CN115228497B - 一种用于环境污染去除的量子点修饰催化材料及其制备方法 - Google Patents

一种用于环境污染去除的量子点修饰催化材料及其制备方法 Download PDF

Info

Publication number
CN115228497B
CN115228497B CN202210850233.5A CN202210850233A CN115228497B CN 115228497 B CN115228497 B CN 115228497B CN 202210850233 A CN202210850233 A CN 202210850233A CN 115228497 B CN115228497 B CN 115228497B
Authority
CN
China
Prior art keywords
catalytic material
feooh
quantum dot
dot modified
bnqds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210850233.5A
Other languages
English (en)
Other versions
CN115228497A (zh
Inventor
丛燕青
张冰倩
吕诗文
李亚男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huihuan Technology Hangzhou Co ltd
Zhejiang Gongshang University
Original Assignee
Huihuan Technology Hangzhou Co ltd
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huihuan Technology Hangzhou Co ltd, Zhejiang Gongshang University filed Critical Huihuan Technology Hangzhou Co ltd
Priority to CN202210850233.5A priority Critical patent/CN115228497B/zh
Publication of CN115228497A publication Critical patent/CN115228497A/zh
Application granted granted Critical
Publication of CN115228497B publication Critical patent/CN115228497B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于环境污染去除的量子点修饰催化材料及制备方法:(1)将基底材料置于铁盐、尿素的混合溶液中进行水热反应,经洗涤干燥后得到FeOOH催化材料;(2)将上述FeOOH催化材料置于硼酸和三聚氰胺的混合溶液中,进行水热反应,反应结束后经洗涤干燥制得量子点修饰催化材料。本发明还包括采用上述方法制得的BNQDs@FeOOH催化材料在处理环境污染中的应用。所得催化材料质地均匀,稳定性好,活性成分不易剥落,光生电子和空穴分离效率高,具有良好的光电催化活性。

Description

一种用于环境污染去除的量子点修饰催化材料及其制备方法
技术领域
本发明涉及光电催化材料和环境净化技术领域,特别涉及一种用于环境污染去除的量子点修饰催化材料及制备方法。
背景技术
量子点(QDs)是零维纳米材料的成员,具有溶解度优异、可调性高的特点,易于与其他半导体形成复合结构。这些物理和化学性质促使研究人员将量子点应用于各种场景。然而,传统量子点材料如硫化镉量子点会对人体健康和环境造成危害。因此,无毒量子点成为近年来的热点之一。其中,氮化硼量子点(BNQDs)被认为是石墨烯量子点的类似物,具有独特的电学和光学特性。BNQDs是通过硼和氮两种不同元素杂化形成的,是绿色无金属催化剂,没有二次污染。与石墨烯量子点相比,其边缘构型可以发生多种方面变化。此外,氮化硼量子点表面含有带负电荷的含氧基团,在光催化反应中能够捕获正离子,可以通过分离电子空穴对来提高光催化活性。另一方面,小粒径的BNQDs极大地增加了材料和目标降解产物的接触概率。
近年来,FeOOH由于其较高的理论电容和较宽的工作电位而被认为是优异的光电催化材料。它在可见光区域吸收带位置宽,且易与其它半导体耦合,从而提高其光催化性能。
当前,在光电催化降解污染物方面,以Pt为首的贵金属因其活性高,被作为催化反应的优选催化剂材料。但是贵金属的高成本、稀缺性以及低稳定性限制了其商业应用的可行性,探索价格低、储量丰富的非贵金属基新型材料势在必行。
发明内容
本发明的目的在于克服现有技术的不足,提供了一种用于环境污染去除的量子点修饰催化材料及制备方法,催化材料表现出较高的光电催化活性及稳定性,且制备方法简单经济。
一种用于环境污染去除的量子点修饰催化材料的制备方法,包括如下步骤:
(1)将基底材料置于铁盐、尿素的混合溶液中进行水热反应,经洗涤干燥后得到FeOOH催化材料。
(2)将上述FeOOH催化材料置于硼酸和三聚氰胺的混合溶液中,进行水热反应,反应结束后经洗涤干燥制得量子点修饰的BNQDs@FeOOH催化材料。
本发明采用两步水热法制备了用于环境污染去除的量子点修饰催化材料。在引入量子点后,BNQDs@FeOOH复合材料的电荷转移速率加快,光电性能和氧化能力得到提升,具有良好的光响应效果,能在一定程度上抑制光生电子-空穴复合,具有较好的稳定性和重复使用性。
上述制备路线中,各步骤的具体工艺条件如下:
(一)步骤(1)中:
所述基底材料可以为钛片、镍片、FTO导电玻璃等。优选地,所述的基底材料为钛片。
在水热反应之前需对基底材料进行预处理,依次于丙酮、乙醇、纯净水中清洗后于空气中晾干备用。
水热法主要是利用溶剂在高温下溶解物质的能力。合成通常发生在高压釜中。水热法可以通过调整溶液的浓度和前驱体的类型,制备出具有不同尺寸和形态的产物。合成过程通过适当变化温度、压力前驱体浓度合成不同形貌与性能的材料。该技术可用于合成具有良好形貌和良好结构的催化剂。
所述的铁盐为三氯化铁、硫酸铁和硝酸铁中的至少一种。作为优选,所述铁盐为三氯化铁。铁盐浓度为0.05M~0.5M;尿素的浓度为0.05M~0.5M。作为优选,铁盐浓度为0.15M~0.25M;尿素的浓度为0.15M~0.25M。
步骤(1)中,所述水热处理的温度为70~150℃,煅烧时间为5~15h;优选地,所述水热处理的温度为90~110℃,煅烧时间为8~11h。
(二)步骤(2)中:
所述混合溶液的制备方法如下:将硼酸和三聚氰胺溶于蒸馏水中,于恒温水浴中搅拌溶解;
所述水热处理的温度为150℃~230℃,煅烧时间为5~15h。进一步优选,所述水热处理的温度为180℃~210℃,煅烧时间为8~11h。
优选地,所述硼酸浓度为0.02M~0.10M;三聚氰胺浓度为0.002M~0.02M。进一步优选,所述硼酸浓度为0.05M~0.07M,所述三聚氰胺浓度为0.007M~0.012M。
优选地,将硼酸与三聚氰胺于50℃~70℃恒温水浴中搅拌溶解。
本发明还包括一种利用所制得的量子点修饰催化材料(BNQDs@FeOOH)处理环境污染物的应用。
本发明的制备方法中通过调整水热反应的温度、时间,溶液浓度等从而获得厚薄适宜的BNQDs@FeOOH催化材料,使其既能充分吸收光,产生较高浓度的光生载流子,又能提高载流子的迁移速率,表现出较高的光电催化活性。
与现有的技术相比,本发明的有益效果:
(1)通过测定,在紫外可见光照射下,BNQDs@FeOOH的光电流密度是FeOOH的10倍。在引入量子点后,其电荷转移速率加快,光电性能和氧化能力得到显著提升,具有良好的光响应效果。
(2)通用两步水热法,制得的催化材料质地均匀、稳定性好,活性成分不易剥落,有效面积易控制。
(3)所制得的BNQDs@FeOOH催化材料的光生电子和空穴分离效率高,具有良好的光电催化活性。
附图说明
图1为实施例1制得的BNQDs@FeOOH催化材料,对比例1制得的FeOOH催化材料在0.1M Na2SO4和0.1M Na2SO3混合溶液中的全光谱明暗交替下的线性扫描伏安曲线;
图2为实施例1制得的BNQDs@FeOOH催化材料,对比例1制得的FeOOH催化材料,在电解质浓度为0.1M Na2SO4溶液中,在黑暗条件下的交流阻抗谱;
图3为实施例1制得的BNQDs@FeOOH催化材料,对比例1制得的FeOOH催化材料,在电解质浓度为0.1M Na2SO4溶液中,在紫外可见光照射下的交流阻抗谱;
图4为实施例1中制得的BNQDs@FeOOH催化材料的Mott-Schottky曲线图;
图5为对比例1中制得的FeOOH催化材料的Mott-Schottky曲线图;
图6为实施例1制得的BNQDs@FeOOH催化材料和对比例1制得的FeOOH催化材料的瞬时光电流-时间曲线;
图7为实施例1中制得的BNQDs@FeOOH催化材料在纯电条件(EC)、纯光条件(PC)和光电协同条件(PEC)条件下四环素的去除率比较;
图8为四环素初始浓度对实施例1中制得的BNQDs@FeOOH催化材料在紫外可见光下对待处理废水中四环素的去除率影响;
图9为实施例1中制得的BNQDs@FeOOH电极光电催化降解四环素的循环试验;
图10为实施例1制得的BNQDs@FeOOH电极在不同初始pH下光电催化降解四环素的去除率的影响;
图11为实施例1制得的BNQDs@FeOOH电极在不同外加电流下光电催化降解四环素的去除率的影响。
具体实施方式
下面将结合附图及具体实例对本发明进行详细的说明。
实施例1
本实施例中所用基底均为钛片(20mm×20mm)。将钛片依次于丙酮、乙醇、纯净水中用超声波清洗器各自清洗15min后于空气中晾干备用。
本实施例中,铁盐为六水合三氯化铁(0.2M),尿素为0.2M,通过如下方法制备得到:取一定量的六水合三氯化铁和尿素于烧杯中,再加入蒸馏水30ml,溶解充分。将预处理好的钛片放入水热釜的釜体内胆中,于烘箱中在100℃温度下维持10h得到FeOOH光电催化材料。
本实施例中,硼酸为0.06M,三聚氰胺为0.01M,通过如下方法制备得到:取一定量的硼酸和三聚氰胺于烧杯中,加入50ml蒸馏水,于60℃恒温水浴中搅拌溶解后将其倒入高压釜体中,再将FeOOH光电催化电极放入其中。将高压釜体放入烘箱中,在200℃温度下维持10h得到BNQDs@FeOOH光电催化材料。
对比例1
本对比例中所用基底均为钛片(20mm×20mm)。将钛片依次于丙酮、乙醇、纯净水中用超声波清洗器各自清洗15min后于空气中晾干备用。
本对比例中,铁盐为六水合三氯化铁(0.2M),尿素为0.2M。通过如下方法制备得到:取一定量的六水合三氯化铁和尿素于烧杯中,再加入蒸馏水30ml,溶解充分。将预处理好的钛片放入水热釜釜体内胆中,于烘箱中在100℃温度下维持10h得到FeOOH光电催化材料。
图1为实施例1制得的BNQDs@FeOOH催化材料,对比例1制得的FeOOH催化材料在0.1M Na2SO4和0.1M Na2SO3混合溶液中的全光谱明暗交替下的线性扫描伏安曲线。由图1可知,在图示中的电压范围内,BNQDs@FeOOH的电流密度与FeOOH相比有明显的提升。在0.4Vvs Ag/AgCl恒压条件下,BNQDs@FeOOH的电流密度比FeOOH高了十倍左右,表明BNQDs和FeOOH两者复合能有效提高光电流。
图2为实施例1制得的BNQDs@FeOOH催化材料,对比例1制得的FeOOH催化材料,在电解质浓度为0.1M Na2SO4溶液中,在黑暗条件下的交流阻抗谱(EIS图谱)。图3为实施例1制得的BNQDs@FeOOH催化材料,对比例1制得的FeOOH催化材料,在电解质浓度为0.1M Na2SO4溶液中,在紫外可见光照射下的交流阻抗谱(EIS图谱)。由图2和图3可知,无论是在黑暗还是在紫外可见光照条件下BNQDs@FeOOH催化材料的阻抗环半径都小于FeOOH催化材料,而阻抗环半径越小,代表其电荷转移速率越快,表明BNQDs@FeOOH的电阻更小,电子转移能力更强。
图4为对实施例1中制得的BNQDs@FeOOH催化材料的Mott-Schottky曲线图。图5为对比例1中制得的FeOOH催化材料的Mott-Schottky曲线图。Mott-Schottky曲线的斜率为正时为n型半导体,为负时为p型半导体。由图4和图5可知,FeOOH为n型半导体,在负载BNQDs后BNQDs@FeOOH仍为n型半导体,量子点的引入并没有改变半导体的类型,但BNQDs@FeOOH(0.01V vs Ag/AgCl)比FeOOH(0.48V vs Ag/AgCl)的平带电势更正,代表其光电性能和氧化能力也有一定程度提高。
图6为实施例1制得的BNQDs@FeOOH催化材料和对比例1制得的FeOOH催化材料的瞬时光电流-时间曲线。取特定的lnD值的时候,不同材料所对应的t不同,t值越大,表明该催化剂光生载流子复合时间越长,电子和空穴不易复合。在测试范围内无论lnD取何值,BNQDs@FeOOH电极对应的t值都大于FeOOH,这说明BNQDs@FeOOH催化材料的光生载流子复合效率比FeOOH低,光生电子和空穴更容易分别发生氧化还原反应,解释了光电性能提升的原因。
实施例2
本实施例中待处理环境污染物为四环素,其中四环素溶液的初始浓度为10mg/L。
本实施例的基于实施例1中制得的BNQDs@FeOOH催化材料的废水处理方法,处理过程如下:
待处理废水的pH值约为6,进行光电催化降解。光催化降解时光源默认强度为100mW/cm2,电催化降解时默认电流密度为20mA/cm2。光电催化处理时采用的阳极包括导电基底和包覆于导电基底表面的BNQDs@FeOOH催化材料(由实施例1制得),阴极为石墨。
光电催化处理时施加在光催化阳极和阴极之间的工作电流为20mA/cm2,在紫外可见光照射的条件下进行。反应时间为40min。
为保证待处理废水在反应过程中浓度均匀,在光电催化处理过程中,对待处理废水进行磁力搅拌。
实施例3
与实施例2相同,所不同的是处理条件不同。本实施例中分别在纯电和纯光条件下进行,以研究BNQDs@FeOOH催化材料在不同条件下对四环素的降解情况。
图7为纯电条件(EC)、纯光条件(PC)和光电协同条件(PEC)条件下对四环素的去除率比较。如图7所示,单独光催化降解效果(77.3%)和单独电催化降解效果(53.5%)都没有光电协同催化效果好,在40min内可达到100%的降解率。相应地,光电催化反应速率0.1043min-1比电催化(0.0181min-1)和光催化(0.0406min-1)都快得多,所以光电催化存在明显的协同效应。
实施例4
采用与实施例2相同的处理方法处理不同初始浓度的四环素废水。
本实施例中待处理含四环素废水中四环素的初始浓度如下:5mg/L、10mg/L、20mg/L、30mg/L和40mg/L。
图8为四环素初始浓度对BNQDs@FeOOH催化材料在紫外可见光下对四环素的去除率影响。由图8可知,当四环素浓度小于10mg/L时,在40min内能将其完全降解,反应速率也非常快。当四环素浓度大于10mg/L时,随着浓度的增加,降解率逐渐下降,反应速率也依次下降。20mg/1时降解率为83.9%,反应速率为0.0406min-1,30mg/1时,降解率为77.4%,反应速率为0.0338min-1,40mg/L时,降解率为53.4%,反应速率为0.0185min-1
实施例5
对制备的BNQDs@FeOOH催化材料进行了循环降解实验:将待处理的四环素废水分为五份,采用与实施例2相同的方法,利用同一对光电催化电极分别对每一份待处理四环素废水进行处理。
图9为对每份待处理四环素废水中四环素的降解率,按照处理顺序,每次处理后四环素的降解率曲线分别用run1、run2、run3、run4和run5表示。由图可知,BNQDs@FeOOH催化材料降解四环素废水5次后,四环素的去除率均为100%,证明BNQDs@FeOOH催化材料具有很好的稳定性和重复使用性。
实施例6
采用与实施例2相同的处理方法处理不同初始pH的四环素废水。
本实施例中以0.1M硫酸钠为电解质,将污染物溶液初始pH值用1M H2SO4或1M NaOH调节至2,4,6,8,10。
图10为不同初始pH值对BNQDs@FeOOH催化材料光电催化去除四环素的去除率影响。由图10可知,BNQDs@FeOOH电极在pH为2,4,6,8,10时的降解效果分别为91.7%,95.5%,100%,100%,100%,相应的一级动力学常数为0.0589min-1,0.0709min-1,0.1043min-1,0.1144min-1,0.4867min-1。总的来说,BNQDs@FeOOH电极适用范围较广泛,pH在2到10之间,40min内的降解效率均在90%以上。特别是当pH为10时,降解速度极快,这是因为pH在10及以上时,四环素会发生碱性水解。
实施例7
与实施例2不同的是外加电流,分别外加5mA/cm2,10mA/cm2,20mA/cm2,30mA/cm2,40mA/cm2的恒定电流,考察其对10mg/L的四环素的去除效率。
如图11所示,在电流密度小于20mA/cm2时,随着电流密度的增加,四环素的去除率也相应变大。当电流密度大于20mA/em2时,去除效率也均能达到100%。
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种用于环境污染去除的量子点修饰催化材料的应用,其特征在于,包括如下步骤:
(1) 将基底材料置于铁盐、尿素的混合溶液中进行水热反应,经洗涤干燥后得到FeOOH催化材料;
(2) 将上述FeOOH催化材料置于硼酸和三聚氰胺的混合溶液中,进行水热反应,反应结束后经洗涤干燥制得量子点修饰的催化材料;
其中,步骤(1)中,所述基底材料为钛片、镍片、FTO导电玻璃;所述水热处理的温度为70~ 150 ℃,煅烧时间为5 ~ 15 h;所述的铁盐为三氯化铁、硫酸铁和硝酸铁中的至少一种,铁盐浓度为0.05 M ~ 0.5 M;尿素的浓度为0.05 M ~ 0.5 M;
步骤(2)中,所述水热处理的温度为150 ℃ ~ 230 ℃,煅烧时间为5 ~ 15 h;硼酸浓度为0.02 M ~ 0.10 M;三聚氰胺浓度为0.002 M ~ 0.02 M;硼酸与三聚氰胺于50 ℃ ~ 70℃恒温水浴中搅拌溶解;
利用上述步骤制得的量子点修饰催化材料在处理抗生素污染物四环素中的应用,包括:
对待处理废水进行光电催化降解,采用的阳极包括导电基底和包覆于导电基底表面的量子点修饰催化材料,光电催化处理时在光催化阳极和阴极之间施加工作电流,在紫外可见光照射的条件下进行反应。
2.根据权利要求1所述的用于环境污染去除的量子点修饰催化材料的应用,其特征在于,所述废水的pH为2、4、6、8、10。
3.根据权利要求1所述的用于环境污染去除的量子点修饰催化材料的应用,其特征在于,所述工作电流为5、10、20、30、40 mA/cm2
CN202210850233.5A 2022-07-15 2022-07-15 一种用于环境污染去除的量子点修饰催化材料及其制备方法 Active CN115228497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210850233.5A CN115228497B (zh) 2022-07-15 2022-07-15 一种用于环境污染去除的量子点修饰催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210850233.5A CN115228497B (zh) 2022-07-15 2022-07-15 一种用于环境污染去除的量子点修饰催化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115228497A CN115228497A (zh) 2022-10-25
CN115228497B true CN115228497B (zh) 2024-03-01

Family

ID=83673024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210850233.5A Active CN115228497B (zh) 2022-07-15 2022-07-15 一种用于环境污染去除的量子点修饰催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115228497B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105498773A (zh) * 2014-09-26 2016-04-20 中国科学院大连化学物理研究所 一种掺杂氧化铁纳米棒催化剂的制备方法
WO2017128847A1 (zh) * 2016-01-28 2017-08-03 中国科学院大连化学物理研究所 一种规模化太阳能光催化-光电催化分解水制氢的方法
CN107790131A (zh) * 2017-09-30 2018-03-13 华南理工大学 一种Zr‑Fe2O3/FeOOH复合光电极及其制备方法
CN109772355A (zh) * 2019-03-11 2019-05-21 辽宁石油化工大学 非晶羟基氧化铁/矾酸铋复合光催化材料的制备方法
CN109825851A (zh) * 2019-01-14 2019-05-31 华南师范大学 一种改性水铁矿/赤铁矿纳米棒核壳结构复合光阳极及其应用
WO2022051898A1 (zh) * 2020-09-08 2022-03-17 东莞理工学院 磁性复合光催化剂及其制备方法和在抗生素废水处理中的应用
CN114192145A (zh) * 2021-12-27 2022-03-18 青岛农业大学 GQDs/TiO2/α-FeOOH三复合光催化剂制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110344029B (zh) * 2019-07-24 2021-07-27 台州学院 一种表面羟基化氧化铁薄膜光阳极材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105498773A (zh) * 2014-09-26 2016-04-20 中国科学院大连化学物理研究所 一种掺杂氧化铁纳米棒催化剂的制备方法
WO2017128847A1 (zh) * 2016-01-28 2017-08-03 中国科学院大连化学物理研究所 一种规模化太阳能光催化-光电催化分解水制氢的方法
CN107790131A (zh) * 2017-09-30 2018-03-13 华南理工大学 一种Zr‑Fe2O3/FeOOH复合光电极及其制备方法
CN109825851A (zh) * 2019-01-14 2019-05-31 华南师范大学 一种改性水铁矿/赤铁矿纳米棒核壳结构复合光阳极及其应用
CN109772355A (zh) * 2019-03-11 2019-05-21 辽宁石油化工大学 非晶羟基氧化铁/矾酸铋复合光催化材料的制备方法
WO2022051898A1 (zh) * 2020-09-08 2022-03-17 东莞理工学院 磁性复合光催化剂及其制备方法和在抗生素废水处理中的应用
CN114192145A (zh) * 2021-12-27 2022-03-18 青岛农业大学 GQDs/TiO2/α-FeOOH三复合光催化剂制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Flower-like FeOOH hybridized with carbon quantum dots for efficient photo-Fenton degradation of organic pollutants;Pengfei Wu et al.,;Applied Surface Science;第540:148362卷;1-16 *
Modulating water oxidation kinetics utilizing h-BN quantum dots as an efficient hole extractor on fluorine doped hematite photoanode;Tushar Kanta Sahu et al.,;Journal of Power Sources;第445:227341卷;1-8 *

Also Published As

Publication number Publication date
CN115228497A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
Zhao et al. Enhanced organic pollutants degradation and electricity production simultaneously via strengthening the radicals reaction in a novel Fenton-photocatalytic fuel cell system
CN108654645B (zh) 一种负载型多功能催化复合材料、其制备方法及在水污染物催化去除中的应用
Soltani et al. Ag-doped BiVO4/BiFeO3 photoanode for highly efficient and stable photocatalytic and photoelectrochemical water splitting
Li et al. Improved photoelectrochemical performance of Z-scheme g-C3N4/Bi2O3/BiPO4 heterostructure and degradation property
Yu et al. Novel application of a Z-scheme photocatalyst of Ag3PO4@ g-C3N4 for photocatalytic fuel cells
Li et al. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation
Ong et al. A synergistic heterostructured ZnO/BaTiO3 loaded carbon photoanode in photocatalytic fuel cell for degradation of Reactive Red 120 and electricity generation
Liu et al. Interfacial engineering of Ti3C2 MXene/CdIn2S4 Schottky heterojunctions for boosting visible-light H2 evolution and Cr (VI) reduction
Qin et al. Dye-sensitized TiO2 film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol
Zhao et al. Efficient wastewater treatment and simultaneously electricity production using a photocatalytic fuel cell based on the radical chain reactions initiated by dual photoelectrodes
CN111261413B (zh) 一种Ti掺杂α-Fe2O3纳米棒复合MOFs异质结光阳极及其制备方法与应用
CN109589993B (zh) 电化学改性的钒酸铋-硫化钼-四氧化三钴催化电极及其制备方法和应用
Liu et al. BiVO4@ PDA/TiO2/Ti photoanode with polydopamine as electron transfer mediator for efficient visible-light driven photocatalytic fuel cell
Ma et al. Visible-light-responsive Z-scheme heterojunction MoS2 NTs/CuInS2 QDs photoanode for enhanced photoelectrocatalytic degradation of tetracycline
CN110773142A (zh) 一种还原羟基化石墨烯复合半导体催化剂的制备及应用
Jeong et al. Improvement of CuO photostability with the help of a BiVO4 capping layer by preventing self-reduction of CuO to Cu2O
Zhou et al. Graphite carbon nitride coupled S-doped hydrogenated TiO2 nanotube arrays with improved photoelectrochemical performance
CN110965073B (zh) 一种含缺陷的wo3光电极的制备方法
Choi et al. Enhanced photoelectrochemical efficiency and stability using nitrogen-doped TiO2 on a GaAs photoanode
Gao et al. Fabrication of Z-Scheme TiO2/SnS2/MoS2 ternary heterojunction arrays for enhanced photocatalytic and photoelectrochemical performance under visible light
CN107744823B (zh) 一种多金属氧酸盐基复合可见光催化剂的制备方法
Zhao et al. Unraveling Electron-deficient Setaria-viridis-like Co3O4@ MnO2 heterostructure with superior photoelectrocatalytic efficiency for water remediation
Zhang et al. BaTiO3/Fe2O3/MoS2/Ti photoanode for visible light responsive photocatalytic fuel cell degradation of rhodamine B and electricity generation
Leng et al. Enhanced quinoline degradation by 3D stack Z-scheme photoelectrocatalytic system with Ag-TNTs photoanode and CN-CNWs photocathode
CN115228497B (zh) 一种用于环境污染去除的量子点修饰催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant