在时序上具有着特殊的关联性特征,因此,为了提取这三者在时间上的隐含关联,进一步将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照时间维度和样本维度排列为温度控制矩阵。并且将所述温度控制矩阵通过作为特征提取器的第一卷积神经网络中进行特征提取,以提取出所述温度控制矩阵中的各个位置的局部高维隐含关联特征信息,以得到温度控制局部关联特征图。
应可以理解,考虑到由于卷积是典型的局部操作,而对于所述第一碱金属吸附剂层床的第一温度、所述第二碱金属吸附剂层床的第二温度和所述第三碱金属吸附剂层床的第三温度来说,所述各个碱金属吸附剂层床的温度之间并非是孤立存在的,所述各个碱金属吸附剂层床的温度间的关联性产生前景目标。因此,在本申请的技术方案中,为了提取出所述第一碱金属吸附剂层床的第一温度、所述第二碱金属吸附剂层床的第二温度和所述第三碱金属吸附剂层床的第三温度的关联性,使用非局部神经网络来进一步进行特征图的特征提取。也就是,将所述温度控制局部关联特征图通过非局部神经网络以得到温度控制全局关联特征图。特别地,这里,所述非局部神经网络通过计算所述第一碱金属吸附剂层床的第一温度、所述第二碱金属吸附剂层床的第二温度和所述第三碱金属吸附剂层床的第三温度相似度捕获隐藏的依赖信息,进而建模上下文特征,使网络关注所述用电功率数据间的整体内容,进而在分类、检测任务中提升主干网络特征提取能力。
这样,融合所述温度控制局部关联特征图和所述温度控制全局关联特征图中的特征信息以得到温度控制特征图。进一步地,为了降低参数的数据,进而降低计算量,再对所述温度控制特征图的各个特征矩阵进行全局均值池化处理以得到温度控制特征向量,这样能够防止过拟合,以提高后续分类的准确性。
但是,在本申请的技术方案中,所述温度控制特征向量在所述温度控制特征图的各个特征矩阵的空间维度上融合了温度控制局部关联特征和温度控制全局关联特征,且通过所述温度控制特征图沿通道维度的全局均值池化得到,这使得所述温度控制特征向量的每个位置的特征值在信息融合上可能产生相关性的偏差,从而优选地进行前向传播相关性引导修正,即:
Figure 556189DEST_PATH_IMAGE007
其中
Figure 436289DEST_PATH_IMAGE008
表示所述温度控制特征向量,
Figure DEST_PATH_IMAGE031
是所述温度控制特征向量的自协方差矩阵,即矩阵的每个位置的值是向量
Figure 655043DEST_PATH_IMAGE032
的每两个位置的特征值之间的方差,
Figure DEST_PATH_IMAGE033
Figure 681337DEST_PATH_IMAGE034
分别是所述温度控制特征向量的全局均值和方差,
Figure DEST_PATH_IMAGE035
表示向量的指数运算,以向量为幂的指数运算表示以向量的每个位置的值作为幂的自然指数函数值,
Figure 782279DEST_PATH_IMAGE036
Figure DEST_PATH_IMAGE037
分别表示特征向量的按位置减法和加法,
Figure 997229DEST_PATH_IMAGE038
表示矩阵相乘,
Figure DEST_PATH_IMAGE039
表示特征向量的二范数。
这里,该所述前向传播相关性引导修正基于沿通道维度的全局均值池化对于特征进行的基于下采样的前向传播的特点,通过可学习的正态采样偏移引导特征工程来有效地建模特征矩阵内的空间维度和特征矩阵之间的通道维度上的长程依赖关系,并考虑特征矩阵的局部和非局部邻域来进行特征向量的各特征值间的相关性的修复,从而提高了所述温度控制特征向量对于类概率的预测能力,进而提高了分类的准确性。
应可以理解,对于所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值,由于所述经一级纯化后三氟化氯产物的纯度值在时间上具有着特殊的隐含关联特征,因此,为了更为充分地提取出这种关联特征信息,在本申请的技术方案中,进一步将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值通过包含一维卷积层的时序编码器以得到产物纯度特征向量。在一个示例中,所述时序编码器由交替设置的全连接层和一维卷积层组成,其通过一维卷积编码提取出所述经一级纯化后三氟化氯产物的纯度值在时序维度上的关联和通过全连接编码提取所述经一级纯化后三氟化氯产物的纯度值的高维隐含特征。
然后,考虑到由于所述碱金属吸附剂层床的温度数据和所述经一级纯化后三氟化氯产物的纯度值数据的特征尺度不同,并且所述产物纯度特征在高维空间中可以看作是针对所述温度控制特征的响应性特征,因此为了更好地融合这两者的特征信息来进行分类,进一步计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的控制转移矩阵。进而,再使用分类器对所述控制转移矩阵进行分类处理,以获得用于表示预定时间段内3级金属吸附剂层床的温度控制组合是否满足预定要求的分类结果。
基于此,本申请提出了一种电子级三氟化氯的智能分离纯化系统,其包括:数据采集模块,用于获取预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度;温度数据结构化模块,用于将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照时间维度和样本维度排列为温度控制矩阵;温度数据局部关联编码模块,用于将所述温度控制矩阵通过作为特征提取器的第一卷积神经网络以得到温度控制局部关联特征图;温度数据全局关联编码模块,用于将所述温度控制局部关联特征图通过非局部神经网络以得到温度控制全局关联特征图;融合模块,用于融合所述温度控制局部关联特征图和所述温度控制全局关联特征图以得到温度控制特征图;降维模块,用于对所述温度控制特征图的各个特征矩阵进行全局均值池化以得到温度控制特征向量;校正模块,用于对所述温度控制特征向量进行校正以得到校正后温度控制特征向量;产物纯度数据编码模块,用于将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值通过包含一维卷积层的时序编码器以得到产物纯度特征向量;响应性估计模块,用于计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的控制转移矩阵;以及,控制结果生成模块,用于将所述控制转移矩阵通过分类器以得到分类结果,所述分类结果用于表示预定时间段内3级金属吸附剂层床的温度控制组合是否满足预定要求。
图1图示了本申请实施例的电子级三氟化氯的智能分离纯化系统的应用场景图。如图1所示,在该应用场景中,首先,通过各个传感器(例如,如图1中所示意的纯度检测器T1和温度传感器T2)获取预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床(例如,如图1中所示意的M1)的第一温度、第二碱金属吸附剂层床(例如,如图1中所示意的M2)的第二温度、第三碱金属吸附剂层床(例如,如图1中所示意的M3)的第三温度。然后,将获得的所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、所述第一至第三碱金属吸附剂层床的第一至第三温度输入至部署有电子级三氟化氯的智能分离纯化算法的服务器中(例如,如图1中所示意的云服务器S),其中,所述服务器能够以电子级三氟化氯的智能分离纯化算法对所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、所述第一至第三碱金属吸附剂层床的第一至第三温度进行处理,以生成用于表示预定时间段内3级金属吸附剂层床的温度控制组合是否满足预定要求的分类结果。
在介绍了本申请的基本原理之后,下面将参考附图来具体介绍本申请的各种非限制性实施例。
示例性系统
图2图示了本申请实施例的电子级三氟化氯的智能分离纯化系统的框图。如图2所示,根据本申请实施例的电子级三氟化氯的智能分离纯化系统 200,包括:数据采集模块210,用于获取预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度;温度数据结构化模块 220,用于将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照时间维度和样本维度排列为温度控制矩阵;温度数据局部关联编码模块 230,用于将所述温度控制矩阵通过作为特征提取器的第一卷积神经网络以得到温度控制局部关联特征图;温度数据全局关联编码模块 240,用于将所述温度控制局部关联特征图通过非局部神经网络以得到温度控制全局关联特征图;融合模块 250,用于融合所述温度控制局部关联特征图和所述温度控制全局关联特征图以得到温度控制特征图;降维模块260,用于对所述温度控制特征图的各个特征矩阵进行全局均值池化以得到温度控制特征向量;校正模块 270,用于对所述温度控制特征向量进行校正以得到校正后温度控制特征向量;产物纯度数据编码模块 280,用于将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值通过包含一维卷积层的时序编码器以得到产物纯度特征向量;响应性估计模块 290,用于计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的控制转移矩阵;以及,控制结果生成模块 300,用于将所述控制转移矩阵通过分类器以得到分类结果,所述分类结果用于表示预定时间段内3级金属吸附剂层床的温度控制组合是否满足预定要求。
具体地,在本申请实施例中,所述数据采集模块 210、所述温度数据结构化模块220和所述温度数据局部关联编码模块 230,用于获取预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度,并将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照时间维度和样本维度排列为温度控制矩阵,再将所述温度控制矩阵通过作为特征提取器的第一卷积神经网络以得到温度控制局部关联特征图。如前所述,由于在现有的电子级三氟化氯的纯化分离装置中,各个反应设备的条件控制是随机的或者以预定条件进行控制,这一方面会使得纯化分离效果无法精准调控以进行纯度优化。也就是,在现有的电子级三氟化氯的纯化分离装置的纯化精度控制存在一定的随机性。另一方面,由于电子级三氟化氯的纯化分离装置所需要控制的参数众多,且各个参数之间存在复杂的线性和/或非线性的关联,因此,期望对于电子级三氟化氯的纯化装置进行智能的控制。
也就是,具体地,在本申请的技术方案中,首先,通过各个传感器获取预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度。然后,应可以理解,考虑到所述第一碱金属吸附剂层床的第一温度、所述第二碱金属吸附剂层床的第二温度和所述第三碱金属吸附剂层床的第三温度之间在时序上具有着特殊的关联性特征,因此,为了提取这三者在时间上的隐含关联,进一步将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照时间维度和样本维度排列为温度控制矩阵。并且将所述温度控制矩阵通过作为特征提取器的第一卷积神经网络中进行特征提取,以提取出所述温度控制矩阵中的各个位置的局部高维隐含关联特征信息,以得到温度控制局部关联特征图。
更具体地,在本申请实施例中,所述温度数据结构化模块,包括:行向量构造单元,用于将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照所述时间维度分别排列为行向量以得到多个行向量;矩阵构造单元,用于将所述多个行向量按照所述样本维度排列为所述温度控制矩阵。
更具体地,在本申请实施例中,所述温度数据局部关联编码模块,进一步用于:使用所述作为特征提取器的第一卷积神经网络的各层在层的正向传递中对输入数据分别进行:对输入数据进行卷积处理以得到卷积特征图;对所述卷积特征图进行均值池化处理以得到池化特征图;以及,对所述池化特征图进行非线性激活以得到激活特征图;其中,所述作为特征提取器的第一卷积神经网络的最后一层的输出为所述温度控制局部关联特征图,所述作为特征提取器的第一卷积神经网络的第一层的输入为所述温度控制矩阵。
具体地,在本申请实施例中,所述温度数据全局关联编码模块 240,用于将所述温度控制局部关联特征图通过非局部神经网络以得到温度控制全局关联特征图。应可以理解,考虑到由于卷积是典型的局部操作,而对于所述第一碱金属吸附剂层床的第一温度、所述第二碱金属吸附剂层床的第二温度和所述第三碱金属吸附剂层床的第三温度来说,所述各个碱金属吸附剂层床的温度之间并非是孤立存在的,所述各个碱金属吸附剂层床的温度间的关联性产生前景目标。因此,在本申请的技术方案中,为了提取出所述第一碱金属吸附剂层床的第一温度、所述第二碱金属吸附剂层床的第二温度和所述第三碱金属吸附剂层床的第三温度的关联性,使用非局部神经网络来进一步进行特征图的特征提取。也就是,将所述温度控制局部关联特征图通过非局部神经网络以得到温度控制全局关联特征图。特别地,这里,所述非局部神经网络通过计算所述第一碱金属吸附剂层床的第一温度、所述第二碱金属吸附剂层床的第二温度和所述第三碱金属吸附剂层床的第三温度相似度捕获隐藏的依赖信息,进而建模上下文特征,使网络关注所述用电功率数据间的整体内容,进而在分类、检测任务中提升主干网络特征提取能力。
更具体地,在本申请实施例中,所述温度数据全局关联编码模块,包括:首先,将所述温度控制局部关联特征图分别输入所述非局部神经网络的第一点卷积层、第二点卷积层和第三点卷积层以得到第一特征图、第二特征图和第三特征图。然后,计算所述第一特征图和所述第二特征图的按位置加权和以得到中间融合特征图。接着,将所述中间融合特征图输入Softmax函数以对所述中间融合特征图中各个位置的特征值进行归一化以得到归一化中间融合特征图。然后,计算所述归一化中间融合特征图和所述第三特征图的按位置加权和以得到再融合特征图。接着,将所述再融合特征图通过嵌入高斯相似性函数以计算所述再融合特征图中各个位置的特征值间的相似性以得到全局感知特征图。然后,将所述全局感知特征图通过所述非局部神经网络的第四点卷积层以得到通道调整全局感知特征图。最后,计算所述通道调整全局感知特征图和所述温度控制局部关联特征图的按位置加权和以得到所述温度控制全局关联特征图。
图3图示了本申请实施例的电子级三氟化氯的智能分离纯化系统中温度数据全局关联编码模块的框图。如图3所示,所述温度数据全局关联编码模块 240,包括:点卷积单元241,用于将所述温度控制局部关联特征图分别输入所述非局部神经网络的第一点卷积层、第二点卷积层和第三点卷积层以得到第一特征图、第二特征图和第三特征图;第一融合单元 242,用于计算所述第一特征图和所述第二特征图的按位置加权和以得到中间融合特征图;归一化单元 243,用于将所述中间融合特征图输入Softmax函数以对所述中间融合特征图中各个位置的特征值进行归一化以得到归一化中间融合特征图;第二融合单元 244,用于计算所述归一化中间融合特征图和所述第三特征图的按位置加权和以得到再融合特征图;全局感知单元 245,用于将所述再融合特征图通过嵌入高斯相似性函数以计算所述再融合特征图中各个位置的特征值间的相似性以得到全局感知特征图;通道数调整单元246,用于将所述全局感知特征图通过所述非局部神经网络的第四点卷积层以得到通道调整全局感知特征图;以及,第三融合单元 247,用于计算所述通道调整全局感知特征图和所述温度控制局部关联特征图的按位置加权和以得到所述温度控制全局关联特征图。
具体地,在本申请实施例中,所述融合模块 250和所述降维模块 260,用于融合所述温度控制局部关联特征图和所述温度控制全局关联特征图以得到温度控制特征图,并对所述温度控制特征图的各个特征矩阵进行全局均值池化以得到温度控制特征向量。也就是,在本申请的技术方案中,进一步融合所述温度控制局部关联特征图和所述温度控制全局关联特征图中的特征信息以得到温度控制特征图。然后,为了降低参数的数据,进而降低计算量,再对所述温度控制特征图的各个特征矩阵进行全局均值池化处理以得到温度控制特征向量,这样能够防止过拟合,以提高后续分类的准确性。
更具体地,在本申请实施例中,所述融合模块,进一步用于:以如下公式融合所述温度控制局部关联特征图和所述温度控制全局关联特征图以得到所述温度控制特征图;
其中,所述公式为:
Figure 21554DEST_PATH_IMAGE001
其中,
Figure 601440DEST_PATH_IMAGE040
为所述温度控制特征图,
Figure 130292DEST_PATH_IMAGE041
为所述温度控制局部关联特征图,
Figure 555457DEST_PATH_IMAGE042
为所述温度控制全局关联特征图,“
Figure DEST_PATH_IMAGE043
”表示所述温度控制局部关联特征图和所述温度控制全局关联特征图相对应位置处的元素相加,
Figure 342278DEST_PATH_IMAGE044
为用于控制所述温度控制特征图中所述温度控制局部关联特征图和所述温度控制全局关联特征图之间的平衡的加权参数。
具体地,在本申请实施例中,所述校正模块 270,用于对所述温度控制特征向量进行校正以得到校正后温度控制特征向量。应可以理解,在本申请的技术方案中,所述温度控制特征向量在所述温度控制特征图的各个特征矩阵的空间维度上融合了温度控制局部关联特征和温度控制全局关联特征,且通过所述所述温度控制特征图沿通道维度的全局均值池化得到,这使得所述温度控制特征向量的每个位置的特征值在信息融合上可能产生相关性的偏差,从而优选地进行前向传播相关性引导修正。这样,该所述前向传播相关性引导修正基于沿通道维度的全局均值池化对于特征进行的基于下采样的前向传播的特点,通过可学习的正态采样偏移引导特征工程来有效地建模特征矩阵内的空间维度和特征矩阵之间的通道维度上的长程依赖关系,并考虑特征矩阵的局部和非局部邻域来进行特征向量的各特征值间的相关性的修复,从而提高了所述温度控制特征向量对于类概率的预测能力,进而提高了分类的准确性。
更具体地,在本申请实施例中,所述校正模块,进一步用于:以如下公式对所述温度控制特征向量进行校正以得到所述校正后温度控制特征向量;
其中,所述公式为:
Figure 591601DEST_PATH_IMAGE007
其中
Figure 306616DEST_PATH_IMAGE008
表示所述温度控制特征向量,
Figure 568095DEST_PATH_IMAGE031
是所述温度控制特征向量的自协方差矩阵,即矩阵的每个位置的值是向量
Figure 380062DEST_PATH_IMAGE032
的每两个位置的特征值之间的方差,
Figure 239434DEST_PATH_IMAGE033
Figure DEST_PATH_IMAGE045
分别是所述温度控制特征向量的全局均值和方差,
Figure 348071DEST_PATH_IMAGE035
表示向量的指数运算,以向量为幂的指数运算表示以向量的每个位置的值作为幂的自然指数函数值,
Figure 288608DEST_PATH_IMAGE036
Figure 689502DEST_PATH_IMAGE037
分别表示特征向量的按位置减法和加法,
Figure 280627DEST_PATH_IMAGE046
表示矩阵相乘,
Figure 235813DEST_PATH_IMAGE039
表示特征向量的二范数。
具体地,在本申请实施例中,所述产物纯度数据编码模块 280,用于将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值通过包含一维卷积层的时序编码器以得到产物纯度特征向量。应可以理解,对于所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值,由于所述经一级纯化后三氟化氯产物的纯度值在时间上具有着特殊的隐含关联特征,因此,为了更为充分地提取出这种关联特征信息,在本申请的技术方案中,进一步将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值通过包含一维卷积层的时序编码器以得到产物纯度特征向量。相应地,在一个具体示例中,所述时序编码器由交替设置的全连接层和一维卷积层组成,其通过一维卷积编码提取出所述经一级纯化后三氟化氯产物的纯度值在时序维度上的关联和通过全连接编码提取所述经一级纯化后三氟化氯产物的纯度值的高维隐含特征。
更具体地,在本申请实施例中,所述产物纯度数据编码模块,进一步用于:将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值按照时间维度排列为一维的输入向量;使用所述时序编码器的全连接层以如下公式对所述输入向量进行全连接编码以提取出所述输入向量中各个位置的特征值的高维隐含特征,其中,所述公式为:
Figure DEST_PATH_IMAGE047
,其中
Figure 635833DEST_PATH_IMAGE048
是所述输入向量,
Figure DEST_PATH_IMAGE049
是输出向量,
Figure 51421DEST_PATH_IMAGE050
是权重矩阵,
Figure DEST_PATH_IMAGE051
是偏置向量,
Figure 144273DEST_PATH_IMAGE046
表示矩阵乘;使用所述时序编码器的一维卷积层以如下公式对所述输入向量进行一维卷积编码以提取出所述输入向量中各个位置的特征值间的高维隐含关联特征,其中,所述公式为:
Figure 321176DEST_PATH_IMAGE023
其中,a为卷积核在x方向上的宽度、F为卷积核参数向量、G为与卷积核函数运算的局部向量矩阵,w为卷积核的尺寸,
Figure 367630DEST_PATH_IMAGE052
表示所述输入向量。
具体地,在本申请实施例中,所述响应性估计模块 290和所述控制结果生成模块300,用于计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的控制转移矩阵,并将所述控制转移矩阵通过分类器以得到分类结果,所述分类结果用于表示预定时间段内3级金属吸附剂层床的温度控制组合是否满足预定要求。应可以理解,考虑到由于所述碱金属吸附剂层床的温度数据和所述经一级纯化后三氟化氯产物的纯度值数据的特征尺度不同,并且所述产物纯度特征在高维空间中可以看作是针对所述温度控制特征的响应性特征,因此为了更好地融合这两者的特征信息来进行分类,在本申请的技术方案中,进一步计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的控制转移矩阵。进而,再使用分类器对所述控制转移矩阵进行分类处理,以获得用于表示预定时间段内3级金属吸附剂层床的温度控制组合是否满足预定要求的分类结果。相应地,在一个具体示例中,所述分类器以如下公式对所述控制转移矩阵进行处理以生成分类结果,其中,所述公式为:
Figure DEST_PATH_IMAGE053
,其中
Figure 303968DEST_PATH_IMAGE054
表示将所述控制转移矩阵投影为向量,
Figure DEST_PATH_IMAGE055
Figure 895618DEST_PATH_IMAGE056
为各层全连接层的权重矩阵,
Figure 231921DEST_PATH_IMAGE057
Figure 902637DEST_PATH_IMAGE058
表示各层全连接层的偏置矩阵。
更具体地,在本申请的实施例中,所述响应性估计模块,进一步用于:以如下公式计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的所述控制转移矩阵;
其中,所述公式为:S=T*F
其中F表示所述校正后温度控制特征向量,T表示所述控制转移矩阵,S表示所述产物纯度特征向量。
综上,基于本申请实施例的所述电子级三氟化氯的智能分离纯化系统 200被阐明,其采用基于人工智能控制技术,通过经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度作为输入数据,使用深度神经网络模型作为特征提取器,来综合对于电子级三氟化氯的纯化装置进行智能控制。这样,可以使得纯化分离的效果能够实时精准地调控以进行纯度优化,进而提高所述电子级三氟化氯的纯化效果。
如上所述,根据本申请实施例的电子级三氟化氯的智能分离纯化系统 200可以实现在各种终端设备中,例如电子级三氟化氯的智能分离纯化算法的服务器等。在一个示例中,根据本申请实施例的电子级三氟化氯的智能分离纯化系统 200可以作为一个软件模块和/或硬件模块而集成到终端设备中。例如,该电子级三氟化氯的智能分离纯化系统 200可以是该终端设备的操作系统中的一个软件模块,或者可以是针对于该终端设备所开发的一个应用程序;当然,该电子级三氟化氯的智能分离纯化系统 200同样可以是该终端设备的众多硬件模块之一。
替换地,在另一示例中,该电子级三氟化氯的智能分离纯化系统 200与该终端设备也可以是分立的设备,并且该电子级三氟化氯的智能分离纯化系统 200可以通过有线和/或无线网络连接到该终端设备,并且按照约定的数据格式来传输交互信息。
示例性方法
图4图示了电子级三氟化氯的智能分离纯化方法的流程图。如图4所示,根据本申请实施例的电子级三氟化氯的智能分离纯化方法,包括步骤:S110,获取预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度;S120,将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照时间维度和样本维度排列为温度控制矩阵;S130,将所述温度控制矩阵通过作为特征提取器的第一卷积神经网络以得到温度控制局部关联特征图;S140,将所述温度控制局部关联特征图通过非局部神经网络以得到温度控制全局关联特征图;S150,融合所述温度控制局部关联特征图和所述温度控制全局关联特征图以得到温度控制特征图;S160,对所述温度控制特征图的各个特征矩阵进行全局均值池化以得到温度控制特征向量;S170,对所述温度控制特征向量进行校正以得到校正后温度控制特征向量;S180,将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值通过包含一维卷积层的时序编码器以得到产物纯度特征向量;S190,计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的控制转移矩阵;以及,S200,将所述控制转移矩阵通过分类器以得到分类结果,所述分类结果用于表示预定时间段内3级金属吸附剂层床的温度控制组合是否满足预定要求。
图5图示了根据本申请实施例的电子级三氟化氯的智能分离纯化方法的架构示意图。如图5所示,在所述电子级三氟化氯的智能分离纯化方法的网络架构中,首先,将获得的所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度(例如,如图5中所示意的P1)按照时间维度和样本维度排列为温度控制矩阵(例如,如图5中所示意的M);接着,将所述温度控制矩阵通过作为特征提取器的第一卷积神经网络(例如,如图5中所示意的CNN1)以得到温度控制局部关联特征图(例如,如图5中所示意的F1);然后,将所述温度控制局部关联特征图通过非局部神经网络(例如,如图5中所示意的CNN2)以得到温度控制全局关联特征图(例如,如图5中所示意的F2);接着,融合所述温度控制局部关联特征图和所述温度控制全局关联特征图以得到温度控制特征图(例如,如图5中所示意的F);然后,对所述温度控制特征图的各个特征矩阵进行全局均值池化以得到温度控制特征向量(例如,如图5中所示意的VF1);接着,对所述温度控制特征向量进行校正以得到校正后温度控制特征向量(例如,如图5中所示意的VF2);然后,将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值(例如,如图5中所示意的P2)通过包含一维卷积层的时序编码器(例如,如图5中所示意的E)以得到产物纯度特征向量(例如,如图5中所示意的VF);接着,计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的控制转移矩阵(例如,如图5中所示意的MF);以及,最后,将所述控制转移矩阵通过分类器(例如,如图5中所示意的分类器)以得到分类结果,所述分类结果用于表示预定时间段内3级金属吸附剂层床的温度控制组合是否满足预定要求。
综上,基于本申请实施例的所述电子级三氟化氯的智能分离纯化方法被阐明,其采用基于人工智能控制技术,通过经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度作为输入数据,使用深度神经网络模型作为特征提取器,来综合对于电子级三氟化氯的纯化装置进行智能控制。这样,可以使得纯化分离的效果能够实时精准地调控以进行纯度优化,进而提高所述电子级三氟化氯的纯化效果。
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。
本申请中涉及的器件、装置、设备、系统的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、系统。诸如“包括”、“包含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。
还需要指出的是,在本申请的装置、设备和方法中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本申请的等效方案。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本申请。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本申请的范围。因此,本申请不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。

Claims (9)

1.一种电子级三氟化氯的智能分离纯化系统,其特征在于,包括:数据采集模块,用于获取预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值、第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度、第三碱金属吸附剂层床的第三温度;温度数据结构化模块,用于将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照时间维度和样本维度排列为温度控制矩阵;温度数据局部关联编码模块,用于将所述温度控制矩阵通过作为特征提取器的第一卷积神经网络以得到温度控制局部关联特征图;温度数据全局关联编码模块,用于将所述温度控制局部关联特征图通过非局部神经网络以得到温度控制全局关联特征图;融合模块,用于融合所述温度控制局部关联特征图和所述温度控制全局关联特征图以得到温度控制特征图;降维模块,用于对所述温度控制特征图的各个特征矩阵进行全局均值池化以得到温度控制特征向量;校正模块,用于对所述温度控制特征向量进行校正以得到校正后温度控制特征向量;产物纯度数据编码模块,用于将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值通过包含一维卷积层的时序编码器以得到产物纯度特征向量;响应性估计模块,用于计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的控制转移矩阵;以及控制结果生成模块,用于将所述控制转移矩阵通过分类器以得到分类结果,所述分类结果用于表示预定时间段内3级金属吸附剂层床的温度控制组合是否满足预定要求。
2.根据权利要求1所述的电子级三氟化氯的智能分离纯化系统,其特征在于,所述温度数据结构化模块,包括:行向量构造单元,用于将所述预定时间段内多个预定时间点的第一碱金属吸附剂层床的第一温度、第二碱金属吸附剂层床的第二温度和第三碱金属吸附剂层床的第三温度按照所述时间维度分别排列为行向量以得到多个行向量;矩阵构造单元,用于将所述多个行向量按照所述样本维度排列为所述温度控制矩阵。
3.根据权利要求2所述的电子级三氟化氯的智能分离纯化系统,其特征在于,所述温度数据局部关联编码模块,进一步用于:使用所述作为特征提取器的第一卷积神经网络的各层在层的正向传递中对输入数据分别进行:对输入数据进行卷积处理以得到卷积特征图;对所述卷积特征图进行均值池化处理以得到池化特征图;以及对所述池化特征图进行非线性激活以得到激活特征图;其中,所述作为特征提取器的第一卷积神经网络的最后一层的输出为所述温度控制局部关联特征图,所述作为特征提取器的第一卷积神经网络的第一层的输入为所述温度控制矩阵。
4.根据权利要求3所述的电子级三氟化氯的智能分离纯化系统,其特征在于,所述温度数据全局关联编码模块,包括:点卷积单元,用于将所述温度控制局部关联特征图分别输入所述非局部神经网络的第一点卷积层、第二点卷积层和第三点卷积层以得到第一特征图、第二特征图和第三特征图;第一融合单元,用于计算所述第一特征图和所述第二特征图的按位置加权和以得到中间融合特征图;归一化单元,用于将所述中间融合特征图输入Softmax函数以对所述中间融合特征图中各个位置的特征值进行归一化以得到归一化中间融合特征图;第二融合单元,用于计算所述归一化中间融合特征图和所述第三特征图的按位置加权和以得到再融合特征图;全局感知单元,用于将所述再融合特征图通过嵌入高斯相似性函数以计算所述再融合特征图中各个位置的特征值间的相似性以得到全局感知特征图;通道数调整单元,用于将所述全局感知特征图通过所述非局部神经网络的第四点卷积层以得到通道调整全局感知特征图;以及第三融合单元,用于计算所述通道调整全局感知特征图和所述温度控制局部关联特征图的按位置加权和以得到所述温度控制全局关联特征图。
5.根据权利要求4所述的电子级三氟化氯的智能分离纯化系统,其特征在于,所述融合模块,进一步用于:以如下公式融合所述温度控制局部关联特征图和所述温度控制全局关联特征图以得到所述温度控制特征图;其中,所述公式为:
Figure 42728DEST_PATH_IMAGE001
其中,
Figure 431246DEST_PATH_IMAGE002
为所述温度控制特征图,
Figure 534200DEST_PATH_IMAGE003
为所述温度控制局部关联特征图,
Figure 81463DEST_PATH_IMAGE004
为所述温度控制全局关联特征图,“
Figure 840340DEST_PATH_IMAGE005
”表示所述温度控制局部关联特征图和所述温度控制全局关联特征图相对应位置处的元素相加,
Figure 32549DEST_PATH_IMAGE006
为用于控制所述温度控制特征图中所述温度控制局部关联特征图和所述温度控制全局关联特征图之间的平衡的加权参数。
6.根据权利要求5所述的电子级三氟化氯的智能分离纯化系统,其特征在于,所述校正模块,进一步用于:以如下公式对所述温度控制特征向量进行校正以得到所述校正后温度控制特征向量;其中,所述公式为:
Figure 724431DEST_PATH_IMAGE007
其中
Figure 245192DEST_PATH_IMAGE008
表示所述温度控制特征向量,
Figure 491365DEST_PATH_IMAGE009
是所述温度控制特征向量的自协方差矩阵,
Figure 628211DEST_PATH_IMAGE010
Figure 705757DEST_PATH_IMAGE011
分别是所述温度控制特征向量的全局均值和方差,
Figure 33970DEST_PATH_IMAGE012
表示向量的指数运算,以向量为幂的指数运算表示以向量的每个位置的值作为幂的自然指数函数值,
Figure 859450DEST_PATH_IMAGE013
Figure 393462DEST_PATH_IMAGE014
分别表示特征向量的按位置减法和加法,
Figure 528777DEST_PATH_IMAGE015
表示矩阵相乘,
Figure 403060DEST_PATH_IMAGE016
表示特征向量的二范数。
7.根据权利要求6所述的电子级三氟化氯的智能分离纯化系统,其特征在于,所述产物纯度数据编码模块,进一步用于:将所述预定时间段内多个预定时间点的经一级纯化后三氟化氯产物的纯度值按照时间维度排列为一维的输入向量;使用所述时序编码器的全连接层以如下公式对所述输入向量进行全连接编码以提取出所述输入向量中各个位置的特征值的高维隐含特征,其中,所述公式为:
Figure 623825DEST_PATH_IMAGE017
,其中
Figure 430370DEST_PATH_IMAGE018
是所述输入向量,
Figure 685770DEST_PATH_IMAGE019
是输出向量,
Figure 355786DEST_PATH_IMAGE020
是权重矩阵,
Figure 827962DEST_PATH_IMAGE021
是偏置向量,
Figure 936733DEST_PATH_IMAGE022
表示矩阵乘;以及使用所述时序编码器的一维卷积层以如下公式对所述输入向量进行一维卷积编码以提取出所述输入向量中各个位置的特征值间的高维隐含关联特征,其中,所述公式为:
Figure 79263DEST_PATH_IMAGE023
其中,a为卷积核在x方向上的宽度、F为卷积核参数向量、G为与卷积核函数运算的局部向量矩阵,w为卷积核的尺寸,
Figure 185760DEST_PATH_IMAGE024
表示所述输入向量。
8.根据权利要求7所述的电子级三氟化氯的智能分离纯化系统,其特征在于,所述响应性估计模块,进一步用于:以如下公式计算所述校正后温度控制特征向量相对于所述产物纯度特征向量的所述控制转移矩阵;其中,所述公式为:S=T*F
其中F表示所述校正后温度控制特征向量,T表示所述控制转移矩阵,S表示所述产物纯度特征向量。
9.根据权利要求8所述的电子级三氟化氯的智能分离纯化系统,其特征在于,所述控制结果生成模块,进一步用于:所述分类器以如下公式对所述控制转移矩阵进行处理以生成分类结果,其中,所述公式为:
Figure 213408DEST_PATH_IMAGE025
,其中
Figure 63553DEST_PATH_IMAGE026
表示将所述控制转移矩阵投影为向量,
Figure 263852DEST_PATH_IMAGE027
Figure 665883DEST_PATH_IMAGE028
为各层全连接层的权重矩阵,
Figure 489483DEST_PATH_IMAGE029
Figure 969749DEST_PATH_IMAGE030
表示各层全连接层的偏置矩阵。
CN202210905265.0A 2022-07-29 2022-07-29 电子级三氟化氯的智能分离纯化系统 Active CN115231525B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210905265.0A CN115231525B (zh) 2022-07-29 2022-07-29 电子级三氟化氯的智能分离纯化系统
PCT/CN2022/119303 WO2024021254A1 (zh) 2022-07-29 2022-09-16 电子级三氟化氯的智能分离纯化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210905265.0A CN115231525B (zh) 2022-07-29 2022-07-29 电子级三氟化氯的智能分离纯化系统

Publications (2)

Publication Number Publication Date
CN115231525A CN115231525A (zh) 2022-10-25
CN115231525B true CN115231525B (zh) 2022-12-23

Family

ID=83676755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210905265.0A Active CN115231525B (zh) 2022-07-29 2022-07-29 电子级三氟化氯的智能分离纯化系统

Country Status (2)

Country Link
CN (1) CN115231525B (zh)
WO (1) WO2024021254A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116106457B (zh) * 2023-04-13 2023-06-27 天津海河标测技术检测有限公司 空气采样检测一体化装置
CN116840399B (zh) * 2023-07-07 2023-12-19 福建德尔科技股份有限公司 一种高纯三氟化氯的气相色谱分析系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090089677A (ko) * 2008-02-19 2009-08-24 (주) 리더스 신경회로망을 이용한 간이상수도 모니터링 제어시스템 및그 제어방법
CN102626557A (zh) * 2012-04-13 2012-08-08 长春工业大学 基于ga-bp算法的分子蒸馏工艺参数优化方法
AU2020102091A4 (en) * 2019-10-17 2020-10-08 Wuhan University Of Science And Technology Intelligent steel slag detection method and system based on convolutional neural network
CN111888788A (zh) * 2020-06-15 2020-11-06 广东工业大学 一种适于中药提取浓缩的循环神经网络控制方法和系统
CN112250538A (zh) * 2020-11-13 2021-01-22 万华化学集团股份有限公司 一种异丙苯精制工艺流程
CN112309513A (zh) * 2020-11-02 2021-02-02 广西仙草堂制药有限责任公司 一种青蒿素提取方法有效性的检测方法和装置
CN112634995A (zh) * 2020-12-21 2021-04-09 绍兴数鸿科技有限公司 一种基于人工智能的苯酚裂解参数自动优化方法和装置
CN214680102U (zh) * 2021-02-02 2021-11-12 福建德尔科技有限公司 电子级三氟化氯的分离装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068212A (ja) * 1998-08-21 2000-03-03 Ebara Corp ガス循環機構を有する半導体製造方法及び装置
US7413722B2 (en) * 2005-08-04 2008-08-19 Foosung Co., Ltd. Method and apparatus for manufacturing nitrogen trifluoride
CN104555927B (zh) * 2014-12-31 2016-07-20 中国船舶重工集团公司第七一八研究所 一种三氟化氯的纯化方法
CN112390230A (zh) * 2020-11-20 2021-02-23 苏州金宏气体股份有限公司 一种三氟化氯的提纯方法及提纯系统
CN112919419B (zh) * 2021-01-29 2022-08-23 福建德尔科技股份有限公司 电子级三氟化氯的精馏纯化系统控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090089677A (ko) * 2008-02-19 2009-08-24 (주) 리더스 신경회로망을 이용한 간이상수도 모니터링 제어시스템 및그 제어방법
CN102626557A (zh) * 2012-04-13 2012-08-08 长春工业大学 基于ga-bp算法的分子蒸馏工艺参数优化方法
AU2020102091A4 (en) * 2019-10-17 2020-10-08 Wuhan University Of Science And Technology Intelligent steel slag detection method and system based on convolutional neural network
CN111888788A (zh) * 2020-06-15 2020-11-06 广东工业大学 一种适于中药提取浓缩的循环神经网络控制方法和系统
CN112309513A (zh) * 2020-11-02 2021-02-02 广西仙草堂制药有限责任公司 一种青蒿素提取方法有效性的检测方法和装置
CN112250538A (zh) * 2020-11-13 2021-01-22 万华化学集团股份有限公司 一种异丙苯精制工艺流程
CN112634995A (zh) * 2020-12-21 2021-04-09 绍兴数鸿科技有限公司 一种基于人工智能的苯酚裂解参数自动优化方法和装置
CN214680102U (zh) * 2021-02-02 2021-11-12 福建德尔科技有限公司 电子级三氟化氯的分离装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Neural network algorithm and its application in temperature control of distillation tower;Ningrui Zhao 等;《arXiv:2101.00582v1》;20210103;第1-19页 *

Also Published As

Publication number Publication date
CN115231525A (zh) 2022-10-25
WO2024021254A1 (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
CN115231525B (zh) 电子级三氟化氯的智能分离纯化系统
CN114870416B (zh) 用于电子级一氟甲烷制备的精馏控制系统及精馏控制方法
WO2024000798A1 (zh) 用于电子级氢氟酸制备的生产管理控制系统及其控制方法
CN115688592B (zh) 用于电子级四氟化碳制备的精馏控制系统及其方法
CN114768279B (zh) 用于电子级二氟甲烷制备的精馏控制系统及其控制方法
WO2024021258A1 (zh) 电子级氢氧化钾的智慧产线的控制系统及其控制方法
CN112200104B (zh) 一种基于增强主成分分析新型贝叶斯框架的化工故障诊断方法
WO2024045244A1 (zh) 用于无水氟化氢生产的能源管理控制系统及其控制方法
CN115013298B (zh) 污水泵的实时性能在线监测系统及其监测方法
CN114202740A (zh) 一种基于多尺度特征融合的行人重识别方法
CN112587129A (zh) 一种人体动作识别方法及装置
CN115235612A (zh) 伺服电机的故障智能诊断系统及其诊断方法
CN113111543A (zh) 物联网服务系统
CN115935276A (zh) 环境水质监测系统及其监测方法
CN114648496A (zh) 智慧医疗系统
CN115146676A (zh) 电路故障检测方法及其系统
CN115097884B (zh) 用于电子级氢氟酸制备的能源管理控制系统及其控制方法
CN115090200B (zh) 用于电子级氢氟酸制备的自动配料系统及其配料方法
KR20150093058A (ko) 얼굴 인식 장치 및 방법
CN116269351A (zh) 基于运动姿态变化的脑卒中患者康复效果评估系统
CN116401528A (zh) 一种基于全局-局部散度的多元时间序列无监督降维方法
CN116216234A (zh) 基于视频的输煤系统智能监控系统及其方法
CN115131735A (zh) 五金工具热处理后冷却媒介温度控制系统及温度控制方法
CN115138713A (zh) 五金工具配件的冲压设备及其冲压方法
Pal et al. Performance Evaluation of Multivariate Linear Regression Model with LDA and PCA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant